The Occurrence of the Viruses in Narcissus L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Induction of Plant Resistance Against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces Cellulosae Isolate Actino 48
agronomy Article Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48 Gaber Attia Abo-Zaid 1 , Saleh Mohamed Matar 1,2 and Ahmed Abdelkhalek 3,* 1 Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; [email protected] (G.A.A.-Z.); [email protected] (S.M.M.) 2 Chemical Engineering Department, Faculty of Engineering, Jazan University, Jazan 45142, Saudi Arabia 3 Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab city, Alexandria 21934, Egypt * Correspondence: [email protected] Received: 8 September 2020; Accepted: 19 October 2020; Published: 22 October 2020 Abstract: Viral plant diseases represent a serious problem in agricultural production, causing large shortages in the production of food crops. Eco-friendly approaches are used in controlling viral plant infections, such as biocontrol agents. In the current study, Streptomyces cellulosae isolate Actino 48 is tested as a biocontrol agent for the management of tobacco mosaic virus (TMV) and inducing tomato plant systemic resistance under greenhouse conditions. Foliar application of a cell pellet suspension of Actino 48 (2 107 cfu. mL 1) is performed at 48 h before inoculation with TMV. Peroxidase activity, × − chitinase activity, protein content, and the total phenolic compounds are measured in tomato leaves at 21 dpi. On the other hand, the TMV accumulation level and the transcriptional changes of five tomato defense-related genes (PAL, PR-1, CHS, PR-3, and PR-2) are studied. -
Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs. -
Cucumber Mosaic Kymberly R
XHT1255 Provided to you by: Cucumber Mosaic Kymberly R. Draeger*, UW-Madison Plant Pathology What is cucumber mosaic? Cucumber mosaic is a viral disease of worldwide distribution that affects over 1200 plant species. Hosts include a wide range of fruits, vegetables, herbaceous and woody ornamentals, and weeds. The disease has perhaps its biggest impact in vegetable production where it can cause significant losses in yield and vegetable quality. arden Facts Cumber mosaic on pepper (left) showing yellowing and ring spots, and on broad bean (right) showing mosaic and puckering of leaf tissue. (Photos courtesy of Russ Groves) What does cucumber mosaic look like? Symptoms of cucumber mosaic can vary widely depending on host species, host variety, and time of infection. Typical symptoms include stunting of entire plants, mosaic or mottling (i.e., blotchy white, yellow, and light green areas) and ring spots (i.e., ring-like areas of discolored tissue) on leaves and fruits, and a variety of growth distortions such as cupping, puckering and strapping (i.e., elongation and thinning) of leaves as well as warts on fruits. In extreme situations, parts of an affected plant or even an entire plant may die from the disease. Where does cucumber mosaic come from? Cucumber mosaic is caused by Cucumber mosaic virus (CMV) which can overwinter in susceptible biennial or perennial weeds, as well as in perennial agricultural crops (e.g., alfalfa) and perennial herbaceous and woody ornamentals. Seeds and even pollen from certain host plants can carry the virus, and thus the virus can be spread via these plant parts. -
Comparison of Plant‐Adapted Rhabdovirus Protein Localization and Interactions
