DODDER Cuscuta Gronovii Willd

Total Page:16

File Type:pdf, Size:1020Kb

DODDER Cuscuta Gronovii Willd DODDER Cuscuta gronovii Willd. University of Massachusetts, Cranberry Experiment Station Hilary A. Sandler Common or swamp dodder (Cuscuta gronovii Willd.) is enhances the survival capacity of many Cuscuta species the most prevalent and abundant species of dodder in in modern agroecosystems. Dodder is considered to be North America. Its range extends from Maine and Nova a very serious pest in commercial cranberry production, Scotia to Florida and westward through Canada and the capable of reducing yields by at least 50% (Bewick et al., Midwest. It is more abundant in the central and northeast 1988) and sometimes as high as 80 to 100% (Devlin and regions of the United States (Yuncker, 1965). It is an Deubert, 1980). obligate parasite, consisting of yellow twining stems that produce small clusters of white flowers (Parker and Riches, Control of dodder remains challenging for cranberry 1993). Dodder can establish parasitic relationships with growers. Many management options available to growers many agricultural hosts, including cranberry (Vaccinium of annual crops (e.g., altering time of planting, crop rotation, macrocarpon Ait.), blueberry (Vaccinium spp.), alfalfa etc.) are not possible in perennial systems. Pre- (Medicago sativa) and clover (Trifolium spp). It is also emergence herbicides are currently available for control of capable of infecting many other dicotyledonous weeds dodder. Research has shown that cultural practices, such and wild plants (Dawson et al., 1994). as uniform applications of sand (Sandler et al., 1997) may inhibit germination of dodder seedlings. In contrast, Botanists classify this group of parasitic plants either as studies have shown that late water floods are not effective one of over 50 genera in the family, Convolvulaceae (as for control of dodder. Combining chemical and cultural per Yuncker), or place them as a single genus in their strategies may offer the best solution for suppressing own family, Cuscutaceae (Gleason and Cronquist, 1991). dodder in cranberry production (Sandler, 2001). Yuncker described approximately 150 species of Cuscuta, while Gleason and Cronquist described approximately 15 General Description species. The lack of distinctive stem characteristics, Dodder is an annual plant known by several common absence of leaves and roots, and the presence of very names, such as strangle weed, angel’s hair, and golden small flowers, make these plants very difficult to classify. thread (Yuncker, 1965). Seedlings consist only of stem tissue and have no leaves or roots. Stems are slender Dodder is an organism that is prevalent in disturbed strands, usually yellow to orange in color. Even though habitats, which promotes their function as serious weeds dodder relies on its host for life-sustaining nutrients, some (Dawson et al., 1994). For example, C. gronovii is species may contain very small concentrations of described as growing along stream margins, areas of chlorophyll. Dodder is classified as an annual plant continual erosion. Their adaptation to disturbed habitats (completes its life cycle in one season). However, it can Closeup of dodder stem and flowers on loosestrife. Arch of a newly germinated Cranberry bog infested with dodder. seedling. UMASS / AMHERST - CRANBERRY EXPERIMENT STATION overwinter as haustoria (specialized structures that in mowed or pruned vines received from other bogs. Care transport nutrients from the host to the parasite) if the should be taken to fully investigate the presence of any stems of the infected host plant live through the winter. existing dodder infestations prior to the purchase of vine cuttings. Life Cycle and Dispersal Dodder is an obligate parasite; it cannot complete its life Seeds and Seedlings cycle alone. It must form a successful attachment to a Seeds of C. gronovii are very tiny (0.5-1.0 mm diameter), host to live beyond the seedling stage. When the seedling gray to brown in color. They are irregularly round in shape. finds a suitable host, it will twine around the stem. Dodder The seed coat is very hard and has a rough surface. Several will penetrate the susceptible tissues of the host and tiny seeds (ca. 2-4) may be present within a single fruit produce specialized absorption structures called haustoria. capsule. Only a small percentage of the seed population It then loses contact with the ground and lives totally off in the soil may germinate in any single season. It is the host plant. If an acceptable host is not nearby or is thought that seed can remain viable for many years. not colonized, the seedling will die. Research initiated in 1997 at the UMass Cranberry Station indicates that dodder seed collected from Massachusetts Within 2 to 4 days after the seedling has twined around cranberry farms remains viable at least 4 years after the host, haustorial swellings can be seen (MacLoed, planting (Sandler, unpublished data). Thus, once a farm 1961). Haustoria have a