Angular Position

Total Page:16

File Type:pdf, Size:1020Kb

Angular Position ANGULAR POSITION • To describe rotational motion, we define angular quantities that are analogous to linear quantities • Consider a bicycle wheel that is free to rotate about its axle • The axle is the axis of rotation for the wheel • If there is a small spot of red paint on the tire, we can use this reference to describe its rotational motion • The angular position of the spot is the angle θ, that a line from the axle to the spot makes with a reference line • SI unit is the radian (rad) • θ > 0 – anticlockwise rotation: θ < 0 – clockwise rotation • A radian is the angle for which the arc length, s, on a circle of radius r is equal to the radius of the circle • The arc length s for an arbitrary angle θ measured in radians is s = r θ • 1 revolution is 360°= 2 π rad • 1 rad = 360°/2 π = 57.3° 4. Rotational Kinematics 1 and Dynamics ANGULAR VELOCITY • As the bicycle wheel rotates, the angular position of the spot changes ∆ • Angular displacement is θ = θf – θi ∆ ∆t • Average angular velocity is ωav = θ/ (rad/s) v ∆x ∆t • Analogous average linear velocity av = / • Instantaneous angular velocity is the limit of ωav as the time interval ∆t reaches zero • ω > 0 – anticlockwise rotation: ω < 0 clockwise rotation • The time to complete one revolution is known as the period , T • T = 2 π/ω seconds 4. Rotational Kinematics 2 and Dynamics ANGULAR ACCELERATION • If the angular velocity of the rotating bicycle wheel increases or decreases with time, the wheel experiences an angular acceleration , α • The average angular acceleration is the change in angular velocity in a given time interval ∆ ∆t 2 • αav = ω/ rad/s • The instantaneous angular acceleration is the limit of ∆t αav as the time interval approaches zero • The sign of angular acceleration is determined by whether the change in angular velocity is positive or negative • If ω is becoming more positive (ωf > ωi), α is positive • If ω is becoming more negative (ωf < ωi), α is negative • If ω and α have the same sign, speed of rotation increasing • If ω and α have opposite signs, speed of rotation decreasing 4. Rotational Kinematics 3 and Dynamics ROTATIONAL KINEMATICS • Rotational kinematics describes rotational motion • Consider the pulley shown below, which has a string wrapped around its circumference with a mass attached to its free end • When the mass is released, the pulley begins to rotate – slowly at first, then faster and faster • The pulley thus accelerates with constant angular acceleration: α = ∆ω/∆t • If the pulley starts with initial angular velocity ω0 at time t = 0, and at the later time t the angular velocity is ω ∆ ∆t t t t then α = ω/ = ( ω – ω0)/( – 0) = (ω – ω0)/ • Thus the angular velocity ω varies with time as follows: t ω = ω0 + α • Example: If the angular velocity of the pulley is -8.4rad/s at a given time, and its angular acceleration is -2.8rad/s 2, what is the angular velocity of the pulley 1.5s later? 4. Rotational Kinematics 4 and Dynamics LINEAR AND ANGULAR ANALOGIES 4. Rotational Kinematics 5 and Dynamics ROTATIONAL KINEMATICS: EXAMPLE (1) • To throw a curve ball, a baseball pitcher gives the ball an initial speed of 36.0 rad/s. When the catcher gloves the ball 0.595s later, its angular speed has decreased (due to air resistance) to 34.2 rad/s. What is the ball’s angular acceleration, assuming it to be constant? How many revolutions does the ball make before being caught? 4. Rotational Kinematics 6 and Dynamics ROTATIONAL KINEMATICS: EXAMPLE (2) • On a TV game show, contestants spin a wheel when it is their turn. One contestant gives the wheel an initial angular speed of 3.4 rad/s. It then rotates through1 ¼ revolutions and comes to rest on the BANKRUPT space. Find the angular acceleration of the wheel, assuming it to be constant. How long does it take for the wheel to come to a rest? 4. Rotational Kinematics 7 and Dynamics TANGENTIAL SPEED OF A ROTATING OBJECT • Consider somebody riding a merry-go-round, which completes one circuit every T = 7.5s • Thus ω = 2 π/T = 0.838 rad/s • The path followed is circular, with the centre of the circle at the axis of rotation • The rider is moving in a direction that is tangential to the circular path • The tangential speed is the speed at a tangent to the circular path, and is found by dividing the circumference T: v r T by t = 2 π / m/s T v r • Because 2 π/ = ω we have: t = ω m/s • Example: Find the angular speed a CD must have to give a linear speed of 1.25m/s when the laser beam shines on the disk 2.50cm and 6.00cm from its centre 4. Rotational Kinematics 8 and Dynamics CENTRIPETAL ACCELERATION OF A ROTATING OBJECT • When an object moves in a circular path, it experiences a a centripetal acceleration, cp , which is always directed toward the axis of rotation a v2 r • cp = / v v r a r 2 r = r 2 2 • However = t = ω, so cp = ( ω) / ω m/s • Rotating devices known as centrifuges can produce centripetal accelerations many times greater than gravity, such as those used to train astronauts, or microhematocrit centrifuges used to separate blood cells from plasma • Example: In a microhematocrit centrifuge, small samples of blood are placed in capillary tubes. These tubes are rotated at 11,500rpm, with the bottom of the tubes 9.07cm from the axis of rotation. Find the linear speed of the bottom of the tubes. What is the centripetal acceleration at the bottom of the tubes? 