Defining and Targeting Differentiation of Non-Melanoma Skin Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nail Anatomy and Physiology for the Clinician 1
Nail Anatomy and Physiology for the Clinician 1 The nails have several important uses, which are as they are produced and remain stored during easily appreciable when the nails are absent or growth. they lose their function. The most evident use of It is therefore important to know how the fi ngernails is to be an ornament of the hand, but healthy nail appears and how it is formed, in we must not underestimate other important func- order to detect signs of pathology and understand tions, such as the protective value of the nail plate their pathogenesis. against trauma to the underlying distal phalanx, its counterpressure effect to the pulp important for walking and for tactile sensation, the scratch- 1.1 Nail Anatomy ing function, and the importance of fi ngernails and Physiology for manipulation of small objects. The nails can also provide information about What we call “nail” is the nail plate, the fi nal part the person’s work, habits, and health status, as of the activity of 4 epithelia that proliferate and several well-known nail features are a clue to sys- differentiate in a specifi c manner, in order to form temic diseases. Abnormal nails due to biting or and protect a healthy nail plate [1 ]. The “nail onychotillomania give clues to the person’s emo- unit” (Fig. 1.1 ) is composed by: tional/psychiatric status. Nail samples are uti- • Nail matrix: responsible for nail plate production lized for forensic and toxicology analysis, as • Nail folds: responsible for protection of the several substances are deposited in the nail plate nail matrix Proximal nail fold Nail plate Fig. -
Studies on the Proteome of Human Hair - Identifcation of Histones and Deamidated Keratins Received: 15 August 2017 Sunil S
www.nature.com/scientificreports OPEN Studies on the Proteome of Human Hair - Identifcation of Histones and Deamidated Keratins Received: 15 August 2017 Sunil S. Adav 1, Roopa S. Subbaiaih2, Swat Kim Kerk 2, Amelia Yilin Lee 2,3, Hui Ying Lai3,4, Accepted: 12 January 2018 Kee Woei Ng3,4,7, Siu Kwan Sze 1 & Artur Schmidtchen2,5,6 Published: xx xx xxxx Human hair is laminar-fbrous tissue and an evolutionarily old keratinization product of follicle trichocytes. Studies on the hair proteome can give new insights into hair function and lead to the development of novel biomarkers for hair in health and disease. Human hair proteins were extracted by detergent and detergent-free techniques. We adopted a shotgun proteomics approach, which demonstrated a large extractability and variety of hair proteins after detergent extraction. We found an enrichment of keratin, keratin-associated proteins (KAPs), and intermediate flament proteins, which were part of protein networks associated with response to stress, innate immunity, epidermis development, and the hair cycle. Our analysis also revealed a signifcant deamidation of keratin type I and II, and KAPs. The hair shafts were found to contain several types of histones, which are well known to exert antimicrobial activity. Analysis of the hair proteome, particularly its composition, protein abundances, deamidated hair proteins, and modifcation sites, may ofer a novel approach to explore potential biomarkers of hair health quality, hair diseases, and aging. Hair is an important and evolutionarily conserved structure. It originates from hair follicles deep within the der- mis and is mainly composed of hair keratins and KAPs, which form a complex network that contributes to the rigidity and mechanical properties. -
Table SD1. Patient Characteristicsa
Table SD1. Patient characteristicsa Patient Sex Age Esophageal Treatment Maximum Cell Maximum Maximum Genotype Food SPT/Ab SPT/F b RAST b Rhinitisc Atopicc Asthmac Alternative diagnosis Dated (year) Disease eosinophils thickness in mast cells lymphocytes anaphylaxis (positive dermatitis /hpf basal layer /hpf /hpf reaction) 1 M 11 NL None 0 3 5 3 Unk No ND ND ND Yes No No Recurrent croup December 2 M 11 NL LTRA 0 3 4 3 Unk No ND ND ND No No Yes Functional abdominal pain May 3 F 9 NL None 0 3 4 3 Unk Unk ND ND ND Unk Unk Unk Functional abdominal pain March 4 M 14 NL None 0 2 6 4 Unk No ND ND ND No No No Vomiting/diarrhea Febuary 5 F 7 NL LTRA 0 3 5 6 Unk Yes 1 3 ND Unk Unk Yes Functional abdominal pain March 6 F 13 NL None 0 2 4 2 Unk No 0 4 ND No No No Functional abdominal pain August 7 M 17 CE PPI 0 4 7 12 Unk