high level of growth activity. Even is infested, it can remain infested for many years. if all exterior portions of the dodder plant are completely removed from the host, the embedded haustoria can Most seedlings emerge from a depth of 0.5-1.0 inch of remain alive. New stem tissue can be subsequently soil. Seedlings are rootless and leafless, consisting a generated from the embedded haustoria. This phenomenon thin, yellow, threadlike stem. They emerge as an arch reinforces the need for complete removal of infected hosts (see photo on front page), straighten out and then begin far away from the bog area. to twist in a counterclockwise direction (circumnutation). At this point, they can contact a vertical host and twine Dodder reproduces by seed, but these are not easily around it. Often, newly emerged seedlings are rather dispersed by animals or wind. The fruiting capsule has a difficult to find on the bog floor. It is preferable to look for large amount of air space and can be buoyant. them in thinly vined or bare areas of the bed. Consequently, the major means of dispersal is by water or by human activities. For example, water harvesting Shoots has significantly increased the dispersal and occurrence After attaching to the host, new shoots will develop from of dodder in Massachusetts over the past several decades. the portion of the dodder seedling that is twined around Seed can also be spread through the irrigation system if the host. These stems grow rapidly and re-attach to the the water is contaminated with dodder. Dodder stems host plant. Dodder may attach itself many times to the and seeds, as well as infected hosts, can also be spread same host or branch off to attach to different hosts. If a Narrow-leaved goldenrod infected with dodder. The parasite has produced flowers and seeds on Twining and haustorial the host. connections on carrot. Seeds and capsules. UMASS / AMHERST - CRANBERRY EXPERIMENT STATION seedling does not contact a suitable host, it will continue Raking is another non-chemical option for dodder control. to elongate. The growing tip will remain succulent and For light to moderate infestations, raking is not viable while the basal portion will begin to senescence recommended as fruit yield and quality are diminished and wither. Greenhouse studies (Sandler et al., 1997) and dodder growth is unaffected. For heavy infestations, indicated that unattached seedlings could survive (as raking can prevent the onset of upright dieback caused by determined by visual observation) for a maximum of 50 dodder parasitism. It can also prevent leaf-drop due to days, though most seedlings survived 3 to 9 days after shading of the cranberry plant by the dodder canopy. emergence. However, this research did not verify the ability Raking after seed set offers more control than raking prior of these older seedlings to successfully attach to a host. to seed set. Research has shown that there is no Note also that field conditions tend to be more harsh than additional benefit to raking more than once (Bewick et greenhouse conditions and would presumably shorten the al., 1999). longevity period for newly emerged seedlings. Two pre-emergence herbicides are currently available for Flowers and Fruit control of dodder (Sandler, 2001). Even though these After growing vegetatively, dodder produces clusters of herbicides can be very effective, their efficacy is related to flowers that may be white, pink, or yellowish. The the correct timing of the application and to the presence numerous flowers (see photo on previous page) produce of an effective quantity of herbicide within the germination abundant fruit or capsules that contain the seeds. These layer. Research has documented that the emergence of may fall to the ground and/or be spread during harvest dodder seedlings can extend over a period of 2 to 3 months operations or water movement. (Ellis et al., 2000). This germination period can exceed the performance time period reasonably expected for these Management products. As a result, a portion of the population can Prevention of infestation is the best control option for escape herbicide control and continue to infest the bog dodder. All attempts should be made to avoid introduction during the summer months. of contaminated material or water into a clean bog. If you must use equipment from an infested field, thoroughly clean Postemergence options are very limited. Recent research the equipment prior to use in the clean area. It is important indicated that some commercial cleaning products may to scout various areas of the bog for signs of early offer some post-emergence control (J. Morrison, germination and later in the season, seedling that escaped unpublished data). These studies included an intensive control from herbicide applications. Thinly vined areas or spray program that would likely be cost-prohibitive for many areas where dodder was previously known to occur are growers. Current recommendations do include the use of excellent places to scout for new seedlings.
