Download Full Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download Full Article in PDF Format Moscovian and Artinskian rocks in the frame of the cyclic Permo-Carboniferous deposits of the Carnic Alps and related areas Gian Battista VAI & Corrado VENTURINI Dipartimento Scienze Geologiche, Via Zamboni 67, 1-40127 Bologna (Italy) Vai G. B. & Venturini C. 1997. — Moscovian and Artinskian rocks in the frame of the cyclic Permo-Carboniferous deposits of the Carnic Alps and related areas, in Crasquln-Soleau S. & De Wever P. (eds), Peri-Tethys: stratigraphie correlations, Geodiversitas 19 (2) : 173-186. ABSTRACT Guidelines and legend for the Moscovian and Artinskian maps to be produ­ ced within the Peri-Tethys Programme are presented. An updated review of KEYWORDS the most important composite sections exposed in different parts of the Palaeogeographic maps, Carnic Alps and drilled in the northern Adriatic Sea is presented. The sec­ guidelines, legend, tions spanning a large part of the Mid-Late Carboniferous to terminal low and high frequency cycles, Permian time interval are correlated so as to show the major sedimentary tectonics, cycles and the main regional trends of tectonic us eustatic sea level changes. eustatism, parasequences, High frequency cyclicity is also summarized in terms of parasequences, espe­ Gzhelian, cially for the Gzhelian stage, although the entire Pontebba Supergroup correlation, (Moscovian to Artinskian) was known for many decades as a classic cyclic Southern Alps, Adriatic Sea. sedimentation area. RÉSUMÉ Le schéma directeur et la légende des cartes du Moscovien et de l'Artinskien qui seront réalisées dans le cadre du Programme Péri-Téthys sont proposés. MOTS CLÉS Nous présentons ici une révision des coupes composites les plus importantes cartes paléogéographiques, des Alpes Carniques et des forages du nord de la Mer Adriatique. Les coupes, directives, légende, qui s'étalent sur une grande partie du Carbonifère moyen-supérieur au cycles à faible et haute fréquence, Permien terminal, sont corrélées et montrent les principaux cycles sédimen- tectonique, taires ainsi que les modifications tectono-eustatiques majeures. Une cyclicité eustatisme, parasequences, haute fréquence est également résumée en termes de paraséquences, surtout Gzhelien, au Gzhelien, bien que le Super-Groupe de Pontebba (Moscovien-Artinskien) corrélation, soit connu depuis plusieurs décennies comme une région à sédimentation Alpes méridionales, mer Adriatique. cyclique. GEODIVERSITAS • 1997 • 19(2) 173 Val G. B. & Venturini C. FOREWORD new fusulinid genera Mesoschubertella, Toriyamaia, Praeskinnerella, Darvasella and by Before entering the topic of this paper, an intro­ the ammonoid genera Artinskia, Kargalites, duction is needed to provide the aim, legend, Almites, Cardiella, Paragathiceras, Aristoceratoides, and guidelines according to which the present Pseudogastrioceras. The selected late early Permian and the following stratigraphic conttibutions time has some advantages: it has a dutation (Pasini & Vai, Di Stefano & Gullo, Cassinis, almost similar to that of the Moscovian; it is clo­ Cassinis & Ronchi, Vai, Geluk, all in this volu­ sely equivalent of the Chinese Chihsian and me) have been submitted to the ad hoc working practically overlap with the Yachtash-Bolor fau- group, in view of the compilation of the palaeo- nal step of Leven (1993) comprised between the geographic maps of the Moscovian and top of Sakmarian and the base of Kubetgandian; Artinskian within the aims and the scope of the it minimizes the imprecision deriving from the Peri-Tethys Programme (PTP). Further contribu­ poor correlation and definition level of indivi­ tions are expected and welcome. dual stages involved. GUIDELINES It is preferred to receive conttibutions coordina­ The conttibutions provide original and/or upda­ ted in a set of sections by country or group of ted stratigraphic rough data on the Moscovian countries (such as e.g.: France, Belgium, UK, and/ot/to Artinskian