<<

Citation: P.A. Zyla et al. ( Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

BOTTOM, STRANGE (B = ±1, S = ∓1) 0 0 ∗ Bs = sb, Bs = s b, similarly for Bs ’s

0 P − Bs I (J ) = 0(0 )

I , J, P need confirmation. Quantum numbers shown are -model predictions.

Mass m 0 = 5366.88 ± 0.14 MeV Bs m 0 − mB = 87.38 ± 0.16 MeV Bs Mean life τ = (1.515 ± 0.004) × 10−12 s cτ = 454.2 µm 12 −1 ∆Γ 0 = Γ 0 − Γ 0 = (0.085 ± 0.004) × 10 s Bs BsL Bs H 0 0 Bs -Bs mixing parameters 12 −1 ∆m 0 = m 0 – m 0 = (17.749 ± 0.020) × 10 ¯h s Bs Bs H BsL = (1.1683 ± 0.0013) × 10−8 MeV xs = ∆m 0 /Γ 0 = 26.89 ± 0.07 Bs Bs χs = 0.499312 ± 0.000004 0 CP violation parameters in Bs 2 −3 Re(ǫ 0 )/(1+ ǫ 0 )=(−0.15 ± 0.70) × 10 Bs Bs 0 + − CKK (Bs → K K )=0.14 ± 0.11 0 + − SKK (Bs → K K )=0.30 ± 0.13 0 ∓ ± +0.10 rB(Bs → Ds K )=0.37−0.09 0 ± ∓ ◦ δB(Bs → Ds K ) = (358 ± 14) −2 CP Violation phase βs = (2.55 ± 1.15) × 10 rad

λ (B0 → J/ψ(1S)φ)=1.012 ± 0.017 s λ = 0.999 ± 0.017 A, CP violation parameter = −0.75 ± 0.12 C, CP violation parameter = 0.19 ± 0.06 S, CP violation parameter = 0.17 ± 0.06 L ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.06 k ∗ 0 ACP (Bs → J/ψ K (892) )=0.17 ± 0.15 ⊥ ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.10 + − ACP (Bs → π K ) = 0.221 ± 0.015 0 + − ∗ 0 ACP (Bs → [K K ]D K (892) ) = −0.04 ± 0.07

HTTP://PDG.LBL.GOV Page1 Created:6/1/202008:28 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

0 + − ∗ 0 ACP (Bs → [π K ]D K (892) ) = −0.01 ± 0.04 0 + − ∗ 0 ACP (Bs → [π π ]D K (892) )=0.06 ± 0.13 0 S(Bs → φγ)=0.43 ± 0.32 0 C(Bs → φγ)=0.11 ± 0.31 ∆ A (Bs → φγ) = −0.7 ± 0.4 −12 ∆a⊥ < 1.2 × 10 GeV, CL = 95% −14 ∆ak = (−0.9 ± 1.5) × 10 GeV −14 ∆aX = (1.0 ± 2.2) × 10 GeV −14 ∆aY = (−3.8 ± 2.2) × 10 GeV Re(ξ) = −0.022 ± 0.033 Im(ξ)=0.004 ± 0.011

b B0 These branching fractions all scale with B( → s ).

B0 D− + The branching fraction B( s → s ℓ νℓ anything) is not a pure mea- b B0 surement since the measured product branching fraction B( → s ) × B0 D− ℓ+ ν b B0 B( s → s ℓ anything) was used to determine B( → s ), as described in the note on “B0-B0 Mixing”

For inclusive branching fractions, e.g., B → D± anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

Scale factor/ p B0 DECAY MODES c s DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/ ) − Ds anything (93 ±25 )% – ℓνℓ ( 9.6 ± 0.8 )% – e+ ν X − ( 9.1 ± 0.8 )% – µ+ ν X − (10.2 ± 1.0 )% – − + Ds ℓ νℓ anything [a] ( 8.1 ± 1.3 )% – ∗− + Ds ℓ νℓ anything ( 5.4 ± 1.1 )% – − + − → −3 Ds1(2536) µ νµ, Ds1 ( 2.7 ± 0.7 ) × 10 – ∗− 0 D K S − + − → −3 Ds1(2536) X µ ν, Ds1 ( 4.4 ± 1.3 ) × 10 – D0 K + − + − → −3 Ds2(2573) X µ ν, Ds2 ( 2.7 ± 1.0 ) × 10 – D0 K + − + −3 Ds π ( 3.00± 0.23) × 10 2320 − + −3 Ds ρ ( 6.9 ± 1.4 ) × 10 2249 − + + − −3 Ds π π π ( 6.1 ± 1.0 ) × 10 2301 − + − → −5 Ds1(2536) π , Ds1 ( 2.5 ± 0.8 ) × 10 – − + − Ds π π ∓ ± −4 Ds K ( 2.27± 0.19) × 10 2293

