Hybrid Position/Force Control of Manipulators1

Total Page:16

File Type:pdf, Size:1020Kb

Hybrid Position/Force Control of Manipulators1 Hybrid Position/Force Control of 1 M. H. Raibert Manipulators 2 A new conceptually simple approach to controlling compliant motions of a robot J.J. Craig manipulator is presented. The "hybrid" technique described combines force and torque information with positional data to satisfy simultaneous position and force Jet Propulsion Laboratory, trajectory constraints specified in a convenient task related coordinate system. California Institute of Technology Analysis, simulation, and experiments are used to evaluate the controller's ability to Pasadena, Calif. 91103 execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions. Introduction Precise control of manipulators in the face of uncertainties fluence control. Since small variations in relative position and variations in their environments is a prerequisite to generate large contact forces when parts of moderate stiffness feasible application of robot manipulators to complex interact, knowledge and control of these forces can lead to a handling and assembly problems in industry and space. An tremendous increase in efective positional accuracy. important step toward achieving such control can be taken by A number of methods for obtaining force information providing manipulator hands with sensors that provide in­ exist: motor currents may be measured or programmed, [6, formation about the progress of interactions with the en­ 11], motor output torques may be measured [7], and wrist or vironment. Though recent advances in robotics technology hand mounted sensors may be used [9, 12]. The first two of have led to the application of computer controlled these techniques are limited by the accuracy and availability manipulators to industrial handling and simple assembly of manipulator models that compensate for the complicated operations, advances in the use of hand sensors have been inertial, frictional, and gravitational effects that influence very slow to appear. Therefore manual dexterity remains force measurements. The dynamic range of force information quite low and continues to limit application opportunities and obtained at the joints may also be restricted when large growth. gravitational terms exist, even for the static case. The slow progress is due partly to a lack of rugged, reliable Though wrist-mounted force sensors pose challenging sensors of sufficient precision and versatility. But perhaps problems in mechanical design, eletronics, communications, more important is the lack of adequate controller ar­ and reliability, they are more sensitive and easier to use than chitectures and computing techniques needed to take ad­ joint sensors. Since the mass between a manipulator's wrist vantage of such sensory information, where it available. Such and its fingers is small and there are no articulations, a force- techniques are just now being developed. sensor mounted there requires only minor corrections for The use of manipulators for assembly tasks requires that dynamic effects and has a larger potential dynamic range. For the precision with which parts are positioned with respect to these reasons this paper concentrates on use of a hand sensor. one another be quite high—higher in fact than that available In any case, the basic control formulation given here could from joint-mounted position sensors attached to imperfectly easily be adapted for use with the other force measurement rigid manipulators driven by imperfectly meshed gears. schemes mentioned. Manipulators of greater precision can be achieved only at the The goal here is to present a conceptually simple method expense of size, weight, and cost. The ability to measure and for controlling both the position of a manipulator and the control contact forces generated at the hand, however, offers contact forces generated at the hand that does not suffer from a low cost alternative for extending effective precision. Since the approximate nature of previous schemes [6]. We also relative measurements are used, absolute errors in the position present the results of experiments that explore use of the of the manipulator and manipulated objects no longer in- hybrid technique in conjunction with data provided by a wrist-mounted force sensor. Note that the method we propose here does not prescribe This paper presents the results of one phase of research carried out at the Jet particular feedback control laws for the regulation of errors. Propulsion Laboratory, California Institute of Technology, under Contract Rather it suggests a control architecture within which such No. NAS-7-100, sponsored by the National Aeronautics and Space Ad­ laws can be applied. ministration. Author is now a graduate student at Stanford University. Contributed by the Dynamic Systems and Control Divison for publication in Background the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received at ASME Headquarters, February 25, 1981. The approach taken here is based on a theory of compliant 126/Vol. 102, JUNE 1981 Transactions of the ASME Copyright © 1981 by ASME Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 04/06/2015 Terms of Use: http://asme.org/terms 3 force and position manipulator control that has its roots in IING CRANK NATURAL CONSTRAINTS V . 