Recommended publications
  • Cover Crops for Home Gardens West of the Cascades
    Cover Crops for Home Gardens West of the Cascades WASHINGTON STATE UNIVERSITY EXTENSION FACT SHEET • FS111E This fact sheet is one of a three-part series on cover crops for home gardeners. It focuses on choosing the best cover crops for gardens in Washington and Oregon, west of the Cascades. A companion fact sheet, Cover Crops for Home Gardens East of the Cascades, focuses on choosing the best cover crops for gardens in Washington and Oregon, east of the Cascades. The third fact sheet in this series, Methods for Successful Cover Crop Management in Your Home Garden, covers the management of garden cover crops, including planning, planting, managing nutrients, and terminating plants. What Is a Cover Crop? Table 1. Benefits of cover crops. • Replace soil organic matter Cover crops are plants grown to both cover and improve • Recycle nutrients the soil. They may be used as a living or dead mulch on the • Supply nitrogen (legumes only) soil surface, or they can be tilled into the soil as a “green manure.” Gardeners usually plant cover crops in the fall • Protect soil from rain and wind erosion for winter cover, but some gardeners also use cover crops • Reduce runoff and water erosion as part of a summer rotation. Cover crops can be any type • Reduce leaching of nutrients of plant but are generally grasses (including cereal grains), • Suppress weeds legumes, or grass/legume mixtures. Some non-legume • Break up compacted soil broadleaf plants can also be used. • Attract beneficial insects by providing pollen and nectar Why Grow a Cover Crop? • Reduce disease and nematodes Cover crops serve the gardener in many ways, typically by Cold-hardy cover crops protecting and improving the soil, suppressing weeds, and Gardeners usually plant these species in the fall as winter attracting beneficial insects (Table 1).
    [Show full text]
  • Alfalfa and Cool-Season Clovers1 A
    SS-AGR-173 Alfalfa and Cool-Season Clovers1 A. R. Blount and R. L. Stanley2 Cool-season legumes make the most of their growth in the observers and are environmentally acceptable as a source winter and spring when temperatures are too low for warm- of “natural,” slow-release nitrogen to reduce the potential of season forages to grow. Their growth is highly dependent nitrates in groundwater. on soil moisture, and therefore they can be grown in areas of the state where rainfall is sufficient to maintain good soil Alfalfa moisture—especially on soils with better-than-average soil Alfalfa (Medicago sativa) is popularly known as “the moisture-holding capacity or where irrigation is available queen of forages” and is often the forage by which all and affordable. Use of adapted cool-season legumes in a other forages are judged. It is an erect, upright-growing livestock enterprise can reduce the need for stored feed perennial with many leafy stems arising from large crowns during the winter months when warm-season forages are at the soil surface. Alfalfa (Figure 1) has a long taproot, dormant. Cool-season legumes are high in quality and making it drought tolerant, and it may grow as tall as 24–36 result in improved animal performance, including growth, inches. Although called a warm-season legume by some milk production, conception rate, weaning weight, and (top growth is killed by a freeze), it has been placed with weaning percentages. Legumes have the ability to “fix” the cool-season legumes because in Florida it is planted nitrogen, and those adapted to Florida can add from 50 to at the same time as other cool-season legumes, and its 200 lb per acre of nitrogen for use by grasses growing in best production occurs during the spring.