Yes 17 4 ND No No Yes None November 8 M 6 CE PPI 0 4 6 10 Unk Unk ND ND ND Unk Unk Unk None June 9 F 16 CE LTRA 3 4 6 8 Unk No ND ND ND No No Yes None January 10 F 13 CE LTRA+PPI 3 5 4 8 Unk No 0 0 ND No No No None August 11 F 11 CE LTRA+PPI 6 4 6 9 Unk Unk ND ND ND Unk Unk Unk None May 12 M 11 EE PPI 24 6 6 12 TT No 2 5 3 Yes No Yes None November 13 F 4 EE PPI 25 6 15 15 TT No 0 0 ND No No No None November 14 M 15 EE None 30 6 24 6 TG Unk 1 1 ND Unk Unk Yes None February 15 M 15 EE None 31 6 15 11 TT No 8 2 ND Yes No Yes None March 16 M 13 EE PPI 32 6 10 25 TG No 0 0 ND No No No None June 17 M 6 EE PPI 40 7 10 21 TT Yes 5 3 0 Unk Unk No None November 18 M 13 EE LTRA 42 7 10 5 TT No 4 5 2 Yes Yes Yes None November 19 F 16 EE LTRA+PPI -
Gene Network and Pathway Analysis of Transcriptional Signatures Characterizing Sole Ulcer and Digital Dermatitis in Dairy Cows
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2021 Gene Network and Pathway Analysis of Transcriptional Signatures Characterizing Sole Ulcer and Digital Dermatitis in Dairy Cows Roshin Anie Mohan South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Dairy Science Commons Recommended Citation Mohan, Roshin Anie, "Gene Network and Pathway Analysis of Transcriptional Signatures Characterizing Sole Ulcer and Digital Dermatitis in Dairy Cows" (2021). Electronic Theses and Dissertations. 5278. https://openprairie.sdstate.edu/etd/5278 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. GENE NETWORK AND PATHWAY ANALYSIS OF TRANSCRIPTIONAL SIGNATURES CHARACTERIZING SOLE ULCER AND DIGITAL DERMATITIS IN DAIRY COWS BY ROSHIN ANIE MOHAN A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Biological Sciences Specialization in Dairy Science South Dakota State University 2021 ii DISSERTATION ACCEPTANCE PAGE Roshin Anie Mohan This dissertation is approved as a creditable and independent investigation by a candidate for the Doctor of Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. -
Curling Cuticles of the Great Toenails: a Case Report of Eponychogryphosis
Open Access Case Report DOI: 10.7759/cureus.3959 Curling Cuticles of the Great Toenails: A Case Report of Eponychogryphosis Philip R. Cohen 1 1. Dermatology, San Diego Family Dermatology, San Diego, USA Corresponding author: Philip R. Cohen, [email protected] Abstract The cuticle, also referred to as the eponychium, creates a seal between the proximal nail fold and the nail plate. It is derived from both the ventral and dorsal portions of the proximal nail fold. In addition to its principle function as a barrier preventing allergens, irritants and pathogens from entering the nail cul-de- sac, the cuticle can play a role as a model for evaluating the etiology and management of diseases that affect capillary microcirculation, provide a source of solid tissue for genetic disorder studies, and aid in the evaluation of patients in whom the diagnoses of either systemic scleroderma or dermatomyositis is being entertained. Curling cuticle is a distinctive and unique occurrence. The clinical features of a man with curling cuticles on the lateral portion of both great toes is described. Although a deficiency in personal hygiene may partially account for the clinical finding, the pathogenesis of this observation remains to be established. The term ‘eponychogryphosis’ is proposed to describe the alteration of the patient’s cuticles. Categories: Dermatology, Internal Medicine, Rheumatology Keywords: curl, curling, cuticle, eponychium, eponychogryphosis, fold, great, onychogryphosis, nail, toe Introduction The cuticle, also known as the eponychium, is an extension of the stratum corneum from the proximal nail fold [1-3]. It forms a seal that prevents allergens, irritants, and pathogens from entering the potential space between the distal skin of the digit and the nail plate [4-5]. -
Basic Biology of the Skin 3
© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER Basic Biology of the Skin 3 The skin is often underestimated for its impor- Layers of the skin: tance in health and disease. As a consequence, it’s frequently understudied by chiropractic students 1. Epidermis—the outer most layer of the skin (and perhaps, under-taught by chiropractic that is divided into the following fi ve layers school faculty). It is not our intention to present a from top to bottom. These layers can be mi- comprehensive review of anatomy and physiol- croscopically identifi ed: ogy of the skin, but rather a review of the basic Stratum corneum—also known as the biology of the skin as a prerequisite to the study horny cell layer, consisting mainly of kera- of pathophysiology of skin disease and the study tinocytes (fl at squamous cells) containing of diagnosis and treatment of skin disorders and a protein known as keratin. The thick layer diseases. The following material is presented in prevents water loss and prevents the entry an easy-to-read point format, which, though brief of bacteria. The thickness can vary region- in content, is suffi cient to provide a refresher ally. For example, the stratum corneum of course to mid-level or upper-level chiropractic the hands and feet are thick as they are students and chiropractors. more prone to injury. This layer is continu- Please refer to Figure 3-1, a cross-sectional ously shed but is replaced by new cells from drawing of the skin. This represents a typical the stratum basale (basal cell layer). -
University of Alberta
University of Alberta T cell-mediated inflammation is stereotyped: mouse delayed-type hypersensitivity reaction and mouse T cell-mediated rejection of renal allografts share common molecular mechanisms by Jeffery M. Venner A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Experimental Medicine Department of Medicine ©Jeffery M. Venner Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Dedicated to those who have inspired me: My family and friends, my teachers and mentors. You laid the foundation – my success is guaranteed ABSTRACT Genome-wide gene expression analysis of diseases has revealed large-scale changes in the expression of thousands of genes (transcripts) representing biological processes. The processes that occur during T cell-mediated rejection (TCMR) of renal allografts in mice and humans have been previously delineated, and they appear to be independent of cytotoxic mechanisms; thus, TCMR is analogous to delayed-type hypersensitivity (DTH). -
Anatomy and Physiology of the Nail
Anatomy and physiology of the nail Christian Dumontier Institut de la Main & hôpital saint Antoine, Paris Anatomy of the nail • The osteo-ligamentous support • Nail plate • All surrounding tissues, i.e. the perionychium The distal phalanx • Is reinforced laterally by the the Flint’s ligament • Which protect the neuro-vascular structures Flint’s ligament The ligamentous support • The nail is fixed onto the bone through a highly vascularized dermis • The nail is fixed onto the bone through two strong ligaments The ligamentous structures • All the ligaments merge together with • The extensor tendon • The flexor tendon • The collateral ligaments • Flint’s ligament • Guero’s dorsal ligament • (Hyponychial ligament) Clinical implications • A normal nail cannot grow on an abnormal support +++ • Large phalanx = racket nails • bony malunion = nail dystrophy • arthrosis = Pincer nail,... The nail plate • Is produced by the germinal matrix • ItsKeratinic shape depends structure, on the bonypartiall supporty transparent and the and integritycurved both of the longitudinall soft-tissuesy arandound transv it ersally • Three different layers • 0,5 mm thickness, 20% of water Clinical applications • The nail plate is often intact in crushing trauma due to its flexibility • And must be removed in order to explore all the lesions +++ The perionychium • Include all the soft- tissues located under the nail plate • Nail (germinal) matrix, • Nail bed, • Hyponychium The perionychium • Soft-tissues aroud the plate (paronychium) proximal and lateral nail wall (fold) -
Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA. -
Hair Structure Cuticle
Structure of Hair Hair Structure Hair is composed of three principal parts: Cuticle – outer coating composed of overlapping scales Cortex – protein-rich structure around Medulla – central core the medulla that contains pigment (may be absent) The structure of hair has been compared to that of a pencil with the medulla being the lead, the cortex being the wood and the cuticle being the paint on the outside. http://library.thinkquest.org/04oct/00206/lesson.htm#t_hair Structure of Hair Hair under the microscope • Basic components: keratin (a protein), melanin (a pigment), and trace quantities of metallic elements (Cu, Fe, Mn,etc). • Elements are deposited in hair during growth and absorbed by the hair from external environment. Hair Structure Cuticle The cuticle varies in: • Its scales, How many there are per centimeter, How much they overlap, Their overall shape, and How much they protrude from the surface • Its thickness, and • Whether