4. Rotational Kinematics 9 and Dynamics TANGENTIAL AND CENTRIPETAL ACCELERATION • When the angular speed of an object in a circular path changes, so does its tangential speed • When tangential speed changes, a tangential a acceleration is experienced t • If ω changes by the amount ∆ω, with r remaining constant, the corresponding change in tangential speed ∆v r∆ is t = ω • If ∆ω occurs in time interval ∆t, then the tangential a ∆v ∆t r∆ ∆t acceleration is t = t/ = ω/ • Since ∆ω/∆t is the angular acceleration α, then the tangential acceleration of a rotating object is given a r 2 by t = α m/s a • Recall that t is due to a changing tangential speed, a and that cp is caused by a changing direction of motion a (even if t remains constant) • In cases where both tangential and centripetal accelerations are present, the total sum is the vector sumr of ther two a a •t and cp are at right angles, hence the magnitude of a √ a 2 a 2 the total acceleration is = ( t + cp ) -1 a a • The direction is given by φ = tan ( cp / t) 4. Rotational Kinematics 10 and Dynamics TANGENTIAL AND CENTRIPETAL ACCELERATION: EXAMPLE • Suppose the centrifuge above is starting up with a constant angular acceleration of 95.0 rad/s 2. What is the magnitude of the centripetal, tangential and total accelerations of the bottom of a tube when the angular speed is 8.00 rad/s? What angle does the total acceleration make with the direction of motion? 4. Rotational Kinematics 11 and Dynamics TORQUE: WHEN FORCE APPLIED IS TANGENTIAL • Trying to loosen a nut by rotating a wrench anticlockwise is easier when you apply the force as far away from the nut as possible • Likewise to open a revolving door is easier when you push further from the axis of rotation • The tendency for a force to cause a rotation increases with the distance r from the axis of rotation to the force • Torque is a quantity that takes into account both the magnitude of the force and the distance from the axis of rotation, r • Torque: τ = rF Nm (Newton – metre) • This equation is only valid when the applied force is tangential to a circle of radius r centred on the axis of rotation 4. Rotational Kinematics 12 and Dynamics TORQUE: WHEN FORCE APPLIED IS NOT TANGENTIAL • Consider pulling on a merry-go-round in a direction that is radial (along a line that extends through the axis of rotation) • Such a force has no tendency to cause a rotation, and thus the axle simply exerts an equal and opposite force, and thus the merry-go-round remains at rest • A radial force produces zero torque • If the force appliedr is at an angle θ to the radial line, the vector force F needs to be resolved into radial and tangential components • Radial component magnitude: Fcos θ • Tangential component magnitude: Fsin θ • Only tangential component causes rotation, thus Fcos θ = 0 • General definition of torque: τ = rF sin θ Nm • τ > 0 – anticlockwise angular acceleration • τ < 0 – clockwise angular acceleration 4. Rotational Kinematics 13 and Dynamics TORQUE: EXAMPLE • Two helmsmen, in disagreement about which way to turn a ship, exert different forces on the ship’s wheel. The wheel has a radius of 0.74m, and the two forces F F have the magnitudesr 1 = 72N and 2 = 58N. Findr the F F torque caused by 1 and the torque caused by 2 . In which direction does the wheel turn as a result of these two forces. 4. Rotational Kinematics 14 and Dynamics TORQUE AND ANGULAR ACCELERATION • A single torque, τ, acting on an object causes the object to have an angular acceleration α • Consider a small object of mass m connected to an axis of rotation by a light rod of length r • If a tangential force of magnitude F is applied to the mass, it will move with an acceleration according to Newton’s 2 nd law, a = F/m • Linear and angular accelerations related by α = a/r • Combining: α = a/r = F/mr • Multiplying by r/r gives α = rF /mr 2 • Since torque τ = rF , we define a new quantity called the moment of inertia : I = mr 2 • Thus α = τ/I or τ = Iα • In a system with more than one torque, we take the net Σ I sum of all the torques acting: τnet = τ = α • Above is Newton’s 2 nd law for rotational motion 4.