    [Show full text]
  • Horner-Mclaughlin Woods Compiled by Bev Walters, 2011-2012
    Horner-McLaughlin Woods Compiled by Bev Walters, 2011-2012 SCIENTIFIC NAME COMMON NAME Acer negundo BOX-ELDER Acer nigrum (A. saccharum) BLACK MAPLE Acer rubrum RED MAPLE Acer saccharinum SILVER MAPLE Acer saccharum SUGAR MAPLE Achillea millefolium YARROW Actaea pachypoda DOLL'S-EYES Adiantum pedatum MAIDENHAIR FERN Agrimonia gryposepala TALL AGRIMONY Agrimonia parviflora SWAMP AGRIMONY Agrimonia pubescens SOFT AGRIMONY AGROSTIS GIGANTEA REDTOP Agrostis perennans AUTUMN BENT Alisma subcordatum (A. plantago-aquatica) SOUTHERN WATER-PLANTAIN Alisma triviale (A. plantago-aquatica) NORTHERN WATER-PLANTAIN ALLIARIA PETIOLATA GARLIC MUSTARD Allium tricoccum WILD LEEK Ambrosia artemisiifolia COMMON RAGWEED Amelanchier arborea JUNEBERRY Amelanchier interior SERVICEBERRY Amphicarpaea bracteata HOG-PEANUT Anemone quinquefolia WOOD ANEMONE Anemone virginiana THIMBLEWEED Antennaria parlinii SMOOTH PUSSYTOES Apocynum androsaemifolium SPREADING DOGBANE ARCTIUM MINUS COMMON BURDOCK Arisaema triphyllum JACK-IN-THE-PULPIT Asarum canadense WILD-GINGER Asclepias exaltata POKE MILKWEED Asclepias incarnata SWAMP MILKWEED Asplenium platyneuron EBONY SPLEENWORT Athyrium filix-femina LADY FERN BERBERIS THUNBERGII JAPANESE BARBERRY Bidens cernua NODDING BEGGAR-TICKS Bidens comosa SWAMP TICKSEED Bidens connata PURPLE-STEMMED TICKSEED Bidens discoidea SWAMP BEGGAR-TICKS Bidens frondosa COMMON BEGGAR-TICKS Boehmeria cylindrica FALSE NETTLE Botrypus virginianus RATTLESNAKE FERN BROMUS INERMIS SMOOTH BROME Bromus pubescens CANADA BROME Calamagrostis canadensis BLUE-JOINT
    [Show full text]
  • Small Broomrape Orobanche Minor
    Small broomrape Other common names: none noted USDA symbol: ORMI Orobanche minor ODA rating: B Introduction: Small broomrape is one species in a large group of parasitic plants that attack a wide diversity of host species. Small broomrape is important because it attacks economically important legume crops. Broomrape seeds are like dust and easily contaminate seed lots that are shipped around the world. It is present in the Willamette Valley. Distribution: The first documented site in Oregon was in 1923 in Multnomah County. It can be found in several north Willamette Valley counties wherever clover seed crops are grown. Description: Annual; blooms within a week of plant emergence. Grows 6 to 12 inches tall. Like other parasitic plants, small broomrape lacks chlorophyll. The flower stalk is yellowish-brown, unbranched with a purplish tint. Leaves look like small triangular scales. Flowers pinkish, yellow or white in color and arranged in an elongated spike. Impacts: Upon germination, the first root attaches to and penetrates the root of the host plant, usually clover and other legumes, disrupting nutrients and water transport in the host root system. It has the ability to produce up to 500,000 seeds per plant that are dispersed by wind, tillage equipment, harvesters, commodity movement and animals. An uprooted flowering plant will continue to produce seed. Heavy infestations can cause severe crop damage that may result in nearly total crop failure. It is especially problematic in clover crops where the Orbanche seeds are hard to detect or remove during mechanical cleaning of harvested seed. Biological controls: None identified. Oregon Department of Agriculture Noxious Weed Control Program Photos by Tom Forney, ODA 635 Capitol Street NE Salem, OR 97301 503-986-4621 www.oregon.gov/ODA/programs/Weeds/Pages/Default.aspx Oct 2014 .
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • 1083 a Ground-Breaking Study Published 5 Years Ago Revealed That
    American Journal of Botany 100(6): 1083–1094. 2013. SPECIAL INVITED PAPER—EVOLUTION OF PLANT MATING SYSTEMS P OLLINATION AND MATING SYSTEMS OF APODANTHACEAE AND THE DISTRIBUTION OF REPRODUCTIVE TRAITS 1 IN PARASITIC ANGIOSPERMS S IDONIE B ELLOT 2 AND S USANNE S. RENNER 2 Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67 80638 Munich, Germany • Premise of the study: The most recent reviews of the reproductive biology and sexual systems of parasitic angiosperms were published 17 yr ago and reported that dioecy might be associated with parasitism. We use current knowledge on parasitic lineages and their sister groups, and data on the reproductive biology and sexual systems of Apodanthaceae, to readdress the question of possible trends in the reproductive biology of parasitic angiosperms. • Methods: Fieldwork in Zimbabwe and Iran produced data on the pollinators and sexual morph frequencies in two species of Apodanthaceae. Data on pollinators, dispersers, and sexual systems in parasites and their sister groups were compiled from the literature. • Key results: With the possible exception of some Viscaceae, most of the ca. 4500 parasitic angiosperms are animal-pollinated, and ca. 10% of parasites are dioecious, but the gain and loss of dioecy across angiosperms is too poorly known to infer a statisti- cal correlation. The studied Apodanthaceae are dioecious and pollinated by nectar- or pollen-foraging Calliphoridae and other fl ies. • Conclusions: Sister group comparisons so far do not reveal any reproductive traits that evolved (or were lost) concomitant with a parasitic life style, but the lack of wind pollination suggests that this pollen vector may be maladaptive in parasites, perhaps because of host foliage or fl owers borne close to the ground.