0 L = 0 the work of Whitney [5, 12], and Paul and Shimano [6, 10], x ' and that was recently formalized by Mason [4]. The following f* »x-o Tro briefly describes Mason's theoretical framework that sup­ Ux = o a; = 0 ports, and is supported by the present work. C y Every manipulation task can be broken down into **--ff" ARTIFICIAL CONSTRAINTS XV v = 0 f elemental components that are defined by a particular set of y x"° contacting surfaces. With each elemental component is 'tSr^^ "z *"l f„-0 associated a set of constraints, called the natural constraints, 7=0 that result from the particular mechanical and geometric r„ - 0 characteristics of the task configuration. For instance, a hand in contact with a stationary rigid surface is not free to move through that surface (position constraint), and, if the surface TURNING SCREWDRIVER NATURAL CONSTRAINTS - 0 f 0 is frictionless, it is not free to apply arbitrary forces tangent to 7 - 0 the surface (force constraint). Figure 1 shows two task f = 0 - „ -0« configurations for which compliant control is useful along ' 7=0 with the associated natural constraints. z ARTIFICIAL CONSTRAINTS In general, for each task configuration a generalized 0 f - 0 surface can be defined in a constraint space having N degrees x p - PITCH P»2 r -0 of freedom, with position constraints along the normals to OF SCREW m*z a2 T.. " 0 this surface and force constraints along the tangents. These two types of constraint, force and position, partition the degrees of freedom of possible hand motions into two or­ thogonal sets that must be controlled according to different Fig. 1 Examples of force control tasks showing the constraint frame criteria. |C|, natural constraints, and artificial constraints. In these examples T Additional constraints, called artificial constraints, are [vx,Vy,vz, uxuy, uz] is the hand's velocity vector, 3 translational and 3 T introduced in accordance with these criteria to specify desired angular components, given in [C\. [fx, fy, 1Z, TX> ry, TZ] is the force motions or force patterns in the task configuration. That is, vector acting on the hand, 3 forces and 3 torques, also given in [ C |. The each time the user specifies a desired trajectory in either a's are constants, (a) Turning a crank at a constant rate, u1. (b) Turning position or force, an artificial constraint is defined. These a screw with constant rate, «2. Note that screw is frictionless. constraints also occur along the tangents and normals to the generalized surface, but, unlike natural constraints, artificial Reference [4] gives more details and examples of this for­ force constraints are specified along surface normals, and malism. artificial position constraints along tangents - consistency Note that the coordinate system within which constraints with the natural constraints is preserved. (See Fig. 1.) and trajectories are specified is not that of the joints of the manipulator, nor necessarily that of the manipulator hand or 3 In this paper "position" implies "position and orientation" and "force" sensor. It is an N degree of freedom Cartesian system defined implies "force and torque." with respect to the task geometry. Takase [11] first introduced Nomenclature B friction acting at manipulator joint (C) the constraint coordinate system X, Y,Z = Cartesian direction F force vector specifying 3 translational a = constant and 3 rotational degrees of freedom r = force compensator transfer function [H] coordinate system fixed in hand yj/ = position compensator transfer func­ [J] Jacobian matrix tion stiffness constant K A = kinematic function of manipulator position servo gains [Kpp\,[Kpi\,[Kpd\ Q = inverse kinematic function force servo gains [K/rUK/,] o) = rotational velocity link offset in manipulator I T = actuator forces and torques mass of manipulator link M T = torque N number of Cartesian degrees of freedom Subscripts manipulator position in joint coor­ c = Coulomb friction dinates d = desired rotation matrix which rotates from e = error {H)to{C} / = force S compliance selection vector ff = feed-forward [Ss] compliance selection matrix [S] p = position force transformation from [H] to r = reaction surface [C] 5 = static friction v = translational velocity w = wrist w = wrist sensor deflection due to forces at x,y,z = cartesian directions hand Preceding Superscripts X = position vector specifying 3 trans­ lational and 3 rotational degrees of C = quantity measured in (C) freedom H = quantity measured in [H] Journal of Dynamic Systems, Measurement, and Control JUNE 1981, Vol. 102/127 Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 04/06/2015 Terms of Use: http://asme.org/terms specification of constraints in a Cartesian system, and Paul COORDINATE has called this system the constraint frame, (C) [6].
Recommended publications
  • Position Management System Online Subject Area
    USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Insight Quick Reference | Position Management System Online Subject Area What is Position Management System Online (PMSO)? • This Subject Area provides snapshots in time of organization position listings including active (filled and vacant), inactive, and deleted positions. • Position data includes a Master Record, containing basic position data such as grade, pay plan, or occupational series code. • The Master Record is linked to one or more Individual Positions containing organizational structure code, duty station code, and accounting station code data. History • The most recent daily snapshot is available during a given pay period until BEAR runs. • Bi-Weekly snapshots date back to Pay Period 1 of 2014. Data Refresh* Position Management System Online Common Reports Daily • Provides daily results of individual position information, HR Area Report Name Load which changes on a daily basis. Bi-Weekly Organization • Position Daily for current pay and Position Organization with period/ Bi-Weekly • Provides the latest record regardless of previous changes Management PII (PMSO) for historical pay that occur to the data during a given pay period. periods *View the Insight Data Refresh Report to determine the most recent date of refresh Reminder: In all PMSO reports, users should make sure to include: • An Organization filter • PMSO Key elements from the Master Record folder • SSNO element from the Incumbent Employee folder • A time filter from the Snapshot Time folder 1 USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Daily Calendar Filters Bi-Weekly Calendar Filters There are three time options when running a bi-weekly There are two ways to pull the most recent daily data in a PMSO report: PMSO report: 1.