HTTP://PDG.LBL.GOV Page2 Created: 6/1/2020 08:28 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

− + + − −4 Ds K π π ( 3.2 ± 0.6 ) × 10 2249 + − −3 Ds Ds ( 4.4 ± 0.5 ) × 10 1824 − + −4 Ds D ( 2.8 ± 0.5 ) × 10 1875 D+ D− ( 2.2 ± 0.6 ) × 10−4 1925 D0 D0 ( 1.9 ± 0.5 ) × 10−4 1930 ∗− + −3 Ds π ( 2.0 ± 0.5 ) × 10 2265 ∗∓ ± −4 Ds K ( 1.33± 0.35) × 10 – ∗− + −3 Ds ρ ( 9.6 ± 2.1 ) × 10 2191 ∗+ − ∗− + Ds Ds + Ds Ds ( 1.39± 0.17) % 1742 ∗+ ∗− Ds Ds ( 1.44± 0.21) % S=1.1 1655 (∗)+ (∗)− Ds Ds ( 4.5 ± 1.4 )% – D∗0 K 0 ( 2.8 ± 1.1 ) × 10−4 2278 D0 K 0 ( 4.3 ± 0.9 ) × 10−4 2330 D0 K − π+ ( 1.04± 0.13) × 10−3 2312 D0 K ∗(892)0 ( 4.4 ± 0.6 ) × 10−4 2264 D0 K ∗(1410) ( 3.9 ± 3.5 ) × 10−4 2117 0 ∗ −4 D K 0(1430) ( 3.0 ± 0.7 ) × 10 2113 0 ∗ −4 D K 2(1430) ( 1.1 ± 0.4 ) × 10 2112 D0 K ∗(1680) < 7.8 × 10−5 CL=90% 1997 0 ∗ −4 D K 0(1950) < 1.1 × 10 CL=90% 1890 0 ∗ −5 D K 3(1780) < 2.6 × 10 CL=90% 1971 0 ∗ −5 D K 4(2045) < 3.1 × 10 CL=90% 1835 D0 K − π+ (non-resonant) ( 2.1 ± 0.8 ) × 10−4 2312 ∗ − + ∗ −4 Ds2(2573) π , Ds2 → ( 2.6 ± 0.4 ) × 10 – D0 K − ∗ − + ∗ −5 Ds1(2700) π , Ds1 → ( 1.6 ± 0.8 ) × 10 – D0 K − ∗ − + ∗ −5 Ds1(2860) π , Ds1 → ( 5 ± 4 ) × 10 – D0 K − ∗ − + ∗ −5 Ds3(2860) π , Ds3 → ( 2.2 ± 0.6 ) × 10 – D0 K − D0 K + K − ( 5.5 ± 0.8 ) × 10−5 2243 0 −6 D f0(980) < 3.1 × 10 CL=90% 2242 D0 φ ( 3.0 ± 0.5 ) × 10−5 2235 D∗0 φ ( 3.7 ± 0.6 ) × 10−5 2178 D∗∓ π± < 6.1 × 10−6 CL=90% – −4 ηc φ ( 5.0 ± 0.9 ) × 10 1663 + − −4 ηc π π ( 1.8 ± 0.7 ) × 10 1840 J/ψ(1S)φ ( 1.08± 0.08) × 10−3 1588 + 0.17 −5 J/ψ(1S)φφ ( 1.24− 0.19) × 10 764 J/ψ(1S)π0 < 1.2 × 10−3 CL=90% 1787 J/ψ(1S)η ( 4.0 ± 0.7 ) × 10−4 S=1.4 1733

HTTP://PDG.LBL.GOV Page3 Created: 6/1/2020 08:28 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