    [Show full text]
  • FORAGE LEGUMES Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa
    FORAGE LEGUMES Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa Craig C. Sheaffer Nancy J. Ehlke Kenneth A. Albrecht Jacob M. Jungers Minnesota Agricultural Jared J. Goplen Experiment Station Station Bulletin 608-2018 Forage Legumes Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa Craig C. Sheaffer Nancy J. Ehlke Kenneth A. Albrecht Jacob M. Jungers Jared J. Goplen Station Bulletin 608-2018 Minnesota Agricultural Experiment Station University of Minnesota Saint Paul, Minnesota The University of Minnesota shall provide equal access to and opportunity in its programs, facilities, and employment without regard to race, color, creed, religion, national origin, gender, age, marital status, disability, public assistance status, veteran status, sexual orientation, gender identity, or gender expression. Editors Craig Sheaffer, Nancy Ehlke, and Jacob Jungers are agronomists with the University of Minnesota Department of Agronomy and Plant Genetics in the College of Food, Agricultural and Natural Resource Sciences, Saint Paul, Minnesota. Jared Goplen is an Extension Educator in Crops for University of Minnesota Extension. Kenneth Albrecht is an agronomist with the University of Wisonsin’s Department of Agronomy. Acknowledgments This publication is a revision of Minnesota Agricultural Experiment Station Bulletin 597-1993, Forage Le- gumes, orginally issued in 1993 and then updated in 2003 and then again in 2018. The editors of this third edition gratefully acknowledge the contributions of the coauthors of the original publication: Harlan Ford, Neal Martin, Russell Mathison, David Rabas and Douglas Swanson. Publications editing, design and development for the Minnesota Agricultural Experiment Station is by Shelly Gustafson, experiment station communications specialist. Photos are by Dave Hansen or Don Breneman.
    [Show full text]
  • Sweet Clover Poisoning
    Beef Cattle Handbook BCH-3415 Product of Extension Beef Cattle Resource Committee Adapted from the Cattle Producer’s Library Sweet Clover Poisoning I. A. Schipper, Veterinarian, North Dakota State University Sweet clover poisoning is a problem of varying frequen- dicoumarin will interfere with the metabolism and syn- cy and intensity in livestock wherever sweet clover thesis of vitamin K. Vitamin K is essential to liver synthe- grows. The toxic compound produced in sweet clover sis of four components (prothrombin, and factors VII, IX, prevents normal blood clotting resulting in hemorrhages X) necessary to the prevention of seepage of blood from and associated symptoms. the circulatory system and to establish the clotting of The preliminary symptoms include stiffness, lame- blood expelled by injury or surgery. ness, dull attitude, and swellings beneath the skin Vitamin K1 is found in green plants such as alfalfa. (hematomas or blood clots) over all parts of the body, Vitamin K2 is formed by the microflora of the digestive but primarily at the hips, brisket, or neck. The mucous tract. These two sources are normally sufficient to pro- membranes may be pale—indicating that anemia exists. vide the requirements of cattle. Menadione (vitamin K3) Hemorrhage decreases the quantity of red blood cells is a synthetic compound that may be used as a feed available to transport oxygen to the body and carbon supplement or injectable product to counteract vitamin dioxide to the lungs. This results in varying degrees of K deficiency. respiratory stress, depending on the amount of red Not all moldy sweet clover is toxic, and the absence blood cell loss and physical exertion of the animal.