Recommended publications
  • Circle Theorems
    Circle theorems A LEVEL LINKS Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid Key points • A chord is a straight line joining two points on the circumference of a circle. So AB is a chord. • A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°. • Two tangents on a circle that meet at a point outside the circle are equal in length. So AC = BC. • The angle in a semicircle is a right angle. So angle ABC = 90°. • When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference. So angle AOB = 2 × angle ACB. • Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal. So angle ACB = angle ADB and angle CAD = angle CBD. • A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So x + y = 180° and p + q = 180°. • The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB. Examples Example 1 Work out the size of each angle marked with a letter. Give reasons for your answers. Angle a = 360° − 92° 1 The angles in a full turn total 360°. = 268° as the angles in a full turn total 360°.
    [Show full text]
  • Position Management System Online Subject Area
    USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Insight Quick Reference | Position Management System Online Subject Area What is Position Management System Online (PMSO)? • This Subject Area provides snapshots in time of organization position listings including active (filled and vacant), inactive, and deleted positions. • Position data includes a Master Record, containing basic position data such as grade, pay plan, or occupational series code. • The Master Record is linked to one or more Individual Positions containing organizational structure code, duty station code, and accounting station code data. History • The most recent daily snapshot is available during a given pay period until BEAR runs. • Bi-Weekly snapshots date back to Pay Period 1 of 2014. Data Refresh* Position Management System Online Common Reports Daily • Provides daily results of individual position information, HR Area Report Name Load which changes on a daily basis. Bi-Weekly Organization • Position Daily for current pay and Position Organization with period/ Bi-Weekly • Provides the latest record regardless of previous changes Management PII (PMSO) for historical pay that occur to the data during a given pay period. periods *View the Insight Data Refresh Report to determine the most recent date of refresh Reminder: In all PMSO reports, users should make sure to include: • An Organization filter • PMSO Key elements from the Master Record folder • SSNO element from the Incumbent Employee folder • A time filter from the Snapshot Time folder 1 USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Daily Calendar Filters Bi-Weekly Calendar Filters There are three time options when running a bi-weekly There are two ways to pull the most recent daily data in a PMSO report: PMSO report: 1.
    [Show full text]
  • Chapters, in This Chapter We Present Methods Thatare Not Yet Employed by Industrial Robots, Except in an Extremely Simplifiedway
    C H A P T E R 11 Force control of manipulators 11.1 INTRODUCTION 11.2 APPLICATION OF INDUSTRIAL ROBOTS TO ASSEMBLY TASKS 11.3 A FRAMEWORK FOR CONTROL IN PARTIALLY CONSTRAINED TASKS 11.4 THE HYBRID POSITION/FORCE CONTROL PROBLEM 11.5 FORCE CONTROL OFA MASS—SPRING SYSTEM 11.6 THE HYBRID POSITION/FORCE CONTROL SCHEME 11.7 CURRENT INDUSTRIAL-ROBOT CONTROL SCHEMES 11.1 INTRODUCTION Positioncontrol is appropriate when a manipulator is followinga trajectory through space, but when any contact is made between the end-effector and the manipulator's environment, mere position control might not suffice. Considera manipulator washing a window with a sponge. The compliance of thesponge might make it possible to regulate the force applied to the window by controlling the position of the end-effector relative to the glass. If the sponge isvery compliant or the position of the glass is known very accurately, this technique could work quite well. If, however, the stiffness of the end-effector, tool, or environment is high, it becomes increasingly difficult to perform operations in which the manipulator presses against a surface. Instead of washing with a sponge, imagine that the manipulator is scraping paint off a glass surface, usinga rigid scraping tool. If there is any uncertainty in the position of the glass surfaceor any error in the position of the manipulator, this task would become impossible. Either the glass would be broken, or the manipulator would wave the scraping toolover the glass with no contact taking place. In both the washing and scraping tasks, it would bemore reasonable not to specify the position of the plane of the glass, but rather to specifya force that is to be maintained normal to the surface.