time slices in the diffetent Germany, Poland, Hungary, Austria + Tchekia, areas within the scope of the PTP, mainly as spot Bulgaria + Rumania, former Yugoslavia, Turkey, columnar sections, with the aim to act as valida­ Greece, Italy, Spain, NW Africa, Lybia, Central tion data points for the following map recons­ W Africa, Middle East + Arabia, Iran, truction: Russia + Ukraina, Kazakhstan, a.s.o.). However, 1. The Moscovian Map, focusing the Age inter­ submissions provided by independent indivi­ val (about 312-305 Ma) and including additio­ duals or research groups are also welcome. nal information up to the top of the The contributions consist mainly of a set of spot Catboniferous (about 296 Ma) columnar sections (stratigraphic columns), possi­ 2. The Artinskian Map, focusing the bly correlated on a stratigtaphic chart (see f.i. Artinskian + Bolotian Age interval (about Ziegler 1988), possibly accompanied by location 280-273 Ma) and including additional informa­ and/or simplified geological maps, and illustrated tion down to the base of the Permian (about by a concise explanatory text. The text shall not 296 Ma). exceed ten double-spaced typed pages (or five printed pages). Columnar sections, cotrelation The Moscovian Stage is used here as roughly charts (one or more if needed) and location/geo- logical maps must be dtawn on A4 sized sheets represented by the Aljutovella aljutovica to allowing final print reduction up to 50%. Each Fusulina cylindrica fusulinid zones, by the individual map dtawing must contain a graphic Idiognathoides marginodosus to Idiognathodus scale. obliquus-Neognathodus roundyi conodont zones, and by the Paralegocems to Wellerites ammonoid Columnar sections are to be dtawn and correla­ zones. ted on time/space (chronostratigraphic) dia­ grams. The thickness of the different litho- The Artinskian + Bolorian Stages are used here as stratigtaphic units will appear from separate roughly corresponding to the Chalaro- labelling in a side-column and from the text. The schwagerina solita, Pamirina, Ch. (= "Pseudo- vettical axis of the columnar sections (time) will fusulina") vulgaris, Misellina dyhrenfurthi and adopt the geological time scale shown in the next Misellina parvicostata fusulinid zones, to the heading. Streptognathodus artinskiensis, Sweetognathus whi- Each individual columnar section (tepresenting a tei, Neostreptognathodus pequopensis and N. leono- true spot-like section exposed in the field ot vae conodont zones, and are characterized by the drilled by a well, or a composite section whose 174 GEODIVERSITAS • 1997 • 19 (2) Cyclic Permo-Carboniferous of the Carnic Alps TABLE 1. — PTP time scale for the Carboniferous and Permian the previous one used in Dercourt et al. (1993) Periods (ages of the lower boundary in millions years). with some integrations derived from Ziegler (1988), Sassi & Zanferrari (1990) and Vai Early Triassic Induan 251 Ma (1991). It seems particularly useful to include whenever possible in the maps the isopach Changxingian 255 Dhzulfian 259 contours or the margins of the main basins of the Midian 264 late Carboniferous (and Moscovian if available Murgabian 269 separately) and of the early Permian (plus Late Permian Kubergandian 273 Artinskian if available separately). Bolorian 275 In the present stage, the basic legend type for Artmskian 280 both the sttatigraphic columnar sections and the Sakmarian 288 related geological maps (if available) is reported Early Permian Asselian 296 in Appendixes 2 and 3 respectively. Gzhelian 301 When additional subdivisions and symbols are Late Carboniferous Kasimovian 305 needed, they have to be added by the contribu­ Moscovian 312 tors in their own legend sheets, preferably Middle Carboniferous Bashkirian 323 conforming to the use by the authors reported above. Serpukhovian 328 Viséan 345 PTP INTERVAL TIME SCALE The numerical time scale for Carboniferous and Permian chronologic classification down to stage elements are included within the resolution level