agronomy Article Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48 Gaber Attia Abo-Zaid 1 , Saleh Mohamed Matar 1,2 and Ahmed Abdelkhalek 3,* 1 Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
[email protected] (G.A.A.-Z.);
[email protected] (S.M.M.) 2 Chemical Engineering Department, Faculty of Engineering, Jazan University, Jazan 45142, Saudi Arabia 3 Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab city, Alexandria 21934, Egypt * Correspondence:
[email protected] Received: 8 September 2020; Accepted: 19 October 2020; Published: 22 October 2020 Abstract: Viral plant diseases represent a serious problem in agricultural production, causing large shortages in the production of food crops. Eco-friendly approaches are used in controlling viral plant infections, such as biocontrol agents. In the current study, Streptomyces cellulosae isolate Actino 48 is tested as a biocontrol agent for the management of tobacco mosaic virus (TMV) and inducing tomato plant systemic resistance under greenhouse conditions. Foliar application of a cell pellet suspension of Actino 48 (2 107 cfu. mL 1) is performed at 48 h before inoculation with TMV. Peroxidase activity, × − chitinase activity, protein content, and the total phenolic compounds are measured in tomato leaves at 21 dpi. On the other hand, the TMV accumulation level and the transcriptional changes of five tomato defense-related genes (PAL, PR-1, CHS, PR-3, and PR-2) are studied.