    [Show full text]
  • Chapters, in This Chapter We Present Methods Thatare Not Yet Employed by Industrial Robots, Except in an Extremely Simplifiedway
    C H A P T E R 11 Force control of manipulators 11.1 INTRODUCTION 11.2 APPLICATION OF INDUSTRIAL ROBOTS TO ASSEMBLY TASKS 11.3 A FRAMEWORK FOR CONTROL IN PARTIALLY CONSTRAINED TASKS 11.4 THE HYBRID POSITION/FORCE CONTROL PROBLEM 11.5 FORCE CONTROL OFA MASS—SPRING SYSTEM 11.6 THE HYBRID POSITION/FORCE CONTROL SCHEME 11.7 CURRENT INDUSTRIAL-ROBOT CONTROL SCHEMES 11.1 INTRODUCTION Positioncontrol is appropriate when a manipulator is followinga trajectory through space, but when any contact is made between the end-effector and the manipulator's environment, mere position control might not suffice. Considera manipulator washing a window with a sponge. The compliance of thesponge might make it possible to regulate the force applied to the window by controlling the position of the end-effector relative to the glass. If the sponge isvery compliant or the position of the glass is known very accurately, this technique could work quite well. If, however, the stiffness of the end-effector, tool, or environment is high, it becomes increasingly difficult to perform operations in which the manipulator presses against a surface. Instead of washing with a sponge, imagine that the manipulator is scraping paint off a glass surface, usinga rigid scraping tool. If there is any uncertainty in the position of the glass surfaceor any error in the position of the manipulator, this task would become impossible. Either the glass would be broken, or the manipulator would wave the scraping toolover the glass with no contact taking place. In both the washing and scraping tasks, it would bemore reasonable not to specify the position of the plane of the glass, but rather to specifya force that is to be maintained normal to the surface.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Position, Velocity, and Acceleration
    Position,Position, Velocity,Velocity, andand AccelerationAcceleration Mr.Mr. MiehlMiehl www.tesd.net/miehlwww.tesd.net/miehl [email protected]@tesd.net Position,Position, VelocityVelocity && AccelerationAcceleration Velocity is the rate of change of position with respect to time. ΔD Velocity = ΔT Acceleration is the rate of change of velocity with respect to time. ΔV Acceleration = ΔT Position,Position, VelocityVelocity && AccelerationAcceleration Warning: Professional driver, do not attempt! When you’re driving your car… Position,Position, VelocityVelocity && AccelerationAcceleration squeeeeek! …and you jam on the brakes… Position,Position, VelocityVelocity && AccelerationAcceleration …and you feel the car slowing down… Position,Position, VelocityVelocity && AccelerationAcceleration …what you are really feeling… Position,Position, VelocityVelocity && AccelerationAcceleration …is actually acceleration. Position,Position, VelocityVelocity && AccelerationAcceleration I felt that acceleration. Position,Position, VelocityVelocity && AccelerationAcceleration How do you find a function that describes a physical event? Steps for Modeling Physical Data 1) Perform an experiment. 2) Collect and graph data. 3) Decide what type of curve fits the data. 4) Use statistics to determine the equation of the curve. Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk. Its location (in feet) at time t (in seconds) is given by P (t ) = t 2 + t. a) Where is the crab after 2 seconds? b) How fast is it moving at that instant (2 seconds)? Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk. Its location (in feet) at time t (in seconds) is given by P (t ) = t 2 + t. a) Where is the crab after 2 seconds? 2 P()22=+ () ( 2) P()26= feet Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk.