or not it contains pigment. Characteristics of the cuticle may be important in distinguishing between hairs of different species but are often not useful in distinguishing between different people. Info: http://library.thinkquest.org/04oct/00206/lesson.htm#t_hair Image: http://www.hairdressersus.com/micro/Image5b.jpg HAIR SHAFT Cuticle – First Layer • The cuticle is a translucent outer layer of the hair shaft consisting of scales that cover the shaft. • The cuticle scales always point AWAY from the root end - toward the tip of the hair. • The cuticle is a GOOD WAY to tell species apart The Cuticle of Human Hair is rough --- which is why we use Conditioner Cuticle under the microscope Cuticle Scales: Coronal • Scales show crown- shaped pattern • Found in small rodents and bats • Coronal pattern is NEVER seen in human hair FREE-TAILED BAT HAIR CUTICLE SCALES: SPINOUS • Spinous - petal-like scales are triangular in shape and protrude from the hair shaft. -
Lym. Phoid Enhancer Factor 1 Directs Hair Folhcle Patterning and Epithelial
Lym.phoid enhancer factor 1 directs hair folhcle patterning and epithelial cell fate Pengbo Zhou, Carolyn Byrne, Jennifer Jacobs, and Elaine Fuchs 1 Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637 USA T cell-specific transcription factor (TCF-1) and lymphoid enhancer factor 1 (LEF-1) have been implicated exclusively in the regulation of T cell-specific genes. The only adult tissue other than thymus known to express these factors is spleen and lymph node, which contain low levels of LEF-1 and no TCF-1. We noticed that genes involved in hair-specific gene expression possess LEF-I/TCF-1 consensus motifs located in similar positions relative to their TATA box. We show that of the two factors only LEF-1 is expressed in hair follicles; it can be cloned in both splice forms from human skin keratinocytes and it can bind to these sites in the hair promoters. We show that LEF-1 mRNA is present in pluripotent ectoderm, and it is up-regulated in a highly restricted pattern just before the formation of underlying mesenchymal condensates and commitment of overlying ectodermal cells to invaginate and become hair follicles. New waves of ectodermal LEF-1 spots appear concomitant with new waves of follicle morphogenesis. To test whether LEF-1 patterning might be functionally important for hair patterning and morphogenesis, we used transgenic technology to alter the patterning and timing of LEF-1 over the surface ectoderm. Striking abnormalities arose in the positioning and orientation of hair follicles, leaving a marked disruption of this normally uniform patterning. -
Identification of Keratins and Analysis of Their Expression in Carp and Goldfish: Comparison with the Zebrafish and Trout Keratin Catalog
Cell Tissue Res DOI 10.1007/s00441-005-0031-1 REGULAR ARTICLE Dana M. García . Hermann Bauer . Thomas Dietz . Thomas Schubert . Jürgen Markl . Michael Schaffeld Identification of keratins and analysis of their expression in carp and goldfish: comparison with the zebrafish and trout keratin catalog Received: 21 March 2005 / Accepted: 23 May 2005 # Springer-Verlag Abstract With more than 50 genes in human, keratins zebrafish, and the cyprinid fishes being more similar to each make up a large gene family, but the evolutionary pres- other than to the salmonid trout. Because of the detected sure leading to their diversity remains largely unclear. Nev- similarity of keratin expression among the cyprinid fishes, ertheless, this diversity offers a means to examine the we propose that, for certain experiments, they are inter- evolutionary relationships among organisms that express changeable. Although the zebrafish distinguishes itself as keratins. Here, we report the analysis of keratins expressed being a developmental and genetic/genomic model organ- in two cyprinid fishes, goldfish and carp, by two-dimen- ism, we have found that the goldfish, in particular, is a more sional polyacrylamide gel electrophoresis, complementary suitable model for both biochemical and histological stud- keratin blot binding assay, and immunoblotting. We further ies of the cytoskeleton, especially since goldfish cytoskel- explore the expression of keratins by immunofluorescence etal preparations seem to be more resistant to degradation microscopy. Comparison is made with the keratin expres- than those from carp or zebrafish. sion and catalogs of zebrafish and rainbow trout. The keratins among these fishes exhibit a similar range of mo- Keywords Keratin .