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Kathleen Marie Martin University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Martin, Kathleen Marie, "COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS" (2011). University of Kentucky Doctoral Dissertations. 172. https://uknowledge.uky.edu/gradschool_diss/172 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kathleen Marie Martin The Graduate School University of Kentucky 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Kathleen Marie Martin Lexington, Kentucky Director: Dr. Michael M Goodin, Associate Professor of Plant Pathology Lexington, Kentucky 2011 Copyright © Kathleen Marie Martin 2011 ABSTRACT OF DISSERTATION COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Sonchus yellow net virus (SYNV), Potato yellow dwarf virus (PYDV) and Lettuce Necrotic yellows virus (LNYV) are members of the Rhabdoviridae family that infect plants. SYNV and PYDV are Nucleorhabdoviruses that replicate in the nuclei of infected cells and LNYV is a Cytorhabdovirus that replicates in the cytoplasm. LNYV and SYNV share a similar genome organization with a gene order of Nucleoprotein (N), Phosphoprotein (P), putative movement protein (Mv), Matrix protein (M), Glycoprotein (G) and Polymerase protein (L). -
Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts∗
ANRV363-EN54-23 ARI 23 October 2008 14:4 Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts∗ El-Desouky Ammar,1 Chi-Wei Tsai,3 Anna E. Whitfield,4 Margaret G. Redinbaugh,2 and Saskia A. Hogenhout5 1Department of Entomology, 2USDA-ARS, Department of Plant Pathology, The Ohio State University-OARDC, Wooster, Ohio 44691; email: [email protected], [email protected] 3Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720; email: [email protected] 4Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506; email: [email protected] 5Department of Disease and Stress Biology, The John Innes Centre, Norwich, NR4 7UH, United Kingdom; email: [email protected] Annu. Rev. Entomol. 2009. 54:447–68 Key Words First published online as a Review in Advance on Cytorhabdovirus, Nucleorhabdovirus, insect vectors, virus-host September 15, 2008 interactions, transmission barriers, propagative transmission The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges 10.1146/annurev.ento.54.110807.090454 include humans, other vertebrates, invertebrates, and plants. There are Copyright c 2009 by Annual Reviews. at least 90 plant-infecting rhabdoviruses, several of which are economi- by U.S. Department of Agriculture on 12/31/08. For personal use only. All rights reserved cally important pathogens of various crops. All definitive plant-infecting 0066-4170/09/0107-0447$20.00 and many vertebrate-infecting rhabdoviruses are persistently transmit- Annu. Rev. Entomol. 2009.54:447-468. -
Synthesis of Potato Virus X Rnas by Membrane- Containing Extracts
JOURNAL OF VIROLOGY, July 1996, p. 4795–4799 Vol. 70, No. 7 0022-538X/96/$04.0010 Copyright q 1996, American Society for Microbiology Synthesis of Potato Virus X RNAs by Membrane- Containing Extracts SERGEY V. DORONIN AND CYNTHIA HEMENWAY* Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622 Received 16 October 1995/Accepted 30 March 1996 Membrane-containing extracts isolated from tobacco plants infected with the plus-strand RNA virus, potato virus X (PVX), supported synthesis of four major, high-molecular-weight PVX RNA products (R1 to R4). Nuclease digestion and hybridization studies indicated that R1 and R2 are a mixture of partially single- stranded replicative intermediates and double-stranded replicative forms. R3 and R4 are double-stranded products containing sequences typical of the two major PVX subgenomic RNAs. The newly synthesized RNAs were demonstrated to have predominantly plus-strand polarity. Synthesis of these products was remarkably stable in the presence of ionic detergents. Potato virus X (PVX), the type member of the Potexvirus tracts were derived from Nicotiana tabacum leaves at 7 days genus, is a flexuous rod-shaped particle containing a single, postinoculation by a procedure similar to that described by genomic RNA of 6.4 kb that is capped and polyadenylated (21, Lurie and Hendrix (15). Inoculated and upper leaves (50 g) 27). Of the five open reading frames (ORFs), the first encodes were homogenized in 150 ml of buffer I (50 mM Tris-HCl [pH a 165-kDa protein (P1) that has homology to other known 7.5], 250 mM sucrose, 5 mM MgCl2, 1 mM EDTA, 10 mM RNA-dependent RNA polymerase (RdRp) proteins (23). -
Virus Diseases of Trees and Shrubs