tentatively adopted fot the purposes of the power of a point on a 1:10 000 000 scale map - PTP has a simple pragmatic meaning to enable a which is about a citcle of 1 km radius) should common frame for communication among diffe­ consist of a main column and a few side-colums. rent contributors. However, as a matter of fact The main column should include lithology, the present state of chronometric calibration of lithostratigraphic units, and depositional envi­ the conventional stratigraphic scale in the time ronments. The side-columns should include data interval concerned is largely unsatisfactory as on thickness, unconformities, tectonic, magma- appears from the vety large error bars (from 3 to tic and metamofphic events, tectofacies and 9 Ma) affecting individual stage, series and sys­ other additional information (see legend). The tem boundary ages (Odin 1994). Especially poor location of each section within a resolution is the knowledge about the Dinantian or power of 1 km of radius should be identified by Mississippian subsystem. The late Catboniferous means of its Latitude and Longitude figutes. is mainly dated from continental successions not If graphically possible, the columns should inclu­ evenly related to the marine ones. A further limi­ de the data on both the Moscovian and the tation derives from the still poor level of formally Artinskian (plus possibly the intervening inter­ defined standard chronostratigtaphic subdivi­ val) on the same sheet (also by using the long sions (GSSP) in this time interval. People invol­ side of the A4 sheet). ved are close to an agreement for the two system and some subsystem boundaries but have
Recommended publications
  • Subcommission on Permian Stratigraphy International
    Number 30 June 1997 A NEWSLETTER OF THE SUBCOMMISSION ON PERMIAN STRATIGRAPHY SUBCOMMISSION ON PERMIAN STRATIGRAPHY INTERNATIONAL COMMISSION ON STRATIGRAPHY INTERNATIONAL UNION OF GEOLOGICAL SCIENCES (IUGS) Table of Contents Notes from the SPS Secretary...................................................................................................................-1- Claude Spinosa Note from the SPS Chairman....................................................................................................................-2- Bruce R. Wardlaw Proposed new chronostratigraphic units for the Upper Permian ..............................................................-3- Amos Salvador Comments on Subdivisions of the Permian and a Standard World Scale ................................................-4- Neil W. Archbold and J. Mac Dickins Permian chronostratigraphic subdivisions ................................................................................................-5- Jin Yugan, Bruce R. Wardlaw, Brian F. Glenister and Galina V. Kotlyar The Permian Time-scale ...........................................................................................................................-6- J. B. Waterhouse Sequence Stratigraphy along Aidaralash Creek and the Carboniferous/Permian GSSP ..........................-8- Walter S. Snyder and Dora M. Gallegos Upper Paleozoic Fusulinacean Biostratigraphy of the Southern Urals ...................................................-11- Vladimir I. Davydov, Walter S. Snyder and Claude Spinosa Cordaitalean
    [Show full text]
  • Pennsylvanian Boundary Unconformity in Marine Carbonate Successions
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Summer 6-2014 ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. Lucien Nana Yobo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geochemistry Commons, Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Nana Yobo, Lucien, "ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING." (2014). Dissertations & Theses in Earth and Atmospheric Sciences. 59. http://digitalcommons.unl.edu/geoscidiss/59 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. By Luscalors Lucien Nana Yobo A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Tracy D.