0 −5 J/ψ(1S)K S ( 1.88± 0.15) × 10 1743 J/ψ(1S)K ∗(892)0 ( 4.1 ± 0.4 ) × 10−5 1637 J/ψ(1S)η′ ( 3.3 ± 0.4 ) × 10−4 1612 J/ψ(1S)π+ π− ( 2.09± 0.23) × 10−4 S=1.3 1775 −6 J/ψ(1S)f0(500), f0 → < 4 × 10 CL=90% – π+ π− J/ψ(1S)ρ, ρ → π+ π− < 4 × 10−6 CL=90% – −4 J/ψ(1S)f0(980), f0 → ( 1.28± 0.18) × 10 S=1.7 – π+ π− −6 J/ψ(1S)f2(1270), f2 → ( 1.1 ± 0.4 ) × 10 – π+ π− −7 J/ψ(1S)f2(1270)0, f2 → ( 7.5 ± 1.8 ) × 10 – π+ π− −6 J/ψ(1S)f2(1270)k, f2 → ( 1.09± 0.34) × 10 – π+ π− −6 J/ψ(1S)f2(1270)⊥, f2 → ( 1.3 ± 0.8 ) × 10 – π+ π− → + 0.7 −5 J/ψ(1S)f0(1370), f0 ( 4.5 − 4.0 ) × 10 – π+ π− → + 0.40 −5 J/ψ(1S)f0(1500), f0 ( 2.11− 0.29) × 10 – π+ π− ′ ′ −6 J/ψ(1S)f 2(1525)0, f 2 → ( 1.07± 0.24) × 10 – π+ π− ′ ′ → . + 2.7 −7 J/ψ(1S)f 2(1525)k, f 2 ( 1 3 − 0.9 ) × 10 – π+ π− ′ ′ −7 J/ψ(1S)f 2(1525)⊥, f 2 → ( 5 ± 4 ) × 10 – π+ π− → . +11.0 −6 J/ψ(1S)f0(1790), f0 ( 5 0 − 1.1 ) × 10 – π+ π− + − . + 1.1 −5 J/ψ(1S)π π (nonresonant) ( 1 8 − 0.4 ) × 10 1775 J/ψ(1S)K 0 π+ π− < 4.4 × 10−5 CL=90% 1675 J/ψ(1S)K + K − ( 7.9 ± 0.7 ) × 10−4 1601 J/ψ(1S)K 0 K − π+ + c.c. ( 9.2 ± 1.3 ) × 10−4 1538 J/ψ(1S)K 0 K + K − < 1.2 × 10−5 CL=90% 1333 ′ −4 J/ψ(1S)f 2(1525) ( 2.6 ± 0.6 ) × 10 1310 J/ψ(1S)p p ( 3.6 ± 0.4 ) × 10−6 982 J/ψ(1S)γ < 7.3 × 10−6 CL=90% 1790 J/ψ(1S)π+ π− π+ π− ( 7.8 ± 1.0 ) × 10−5 1731 −5 J/ψ(1S)f1(1285) ( 7.2 ± 1.4 ) × 10 1460 ψ(2S)η ( 3.3 ± 0.9 ) × 10−4 1338 ψ(2S)η′ ( 1.29± 0.35) × 10−4 1158 ψ(2S)π+ π− ( 7.1 ± 1.3 ) × 10−5 1397 ψ(2S)φ ( 5.4 ± 0.6 ) × 10−4 1120 ψ(2S)K − π+ ( 3.1 ± 0.4 ) × 10−5 1310

HTTP://PDG.LBL.GOV Page4 Created: 6/1/2020 08:28 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

ψ(2S)K ∗(892)0 ( 3.3 ± 0.5 ) × 10−5 1196 −4 χc1 φ ( 2.04± 0.30) × 10 1274 π+ π− ( 7.0 ± 1.0 ) × 10−7 2680 π0 π0 < 2.1 × 10−4 CL=90% 2680 ηπ0 < 1.0 × 10−3 CL=90% 2654 η η < 1.5 × 10−3 CL=90% 2627 ρ0 ρ0 < 3.20 × 10−4 CL=90% 2569 η′ η′ ( 3.3 ± 0.7 ) × 10−5 2507 η′ φ < 8.2 × 10−7 CL=90% 2495 + − −6 φf0(980), f0(980) → π π ( 1.12± 0.21) × 10 – → + 1.8 −7 φf2(1270), f2(1270) ( 6.1 − 1.5 ) × 10 – π+ π− φρ0 ( 2.7 ± 0.8 ) × 10−7 2526 φπ+ π− ( 3.5 ± 0.5 ) × 10−6 2579 φφ ( 1.87± 0.15) × 10−5 2482 φφφ ( 2.2 ± 0.7 ) × 10−6 2165 π+ K − ( 5.8 ± 0.7 ) × 10−6 2659 K + K − ( 2.66± 0.22) × 10−5 2638 K 0 K 0 ( 2.0 ± 0.6 ) × 10−5 2637 K 0 π+ π− ( 9.5 ± 2.1 ) × 10−6 2653 K 0 K ± π∓ ( 8.4 ± 0.9 ) × 10−5 2622 K ∗(892)− π+ ( 2.9 ± 1.1 ) × 10−6 2607 K ∗(892)± K ∓ ( 1.9 ± 0.5 ) × 10−5 2585 ∗ ± ∓ −5 K 0(1430) K ( 3.1 ± 2.5 ) × 10 – ∗ ± ∓ −5 K 2(1430) K ( 1.0 ± 1.7 ) × 10 – K ∗(892)0 K 0 + c.c. ( 2.0 ± 0.6 ) × 10−5 2585 ∗ 0 −5 K 0(1430)K + c.c. ( 3.3 ± 1.0 ) × 10 2468 ∗ 0 0 −5 K 2(1430) K + c.c. ( 1.7 ± 2.2 ) × 10 2467 0 ∗ 0 −5 K S K (892) + c.c. ( 1.6 ± 0.4 ) × 10 2585 K 0 K + K − ( 1.3 ± 0.6 ) × 10−6 2568 K ∗(892)0 ρ0 < 7.67 × 10−4 CL=90% 2550 K ∗(892)0 K ∗(892)0 ( 1.11± 0.27) × 10−5 2531 φK ∗(892)0 ( 1.14± 0.30) × 10−6 2507 p p < 1.5 × 10−8 CL=90% 2514 p p K + K − ( 4.5 ± 0.5 ) × 10−6 2231 p p K + π− ( 1.39± 0.26) × 10−6 2355 p p π+ π− ( 4.3 ± 2.0 ) × 10−7 2454 p ΛK − + c.c. ( 5.5 ± 1.0 ) × 10−6 2358 − + −4 Λc Λπ ( 3.6 ± 1.6 ) × 10 1979 − + −5 Λc Λc < 8.0 × 10 CL=95% 1405