VirusDiseases of Treesand Shrubs Instituteof TerrestrialEcology NaturalEnvironment Research Council á Natural Environment Research Council Institute of Terrestrial Ecology Virus Diseases of Trees and Shrubs J.1. Cooper Institute of Terrestrial Ecology cfo Unit of Invertebrate Virology OXFORD Printed in Great Britain by Cambrian News Aberystwyth C Copyright 1979 Published in 1979 by Institute of Terrestrial Ecology 68 Hills Road Cambridge CB2 ILA ISBN 0-904282-28-7 The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to and draws upon the collective knowledge of the fourteen sister institutes \Which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. Nearly half of ITE's work is research commissioned by customers, such as the Nature Con- servancy Council who require information for wildlife conservation, the Forestry Commission and the Department of the Environment. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organisations in overseas projects and programmes of research. The photograph on the front cover is of Red Flowering Horse Chestnut (Aesculus carnea Hayne). -
Cucumber Mosaic Virus in Hawai‘I
Plant Disease August 2014 PD-101 Cucumber Mosaic Virus in Hawai‘i Mark Dragich, Michael Melzer, and Scot Nelson Department of Plant Protection and Environmental Protection Sciences ucumber mosaic virus (CMV) is Pathogen one of the most widespread and The pathogen causing cucumber troublesomeC viruses infecting culti- mosaic disease(s) is Cucumber mo- vated plants worldwide. The diseases saic cucumovirus (Roossinck 2002), caused by CMV present a variety of although it is also known by other global management problems in a names, including Cucumber virus 1, wide range of agricultural and ecologi- Cucumis virus 1, Marmor cucumeris, cal settings. The elevated magnitude Spinach blight virus, and Tomato fern of risk posed by CMV is due to its leaf virus (Ferreira et al. 1992). This broad host range and high number of plant pathogen is a single-stranded arthropod vectors. RNA virus having three single strands Plant diseases caused by CMV of RNA per virus particle (Ferreira occur globally. Doolittle and Jagger et al. 1992). CMV belongs to the first reported the characteristic mosaic genus Cucumovirus of the virus symptoms caused by the virus in 1916 family Bromoviridae. There are nu- on cucumber. The pandemic distribu- merous strains of CMV that vary in tion of cucumber mosaic, coupled with their pathogenicity and virulence, as the fact that it typically causes 10–20% well as others having different RNA yield loss where it occurs (although it Mosaic symptoms associated with satellite virus particles that modify can cause 100% losses in cucurbits) Cucumber mosaic virus on a nau- pathogen virulence and plant disease makes it an agricultural disease of paka leaf. -
Alternanthera Mosaic Potexvirus in Scutellaria1 Carlye A
Plant Pathology Circular No. 409 (396 revised) Florida Department of Agriculture and Consumer Services January 2013 Division of Plant Industry FDACS-P-01861 Alternanthera Mosaic Potexvirus in Scutellaria1 Carlye A. Baker2, and Lisa Williams2 INTRODUCTION: Skullcap, Scutellaria species. L. is a member of the mint family, Labiatae. It is represented by more than 300 species of perennial herbs distributed worldwide (Bailey and Bailey 1978). Skullcap grows wild or is naturalized as ornamentals and medicinal herbs. Fuschia skullcap is a Costa Rican variety with long, trailing stems, glossy foliage and clusters of fuschia-colored flowers. SYMPTOMS: Vegetative propagations of fuschia skullcap grown in a Central Florida nursery located in Manatee County showed symptoms of viral infec- tion in the fall of 1998, including foliar mottle and chlorotic to necrotic ring- spots and wavy-line patterns (Fig. 1). SURVEY AND DETECTION: Symptomatic leaves were collected and ex- amined by electron microscopy. Flexuous virus-like particles, approximately 500 nm long, like those associated with potexvirus infections, were observed. Subsequent enzyme-linked immunosorbent assay (ELISA) for a potexvirus known to occur in Florida, resulted in a positive reaction to papaya mosaic virus (PapMV) antiserum. However, further tests indicated that while this virus was related to PapMV, it was not PapMV. Sequencing data showed that the virus was actually Alternanthera mosaic virus (Baker et al. 2006). VIRUS DISTRIBUTION: In 1999, a Potexvirus closely related to PapMY was found in Queensland, Australia. It was isolated from Altrernanthera pugens (Amaranthaceae), a weed found in both the Southern U.S. and Australia. Despite its apparent relationship with PapMV using serology, sequencing Fig. -
Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture. -
United States Patent (19) 11 Patent Number: 5,677,124 Dubois Et Al
USOO.5677124A United States Patent (19) 11 Patent Number: 5,677,124 DuBois et al. 45) Date of Patent: Oct. 14, 1997 54 RBONUCLEASE RESISTANT WIRAL RNA Gal-On et al., "Nucleotide Sequence of the ZucchiniYellow STANDARDS Mosaic Virus Capsid-Encoding Gene and its Expression in Escherichia coli,' Gene 87:273-277, 1990. 75) Inventors: Dwight B. DuBois; Matthew M. Gallie et al., “In Vivo Uncoating and Efficient Expression of Winkler; Brittan L. Pasloske, all of Foreign mRNAS Packaged in TMV-Like Particles,” Sci Austin, Tex. ence, 236:1122-1124, 1987. Gallie et al., "The Effect of Multiple Dispersed Copies of the 73). Assignees: Ambion, Inc.; Cemetron Diagnostics Origin-of-Assembly Sequence From TMV RNA on the LLC, both of Austin, Tex. Morphology of Pseudovirus Particles Assembled In Vitro,” Virology, 158:473–476, 1987. 21 Appl. No.: 675,153 Gibbs, "Tobamovirus Group.” C.M.I.A.A.B. Descriptions of Fed: Jul. 3, 1996 Plant Viruses, No. 184, Commonwealth Bureaux and the 22 Association of Applied Biologists, Sep. 1977. 51 Int. Cl. ... C20O 1/70; C12M 1/24; Goelet et al., “Nucleotide Sequence of Tobacco Mosaic C12N 7/01; C12P 19/34 Virus RNA,” Proc. Nati, Acad. Sci. USA, 79:5818-5922, 52 U.S. Cl. ......................... 435/5; 435/69.1; 435/235.1; 1982. 435/240.1; 435/287.2: 435/288.1; 536/23.1 Goulden et al., "Structure of Tobraviral Particles: A Model 58 Field of Search .............................. 435/5, 69.1, 91.1, Suggested From Sequence Conservation in Tobraviral and 435/235.1, 320.1, 287.2, 88.1; 536/23. -
Co-Existence of Chlorosis Inducing Strain of Cucumber Mosaic Virus
www.nature.com/scientificreports OPEN Co‑existence of chlorosis inducing strain of Cucumber mosaic virus with tospoviruses on hot pepper (Capsicum annuum) in India J. Vinodhini, L. Rajendran, R. Abirami & G. Karthikeyan* Cucumo‑ and tospoviruses are the most destructive viruses infecting hot pepper (chilli). A diagnostic survey was conducted to assess the prevalence of cucumo and tospoviruses in chilli growing tracts of Tamil Nadu. Infected plants showing mosaic with chlorotic and necrotic rings, veinal necrosis, mosaic mottling, leaf fliformity and malformation were collected. Molecular indexing carried out through reverse transcription polymerase chain reaction (RT‑PCR) with coat protein gene specifc primer of Cucumber mosaic virus (CMV) and tospovirus degenerate primer corresponding to the L segment (RdRp). Ostensibly, amplifcations were observed for both CMV and tospoviruses as sole as well for mixed infections. The sequence analysis indicated that the Capsicum chlorosis virus (CaCV) and Groundnut bud necrosis virus (GBNV) to be involved with CMV in causing combined infections. The co‑infection of CMV with CaCV was detected in 10.41% of the symptomatic plant samples and combined infection of CMV with GBNV was recorded in around 6.25% of the symptomatic plants surveyed. The amino acid substitution of Ser129 over conserved Pro129 in coat protein of CMV implies that CMV strain involved in mixed infection as chlorosis inducing strain. Further, the electron microscopy of symptomatic plant samples explicated the presence of isometric particles of CMV and quasi spherical particles of tospoviruses. This is the frst molecular evidence for the natural co‑existence of chlorosis inducing CMV strain with CaCV and GBNV on hot pepper in India.