    [Show full text]
  • Upper Carboniferous–Lower Permian Buildups of the Carnic Alps, Austria–Italy 201 Upper Carboniferous–Lower Permian Buildups of the Carnic Alps, Austria–Italy
    Published in "SEPM Special Publication No. 78: 201-217, 2003" which should be cited to reference this work. UPPER CARBONIFEROUS–LOWER PERMIAN BUILDUPS OF THE CARNIC ALPS, AUSTRIA–ITALY 201 UPPER CARBONIFEROUS–LOWER PERMIAN BUILDUPS OF THE CARNIC ALPS, AUSTRIA–ITALY ELIAS SAMANKASSOU Université de Fribourg, Département de Géosciences, Géologie et Paléontologie, Pérolles, CH-1700 Fribourg, Switzerland e-mail: [email protected] ABSTRACT: A variety of buildup types occur in the upper Paleozoic Auernig and Rattendorf Groups, Carnic Alps, at the present-day Austrian–Italian border, including coral, diverse algal (Anthracoporella, Archaeolithophyllum, Rectangulina, and phylloid green), bryozoan, brachiopod, and sponge buildups. Thin mounds and banks have a diverse fossil association (e.g., Archaeolithophyllum–bryozoan– brachiopod mounds) and occur in siliciclastic-dominated intervals, as do coral buildups. Some of the biodiverse thin mounds occur in strata that were deposited in cooler water. However, the thickest mounds are nearly monospecific (e.g., Anthracoporella mounds) and grew in carbonate-dominated, warm-water environments. Most of the mounds considered in this paper, particularly algal mounds, grew in quiet-water environments below wave base but within the photic zone. Mound growth was variously stopped by siliciclastic input, e.g., auloporid coral mounds, sea-level rise, e.g., the drowning of Anthracoporella mounds of the Rattendorf Group, influence of cool water, e.g., algal mounds of the Auernig Group overlain by limestone of cool-water biotic association, or sea-level fall, e.g., phylloid algal mounds that were subsequently exposed subaerially. There is no indication of ecological succession during mound growth. Growth, dimensions, biotic association, and termination of mounds seem to have been controlled by extrinsic factors, mainly sea level and water temperature.
    [Show full text]
  • 041537B0.Pdf
    April 10, 18go] NATURE 53 7 community to tolerate the company of such, which might be origin to a quantity of crowded leaves which are long, narrow, called social selection. and parallel-sided, and show only a very Saint linear striation. It is often· assumed by writers on evolution that permanent This pl:lnt is identical both in the form and arrangement of the differences in the methods in which a life-preserving function is leaves with that found in the Devonian of Canada, aud which I performed are necessarily useful differences. That this is not so have named Cordaites a1tgusti(olia. I have, however, already may be shown by an illustration drawn from the methods of stated in my Reports on the Flora of the Erian of Canada language. The general usefulness of language is most apparent, (Geological Survey of Canada, 1871 and 1882), that I do not and it is certain that some of the laws of linguistic development consider this plant as closely n lated to the true Cordaites, and are determined by a principle which may be called "the survival that I have not changed the generic name merely because I am of the fittest ; " but it is equally certain that all the divergences stiil in doubt as to the actual affinities of the plant. Mr. Reid's which separate languages are not useful divergences. That one specimens would rather tend to the belief that it was, as I have race of men should count by tens and another by twenties is not already suggested in the reports above cited, a Zostera-lil<;e determined by differences in the environments of the races, or by plant growing in tufts at the bott•m of water.
    [Show full text]
  • Sequence Biostratigraphy of Carboniferous-Permian Boundary
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2019-07-01 Sequence Biostratigraphy of Carboniferous-Permian Boundary Strata in Western Utah: Deciphering Eustatic and Tectonic Controls on Sedimentation in the Antler-Sonoma Distal Foreland Basin Joshua Kerst Meibos Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Physical Sciences and Mathematics Commons BYU ScholarsArchive Citation Meibos, Joshua Kerst, "Sequence Biostratigraphy of Carboniferous-Permian Boundary Strata in Western Utah: Deciphering Eustatic and Tectonic Controls on Sedimentation in the Antler-Sonoma Distal Foreland Basin" (2019). Theses and Dissertations. 7583. https://scholarsarchive.byu.edu/etd/7583 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Sequence Biostratigraphy of Carboniferous-Permian Boundary Strata in Western Utah: Deciphering Eustatic and Tectonic Controls on Sedimentation in the Antler-Sonoma Distal Foreland Basin Joshua Kerst Meibos A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Scott M. Ritter, Chair Brooks B. Britt Sam Hudson Department of Geological Sciences Brigham Young University Copyright © 2019 Joshua Kerst Meibos All Rights Reserved ABSTRACT Sequence Biostratigraphy of Carboniferous-Permian Boundary Strata in Western Utah: Deciphering Eustatic and Tectonic Controls on Sedimentation in the Antler-Sonoma Distal Foreland Basin Joshua Kerst Meibos Department of Geological Sciences, BYU Master of Science The stratal architecture of the upper Ely Limestone and Mormon Gap Formation (Pennsylvanian-early Permian) in western Utah reflects the interaction of icehouse sea-level change and tectonic activity in the distal Antler-Sonoma foreland basin.