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Position, Velocity, and Acceleration
    Position,Position, Velocity,Velocity, andand AccelerationAcceleration Mr.Mr. MiehlMiehl www.tesd.net/miehlwww.tesd.net/miehl [email protected]@tesd.net Position,Position, VelocityVelocity && AccelerationAcceleration Velocity is the rate of change of position with respect to time. ΔD Velocity = ΔT Acceleration is the rate of change of velocity with respect to time. ΔV Acceleration = ΔT Position,Position, VelocityVelocity && AccelerationAcceleration Warning: Professional driver, do not attempt! When you’re driving your car… Position,Position, VelocityVelocity && AccelerationAcceleration squeeeeek! …and you jam on the brakes… Position,Position, VelocityVelocity && AccelerationAcceleration …and you feel the car slowing down… Position,Position, VelocityVelocity && AccelerationAcceleration …what you are really feeling… Position,Position, VelocityVelocity && AccelerationAcceleration …is actually acceleration. Position,Position, VelocityVelocity && AccelerationAcceleration I felt that acceleration. Position,Position, VelocityVelocity && AccelerationAcceleration How do you find a function that describes a physical event? Steps for Modeling Physical Data 1) Perform an experiment. 2) Collect and graph data. 3) Decide what type of curve fits the data. 4) Use statistics to determine the equation of the curve. Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk. Its location (in feet) at time t (in seconds) is given by P (t ) = t 2 + t. a) Where is the crab after 2 seconds? b) How fast is it moving at that instant (2 seconds)? Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk. Its location (in feet) at time t (in seconds) is given by P (t ) = t 2 + t. a) Where is the crab after 2 seconds? 2 P()22=+ () ( 2) P()26= feet Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk.
    [Show full text]
  • Angles ANGLE Topics • Coterminal Angles • Defintion of an Angle
    Angles ANGLE Topics • Coterminal Angles • Defintion of an angle • Decimal degrees to degrees, minutes, seconds by hand using the TI-82 or TI-83 Plus • Degrees, seconds, minutes changed to decimal degree by hand using the TI-82 or TI-83 Plus • Standard position of an angle • Positive and Negative angles ___________________________________________________________________________ Definition: Angle An angle is created when a half-ray (the initial side of the angle) is drawn out of a single point (the vertex of the angle) and the ray is rotated around the point to another location (becoming the terminal side of the angle). An angle is created when a half-ray (initial side of angle) A: vertex point of angle is drawn out of a single point (vertex) AB: Initial side of angle. and the ray is rotated around the point to AC: Terminal side of angle another location (becoming the terminal side of the angle). Hence angle A is created (also called angle BAC) STANDARD POSITION An angle is in "standard position" when the vertex is at the origin and the initial side of the angle is along the positive x-axis. Recall: polynomials in algebra have a standard form (all the terms have to be listed with the term having the highest exponent first). In trigonometry, there is a standard position for angles. In this way, we are all talking about the same thing and are not trying to guess if your math solution and my math solution are the same. Not standard position. Not standard position. This IS standard position. Initial side not along Initial side along negative Initial side IS along the positive x-axis.