    [Show full text]
  • Chapter 3 Motion in Two and Three Dimensions
    Chapter 3 Motion in Two and Three Dimensions 3.1 The Important Stuff 3.1.1 Position In three dimensions, the location of a particle is specified by its location vector, r: r = xi + yj + zk (3.1) If during a time interval ∆t the position vector of the particle changes from r1 to r2, the displacement ∆r for that time interval is ∆r = r1 − r2 (3.2) = (x2 − x1)i +(y2 − y1)j +(z2 − z1)k (3.3) 3.1.2 Velocity If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity for that interval is ∆r ∆x ∆y ∆z v = = i + j + k (3.4) ∆t ∆t ∆t ∆t As before, a more interesting quantity is the instantaneous velocity v, which is the limit of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative of the position vector r: dr v = (3.5) dt d = (xi + yj + zk) (3.6) dt dx dy dz = i + j + k (3.7) dt dt dt can be written: v = vxi + vyj + vzk (3.8) 51 52 CHAPTER 3. MOTION IN TWO AND THREE DIMENSIONS where dx dy dz v = v = v = (3.9) x dt y dt z dt The instantaneous velocity v of a particle is always tangent to the path of the particle. 3.1.3 Acceleration If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for that period is ∆v ∆v ∆v ∆v a = = x i + y j + z k (3.10) ∆t ∆t ∆t ∆t but a much more interesting quantity is the result of shrinking the period ∆t to zero, which gives us the instantaneous acceleration, a.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • 1.2 the Strain-Displacement Relations
    Section 1.2 1.2 The Strain-Displacement Relations The strain was introduced in Book I: §4. The concepts examined there are now extended to the case of strains which vary continuously throughout a material. 1.2.1 The Strain-Displacement Relations Normal Strain Consider a line element of length x emanating from position (x, y) and lying in the x - direction, denoted by AB in Fig. 1.2.1. After deformation the line element occupies AB , having undergone a translation, extension and rotation. y ux (x x, y) ux (x, y) B * B A A B x x x x Figure 1.2.1: deformation of a line element The particle that was originally at x has undergone a displacement u x (x, y) and the other end of the line element has undergone a displacement u x (x x, y) . By the definition of (small) normal strain, AB* AB u (x x, y) u (x, y) x x (1.2.1) xx AB x In the limit x 0 one has u x (1.2.2) xx x This partial derivative is a displacement gradient, a measure of how rapid the displacement changes through the material, and is the strain at (x, y) . Physically, it represents the (approximate) unit change in length of a line element, as indicated in Fig. 1.2.2. Solid Mechanics Part II 9 Kelly Section 1.2 B A B* A B x u x x x x Figure 1.2.2: unit change in length of a line element Similarly, by considering a line element initially lying in the y direction, the strain in the y direction can be expressed as u y (1.2.3) yy y Shear Strain The particles A and B in Fig.
    [Show full text]
  • Center of Mass Moment of Inertia
    Lecture 19 Physics I Chapter 12 Center of Mass Moment of Inertia Course website: http://faculty.uml.edu/Andriy_Danylov/Teaching/PhysicsI PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics IN THIS CHAPTER, you will start discussing rotational dynamics Today we are going to discuss: Chapter 12: Rotation about the Center of Mass: Section 12.2 (skip “Finding the CM by Integration) Rotational Kinetic Energy: Section 12.3 Moment of Inertia: Section 12.4 PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass (CM) PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass (CM) idea We know how to address these problems: How to describe motions like these? It is a rigid object. Translational plus rotational motion We also know how to address this motion of a single particle - kinematic equations The general motion of an object can be considered as the sum of translational motion of a certain point, plus rotational motion about that point. That point is called the center of mass point. PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass: Definition m1r1 m2r2 m3r3 Position vector of the CM: r M m1 m2 m3 CM total mass of the system m1 m2 m3 n 1 The center of mass is the rCM miri mass-weighted center of M i1 the object Component form: m2 1 n m1 xCM mi xi r2 M i1 rCM (xCM , yCM , zCM ) n r1 1 yCM mi yi M i1 r 1 n 3 m3 zCM mi zi M i1 PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Example Center
    [Show full text]
  • Points, Lines, and Planes a Point Is a Position in Space. a Point Has No Length Or Width Or Thickness
    Points, Lines, and Planes A Point is a position in space. A point has no length or width or thickness. A point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. A A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. It does not have a beginning or end. A B C D A line consists of infinitely many points. The four points A, B, C, D are all on the same line. Postulate: Two points determine a line. We name a line by using any two points on the line, so the above line can be named as any of the following: ! ! ! ! ! AB BC AC AD CD Any three or more points that are on the same line are called colinear points. In the above, points A; B; C; D are all colinear. A Ray is part of a line that has a beginning point, and extends indefinitely to one direction. A B C D A ray is named by using its beginning point with another point it contains. −! −! −−! −−! In the above, ray AB is the same ray as AC or AD. But ray BD is not the same −−! ray as AD. A (line) segment is a finite part of a line between two points, called its end points. A segment has a finite length. A B C D B C In the above, segment AD is not the same as segment BC Segment Addition Postulate: In a line segment, if points A; B; C are colinear and point B is between point A and point C, then AB + BC = AC You may look at the plus sign, +, as adding the length of the segments as numbers.