HTTP://PDG.LBL.GOV Page5 Created: 6/1/2020 08:28 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Lepton Family number (LF ) violating modes or ∆B = 1 weak neutral current (B1) modes γγ B1 < 3.1 × 10−6 CL=90% 2683 φγ B1 ( 3.4 ± 0.4 ) × 10−5 2587 µ+ µ− B1 ( 3.0 ± 0.4 ) × 10−9 2681 e+ e− B1 < 2.8 × 10−7 CL=90% 2683 τ + τ − B1 < 6.8 × 10−3 CL=95% 2011 µ+ µ− µ+ µ− B1 < 2.5 × 10−9 CL=95% 2673 SP, S → µ+ µ−, B1 [b] < 2.2 × 10−9 CL=95% – P → µ+ µ− φ(1020)µ+ µ− B1 ( 8.2 ± 1.2 ) × 10−7 2582 K ∗(892)0 µ+ µ− ( 2.9 ± 1.1 ) × 10−8 2605 π+ π− µ+ µ− B1 ( 8.4 ± 1.7 ) × 10−8 2670 φν ν B1 < 5.4 × 10−3 CL=90% 2587 e± µ∓ LF [c] < 5.4 × 10−9 CL=90% 2682 µ± τ ∓ < 4.2 × 10−5 CL=95% 2388

∗ P − Bs I (J ) = 0(1 )

I , J, P need confirmation. Quantum numbers shown are quark-model predictions. +1.8 m = 5415.4−1.5 MeV (S =2.9) +1.8 m ∗ − m Bs Bs = 48.6−1.5 MeV (S= 2.9)

B∗ DECAY MODES p c s DECAY MODES Fraction (Γi /Γ) (MeV/ )

Bs γ seen 48

0 P + Bs1(5830) I (J ) = 0(1 ) I, J, P need confirmation. Mass m = 5828.70 ± 0.20 MeV − ± mB0 mB∗+ = 504.00 0.17 MeV s1 Full width Γ = 0.5 ± 0.4 MeV

0 Bs1(5830) DECAY MODES Fraction (Γi /Γ) p (MeV/c) B∗+ K − seen 97

HTTP://PDG.LBL.GOV Page6 Created: 6/1/2020 08:28 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

B∗ 0 P + Bs2(5840) I (J ) = 0(2 ) I, J, P need confirmation. Mass m = 5839.86 ± 0.12 MeV − ± mB∗0 mB+ = 560.52 0.14 MeV s2 Full width Γ = 1.49 ± 0.27 MeV

B∗ (5840)0 DECAY MODES Fraction (Γ /Γ) p (MeV/c) s2 i B+ K − DEFINED AS 1 252 B∗+ K − 0.093±0.018 141 0 0 B K S 0.43 ±0.11 245 ∗0 0 B K S 0.04 ±0.04 –

NOTES

0 [a] Not a pure measurement. See note at head of Bs Decay Modes. [b] Here S and P are the hypothetical scalar and pseudoscalar with of 2.5 GeV/c2 and 214.3 MeV/c2, respectively. [c] The value is for the sum of the states or particle/antiparticle states indicated.

HTTP://PDG.LBL.GOV Page7 Created: 6/1/2020 08:28