    [Show full text]
  • VOLUME 33 December 2017
    VOLUME 33 December 2017 Volume 33 Table of Contents EXECUTIVE’S COLUMN…………………………………………………………………..…….. 2 OBITUARY……………………………………………………………………………………..…5 SCCS REPORTS………………………………………………………………………………….7 ANNUAL REPORT TO ICS FOR 2016-2017…………………………………………………..….7 TASK GROUP REPORTS FOR 2016-2017 AND WORK PLANS FOR 2017 FISCAL YEAR………….11 Report of the task group to establish a GSSP close to the existing Viséan-Serpukhovian boundary…………11 Report of the task group to establish a GSSP close to the existing Bashkirian-Moscovian boundary………16 Report of the task group to establish the Moscovian-Kasimovian and Kasimovian-Gzhelian boundaries…....18 SCCS DOCUMENTS (CONTRIBUTIONS BY MEMBERS)…………………………………...……21 SHALLOW-WATER SIPHONODELLIDS AND DEFINITION OF THE DEVONIAN-CARBONIFEROUS BOUNDARY…………………………………………………………………………………….21 REPORT FOR PROGRESS FOR 2017 ACTIVITIES IN THE CANTABRIAN MOUNTAINS, SPAIN AND THE AMAZONAS BASIN, BRAZIL……………………………………………...………………26 TAXONOMIC AND STRATIGRAPHIC PROBLEMS CONCERNING THE CONODONTS LOCHRIEA SENCKENBERGICA NEMIROVSKAYA, PERRET & MEISCHNER, 1994 AND LOCHRIEA ZIEGLERI NEMIROVSKAYA, PERRET & MEISHCNER, 1994-CONSEQUENCES FOR DEFINING THE VISÉAN- SERPUKHOVIAN BOUNDARY………………………………………………………………………………...28 PROGRESS ON THE VISÉAN-SERPUKHOVIAN BOUNDARY IN SOUTH CHINA AND GERMANY……………………………………………………………………………………..35 POTENTIAL FOR A MORE PRECISE CORRELATION OF THE BASHKIRIAN AMMONOID AND FORAMINIFERAL ZONES IN THE SOUTH URALS…………………………………………..……42 CHEMOMETRICS AND CARBONIFEROUS MEDULLOSALEAN FRONDS: IMPLICATIONS FOR CARBONIFEROUS PHYTOSTRATIGRAPHY…………………………………………………...…45
    [Show full text]
  • Carbon and Strontium Isotope Stratigraphy of the Permian from Nevada and China: Implications from an Icehouse to Greenhouse Transition
    Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: Implications from an icehouse to greenhouse transition Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kate E. Tierney, M.S. Graduate Program in the School of Earth Sciences The Ohio State University 2010 Dissertation Committee: Matthew R. Saltzman, Advisor William I. Ausich Loren Babcock Stig M. Bergström Ola Ahlqvist Copyright by Kate Elizabeth Tierney 2010 Abstract The Permian is one of the most important intervals of earth history to help us understand the way our climate system works. It is an analog to modern climate because during this interval climate transitioned from an icehouse state (when glaciers existed extending to middle latitudes), to a greenhouse state (when there were no glaciers). This climatic amelioration occurred under conditions very similar to those that exist in modern times, including atmospheric CO2 levels and the presence of plants thriving in the terrestrial system. This analog to the modern system allows us to investigate the mechanisms that cause global warming. Scientist have learned that the distribution of carbon between the oceans, atmosphere and lithosphere plays a large role in determining climate and changes in this distribution can be studied by chemical proxies preserved in the rock record. There are two main ways to change the distribution of carbon between these reservoirs. Organic carbon can be buried or silicate minerals in the terrestrial realm can be weathered. These two mechanisms account for the long term changes in carbon concentrations in the atmosphere, particularly important to climate.