    [Show full text]
  • Rotation: Moment of Inertia and Torque
    Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn that where the force is applied and how the force is applied is just as important as how much force is applied when we want to make something rotate. This tutorial discusses the dynamics of an object rotating about a fixed axis and introduces the concepts of torque and moment of inertia. These concepts allows us to get a better understanding of why pushing a door towards its hinges is not very a very effective way to make it open, why using a longer wrench makes it easier to loosen a tight bolt, etc. This module begins by looking at the kinetic energy of rotation and by defining a quantity known as the moment of inertia which is the rotational analog of mass. Then it proceeds to discuss the quantity called torque which is the rotational analog of force and is the physical quantity that is required to changed an object's state of rotational motion. Moment of Inertia Kinetic Energy of Rotation Consider a rigid object rotating about a fixed axis at a certain angular velocity. Since every particle in the object is moving, every particle has kinetic energy. To find the total kinetic energy related to the rotation of the body, the sum of the kinetic energy of every particle due to the rotational motion is taken. The total kinetic energy can be expressed as ..
    [Show full text]
  • Circular Motion Angular Velocity
    PHY131H1F - Class 8 Quiz time… – Angular Notation: it’s all Today, finishing off Chapter 4: Greek to me! d • Circular Motion dt • Rotation θ is an angle, and the S.I. unit of angle is rad. The time derivative of θ is ω. What are the S.I. units of ω ? A. m/s2 B. rad / s C. N/m D. rad E. rad /s2 Last day I asked at the end of class: Quiz time… – Angular Notation: it’s all • You are driving North Highway Greek to me! d 427, on the smoothly curving part that will join to the Westbound 401. v dt Your speedometer is constant at 115 km/hr. Your steering wheel is The time derivative of ω is α. not rotating, but it is turned to the a What are the S.I. units of α ? left to follow the curve of the A. m/s2 highway. Are you accelerating? B. rad / s • ANSWER: YES! Any change in velocity, either C. N/m magnitude or speed, implies you are accelerating. D. rad • If so, in what direction? E. rad /s2 • ANSWER: West. If your speed is constant, acceleration is always perpendicular to the velocity, toward the centre of circular path. Circular Motion r = constant Angular Velocity s and θ both change as the particle moves s = “arc length” θ = “angular position” when θ is measured in radians when ω is measured in rad/s 1 Special case of circular motion: Uniform Circular Motion A carnival has a Ferris wheel where some seats are located halfway between the center Tangential velocity is and the outside rim.
    [Show full text]
  • Torque-Position Transformer for Task Control of Position Controlled Robots
    2008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 2008 Torque-Position Transformer for Task Control of Position Controlled Robots Oussama Khatib,1 Peter Thaulad,1 Taizo Yoshikawa,1,2 and Jaeheung Park1 1 Stanford Artificial Intelligence Laboratory 2 Honda Research Institute USA, Inc. Abstract— Joint position control is a dominant paradigm in industrial robots. While it has been successful in various industrial tasks, joint position control is severely limited in performing advanced robotic tasks, especially in unstructured dynamic environments. This paper presents the concept of torque- to-position transformer designed to allow the implementation of joint torque control techniques on joint position-controlled robots. Robot torque control is essentially accomplished by converting desired joint torques into instantaneous increments of joint position inputs. For each joint, the transformer is based on the knowledge of the joint position servo controller and the closed-loop frequency response of that joint. This transformer can be implemented as a software unit and applied to any conventional position-controlled robot so that torque command to the robot becomes available. This approach has been experimen- tally implemented on the Honda ASIMO robot arm. The paper presents the results of this implementation which demonstrate the effectiveness of this approach. I. INTRODUCTION Robots are multi-body systems whose dynamics is nonlin- Fig. 2. Honda ASIMOHumanoid robot ear and highly coupled. Robotic control is most frequently accomplished with a position control system. This position control is realized at the joint level, where each joint is treated independently and coupled dynamic effects between joints are cannot account for the dynamics of the system, the dynamic ignored [1].
    [Show full text]