    [Show full text]
  • Study of Cuscuta Reflexa Roxb. with Reference to Host Diversity, Anatomy and Biochemistry
    Available online a t www.scholarsresearch library.com Scholars Research Library Central European Journal of Experimental Biology , 2014, 3 (2):6-12 (http://scholarsresearchlibrary.com/archive.html) ISSN: 2278–7364 Study of Cuscuta reflexa Roxb. with reference to host diversity, anatomy and biochemistry Sandip S. Nikam, Santosh B. Pawar and M. B. Kanade Post Graduate Research Center, Department of Botany, Tuljaram Chaturchand College, Baramati, Dist. Pune, Maharashtra, India _____________________________________________________________________________________________ ABSTRACT Surveys were conducted to find out the host plants of Cuscuta reflexa Roxb. from different localities of Baramati area of Pune District of Maharashtra, India. Host plants were examined for anatomical and biochemical studies. In a survey 29 species, representing 23 genera belong to 15 families were recorded as host plants of Cuscuta. Cuscuta haustorium penetration in host stem and size of the haustorium was specific to host and Cuscuta species. Each transverse section of host stem shows Cuscuta haustorium reached up to the secondary xylem. Polyphenol oxidase activity studied in healthy and infected stem of Bougainvilliea spectabilis, Ficus glomerata, Vitex negundo, Santalum album and Acalypha hispida. The common trend of enzyme activity is stimulatory in infected host plants. Protein content studied in healthy and infected host plants of Bougainvilliea spectabilis, Ficus glomerata, Vitex negundo, Santalum album and Acalypha hispida by C. reflexa Roxb. It is interesting to note that the protein content is markedly stimulated in all infected host plants. The maximum stimulation occurs in Bougainvilliea spectabilis, Vitex negundo, Santalum album and Acalypha hispida compared to Ficus glomerata. Key words : Cuscuta and host plants, anatomy, polyphenol oxidase, protein _____________________________________________________________________________________________ INTRODUCTION Cuscuta (Family - Convolvulaceae) is an obligate angiosperm parasitic climber found commonly throughout India.
    [Show full text]
  • Invisible Connections: Introduction to Parasitic Plants Dr
    Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium.
    [Show full text]
  • Plants of the Sacony Marsh and Trail, Kutztown, PA- Phase II
    Plants of the Sacony Creek Trail, Kutztown, PA – Phase I Wildflowers Anemone, Canada Anemone canadensis Aster, Crooked Stem Aster prenanthoides Aster, False Boltonia asteroids Aster, New England Aster novae angliae Aster, White Wood Aster divaricatus Avens, White Geum canadense Beardtongue, Foxglove Penstemon digitalis Beardtongue, Small’s Penstemon smallii Bee Balm Monarda didyma Bee Balm, Spotted Monarda punctata Bergamot, Wild Monarda fistulosa Bishop’s Cap Mitella diphylla Bitter Cress, Pennsylvania Cardamine pensylvanica Bittersweet, Oriental Celastrus orbiculatus Blazing Star Liatris spicata Bleeding Heart Dicentra spectabilis Bleeding Heart, Fringed Dicentra eximia Bloodroot Sanguinara Canadensis Blue-Eyed Grass Sisyrinchium montanum Blue-Eyed Grass, Eastern Sisyrinchium atlanticum Boneset Eupatorium perfoliatum Buttercup, Hispid Ranunculus hispidus Buttercup, Hispid Ranunculus hispidus Camas, Eastern Camassia scilloides Campion, Starry Silene stellata Cardinal Flower Lobelia cardinalis Carolina pea shrub Thermopsis caroliniani Carrion flower Smilax herbacea Carrot, Wild Daucus carota Chickweed Stellaria media Cleavers Galium aparine Clover, Least Hop rifolium dubium Clover, White Trifolium repens Clover, White Trifolium repens Cohosh, Black Cimicifuga racemosa Columbine, Eastern Aquilegia canadensis Coneflower, Green-Headed Rudbeckia laciniata Coneflower, Thin-Leaf Rudbeckia triloba Coreopsis, Tall Coreopsis tripteris Crowfoot, Bristly Ranunculus pensylvanicus Culver’s Root Veronicastrum virginicum Cup Plant Silphium perfoliatum
    [Show full text]