    [Show full text]
  • Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China
    Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China Y.D. Suna, b*, X.T. Liuc, J.X. Yana, B. Lid, B. Chene, D.P.G. Bondf, M.M. Joachimskib, P.B. Wignallg, X.L. Laia a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China b GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany c Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China d Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou, 510075, China e State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, 210008, R.P. China f School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK g School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK *Corresponding authors Email: [email protected] (Y.D. Sun) © 2017, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/ licenses/by-nc-nd/4.0/ 1 Abstract Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids.
    [Show full text]
  • Biodiversity Patterns Across the Late Paleozoic Ice Age
    Palaeontologia Electronica palaeo-electronica.org Biodiversity patterns across the Late Paleozoic Ice Age Barbara Seuss, Vanessa Julie Roden, and Ádám T. Kocsis ABSTRACT The Late Palaeozoic Ice Age (LPIA, Famennian to Wuchiapingian) witnessed two transitions between ice- and greenhouse conditions. These alternations led to drastic alterations in the marine system (e.g., sea-level, habitat size, sea-surface temperature) forcing faunal changes. To reassess the response of the global marine fauna, we ana- lyze diversity dynamics of brachiopod, bivalve, and gastropod taxa throughout the LPIA using data from the Paleobiology Database. Diversity dynamics were assessed regarding environmental affinities of these clades. Our analyses indicate that during the LPIA more taxa had an affinity towards siliciclastic than towards carbonate environ- ments. Deep-water and reefal habitats were more favored while grain size was less determining. In individual stages of the LPIA, the clades show rather constant affinities towards an environment. Those bivalves and brachiopods with an affinity differ in their habitat preferences, indicating that there might have been little competition among these two clades. Origination and extinction rates are similar during the main phase of the LPIA, whether environmental affinities are considered or not. This underlines that the LPIA marine fauna was well adapted and capable of reacting to changing environ- mental and climatic conditions. Since patterns of faunal change are similar in different environments, our study implies that the changes in faunal composition (e.g., diversity loss during the LPIA; strong increase of brachiopod diversity during the Permian) were influenced by the habitat to only a minor degree but most likely by yet unknown abiotic factors.
    [Show full text]
  • Proposal of Guadalupian and Component Roadian, Wordian And
    Permophiles Issue #34 1999 REPORTS Proposal of Guadalupian and Component morphoclines, absolute dates, and paleomagnetics. Roadian, Wordian and Capitanian Stages as International Standards for the Middle Permian Historic Preamble Prolonged deliberation of SPS members culminated in the man- Series dated formal postal vote by Titular (voting) Members that approved subdivision of the Permian System into three series, in ascending Brian F. Glenister order Cisuralian, Guadalupian and Lopingian (Report of Presi- University of Iowa dent Jin Yugan, Permophiles #29, p. 2). The “——usage of the Department of Geology Guadalupian Series and constituent stages, i.e. the Roadian, the Iowa City, IA 52242, USA Wordian and the Capitanian Stage for the middle part of the Per- mian.” was approved unanimously by 15 voting members. Pro- Bruce R. Wardlaw posal of the Guadalupian as a chronostratigraphic unit of series U. S. Geological Survey rank (Girty, 1902) predates any potential competitors by decades 926A National Center (Glenister et al., 1992). Of the three component stages currently Reston, VA 22092-0001, USA recognized, the upper two (Wordian and Capitanian) enjoy com- parable priority. Capitanian was first employed in a Lance L. Lambert lithostratigraphic sense by Richardson (1904) for the massive reef Department of Physics limestones of the Guadalupe Mountains of New Mexico and West Southwest Texas State University Texas, and the Word was used by Udden et al. (1916) for the San Marcos, TX 78666-4616, USA interbedded clastic/carbonate sequence in the adjacent Glass Moun- tains. Both were used in a strictly chronostratigraphic sense first Claude Spinosa by Glenister and Furnish (1961) as substages of the Guadalupian Stage, referenced by their nominal formations and recognized else- Permian Research Institute where through “ammonoid and fusuline faunas”.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2014/02 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]