    [Show full text]
  • Chapter 3 Motion in Two and Three Dimensions
    Chapter 3 Motion in Two and Three Dimensions 3.1 The Important Stuff 3.1.1 Position In three dimensions, the location of a particle is specified by its location vector, r: r = xi + yj + zk (3.1) If during a time interval ∆t the position vector of the particle changes from r1 to r2, the displacement ∆r for that time interval is ∆r = r1 − r2 (3.2) = (x2 − x1)i +(y2 − y1)j +(z2 − z1)k (3.3) 3.1.2 Velocity If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity for that interval is ∆r ∆x ∆y ∆z v = = i + j + k (3.4) ∆t ∆t ∆t ∆t As before, a more interesting quantity is the instantaneous velocity v, which is the limit of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative of the position vector r: dr v = (3.5) dt d = (xi + yj + zk) (3.6) dt dx dy dz = i + j + k (3.7) dt dt dt can be written: v = vxi + vyj + vzk (3.8) 51 52 CHAPTER 3. MOTION IN TWO AND THREE DIMENSIONS where dx dy dz v = v = v = (3.9) x dt y dt z dt The instantaneous velocity v of a particle is always tangent to the path of the particle. 3.1.3 Acceleration If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for that period is ∆v ∆v ∆v ∆v a = = x i + y j + z k (3.10) ∆t ∆t ∆t ∆t but a much more interesting quantity is the result of shrinking the period ∆t to zero, which gives us the instantaneous acceleration, a.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Hybrid Position/Force Control of Manipulators1
    Hybrid Position/Force Control of 1 M. H. Raibert Manipulators 2 A new conceptually simple approach to controlling compliant motions of a robot J.J. Craig manipulator is presented. The "hybrid" technique described combines force and torque information with positional data to satisfy simultaneous position and force Jet Propulsion Laboratory, trajectory constraints specified in a convenient task related coordinate system. California Institute of Technology Analysis, simulation, and experiments are used to evaluate the controller's ability to Pasadena, Calif. 91103 execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions. Introduction Precise control of manipulators in the face of uncertainties fluence control. Since small variations in relative position and variations in their environments is a prerequisite to generate large contact forces when parts of moderate stiffness feasible application of robot manipulators to complex interact, knowledge and control of these forces can lead to a handling and assembly problems in industry and space. An tremendous increase in efective positional accuracy. important step toward achieving such control can be taken by A number of methods for obtaining force information providing manipulator hands with sensors that provide in­ exist: motor currents may be measured or programmed, [6, formation about the progress
    [Show full text]
  • 1.2 the Strain-Displacement Relations
    Section 1.2 1.2 The Strain-Displacement Relations The strain was introduced in Book I: §4. The concepts examined there are now extended to the case of strains which vary continuously throughout a material. 1.2.1 The Strain-Displacement Relations Normal Strain Consider a line element of length x emanating from position (x, y) and lying in the x - direction, denoted by AB in Fig. 1.2.1. After deformation the line element occupies AB , having undergone a translation, extension and rotation. y ux (x x, y) ux (x, y) B * B A A B x x x x Figure 1.2.1: deformation of a line element The particle that was originally at x has undergone a displacement u x (x, y) and the other end of the line element has undergone a displacement u x (x x, y) . By the definition of (small) normal strain, AB* AB u (x x, y) u (x, y) x x (1.2.1) xx AB x In the limit x 0 one has u x (1.2.2) xx x This partial derivative is a displacement gradient, a measure of how rapid the displacement changes through the material, and is the strain at (x, y) . Physically, it represents the (approximate) unit change in length of a line element, as indicated in Fig. 1.2.2. Solid Mechanics Part II 9 Kelly Section 1.2 B A B* A B x u x x x x Figure 1.2.2: unit change in length of a line element Similarly, by considering a line element initially lying in the y direction, the strain in the y direction can be expressed as u y (1.2.3) yy y Shear Strain The particles A and B in Fig.
    [Show full text]
  • Center of Mass Moment of Inertia
    Lecture 19 Physics I Chapter 12 Center of Mass Moment of Inertia Course website: http://faculty.uml.edu/Andriy_Danylov/Teaching/PhysicsI PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics IN THIS CHAPTER, you will start discussing rotational dynamics Today we are going to discuss: Chapter 12: Rotation about the Center of Mass: Section 12.2 (skip “Finding the CM by Integration) Rotational Kinetic Energy: Section 12.3 Moment of Inertia: Section 12.4 PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass (CM) PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass (CM) idea We know how to address these problems: How to describe motions like these? It is a rigid object. Translational plus rotational motion We also know how to address this motion of a single particle - kinematic equations The general motion of an object can be considered as the sum of translational motion of a certain point, plus rotational motion about that point. That point is called the center of mass point. PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass: Definition m1r1 m2r2 m3r3 Position vector of the CM: r M m1 m2 m3 CM total mass of the system m1 m2 m3 n 1 The center of mass is the rCM miri mass-weighted center of M i1 the object Component form: m2 1 n m1 xCM mi xi r2 M i1 rCM (xCM , yCM , zCM ) n r1 1 yCM mi yi M i1 r 1 n 3 m3 zCM mi zi M i1 PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Example Center
    [Show full text]