Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts∗

Total Page:16

File Type:pdf, Size:1020Kb

Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts∗ ANRV363-EN54-23 ARI 23 October 2008 14:4 Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts∗ El-Desouky Ammar,1 Chi-Wei Tsai,3 Anna E. Whitfield,4 Margaret G. Redinbaugh,2 and Saskia A. Hogenhout5 1Department of Entomology, 2USDA-ARS, Department of Plant Pathology, The Ohio State University-OARDC, Wooster, Ohio 44691; email: [email protected], [email protected] 3Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720; email: [email protected] 4Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506; email: [email protected] 5Department of Disease and Stress Biology, The John Innes Centre, Norwich, NR4 7UH, United Kingdom; email: [email protected] Annu. Rev. Entomol. 2009. 54:447–68 Key Words First published online as a Review in Advance on Cytorhabdovirus, Nucleorhabdovirus, insect vectors, virus-host September 15, 2008 interactions, transmission barriers, propagative transmission The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges 10.1146/annurev.ento.54.110807.090454 include humans, other vertebrates, invertebrates, and plants. There are Copyright c 2009 by Annual Reviews. at least 90 plant-infecting rhabdoviruses, several of which are economi- by U.S. Department of Agriculture on 12/31/08. For personal use only. All rights reserved cally important pathogens of various crops. All definitive plant-infecting 0066-4170/09/0107-0447$20.00 and many vertebrate-infecting rhabdoviruses are persistently transmit- Annu. Rev. Entomol. 2009.54:447-468. Downloaded from arjournals.annualreviews.org ∗The U.S. Government has the right to retain a ted by insect vectors, and a few putative plant rhabdoviruses are trans- nonexclusive, royalty-free license in and to any mitted by mites. Plant rhabdoviruses replicate in their plant and arthro- copyright covering this paper. pod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these in- teractions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions. 447 ANRV363-EN54-23 ARI 23 October 2008 14:4 INTRODUCTION sociated with Maize mosaic virus (MMV), Lettuce necrotic yellows virus (LNYV), Strawberry crinkle Rhabdoviruses (Rhabdoviridae) are membrane- virus (SCV), and Orchid fleck virus (OFV) (44, SiV: Sigma virus bound, negative-sense RNA viruses that infect 71), among others. vastly divergent hosts. More than 160 species RV: Rabies virus Plant rhabdoviruses require insect or mite of rhabdoviruses have been described, many of OFV: Orchid fleck virus vectors for their transmission and spread in na- which are a threat to human, animal, or plant Persistent: describes ture; these viruses are not seed transmitted, and health (29, 43, 44). The family Rhabdoviridae viruses for which most are not easily transmitted mechanically to includes six genera (29), with members of each inoculativity by the their host plants (37, 44). The definitive plant vector is retained for genus infecting one or two groups of organ- rhabdoviruses with known vectors (Table 1) long periods (days to isms. Phylogenetic analysis of rhabdoviruses are transmitted by hemipteran insects, namely weeks) often based on the most conserved polymerase (L) throughout the aphids (Aphididae), leafhoppers (Cicadellidae), gene indicates that the plant-infecting genera, vector’s life span and is or delphacid planthoppers (Delphacidae) in a Nucleorhabdovirus and Cytorhabdovirus, cluster retained after molting persistent-propagative mode: Following virus together and infect plants and vector insects, Propagative: acquisition from diseased plants, a latent period whereas the genera Lyssavirus, Ephemerovirus, describes viruses that ensues (for a few days to a few weeks) during invade and replicate in and Vesiculovirus group together and in- which the virus replicates in the vector, which various tissues of their fect mainly vertebrate animals (Supplemental later becomes inoculative with virus for most vectors Figure 1; follow the Supplemental Material of its remaining life span (8, 38, 44, 91). Some Transovarial: link from the Annual Reviews home page at putative plant rhabdoviruses have other arthro- describes transmission http://www.annualreviews.org). The last two of viruses from female pod vectors: is transmitted genera were assigned to the dimarhabdovirus Beet leaf curl virus parent to offspring by a heteropteran bug ( ), and (dipteran-mammal associated rhabdovirus) su- Piesma quadratum through the ovaries OFV, and pergroup because they cluster separately from Citrus leprosis virus, Coffee ringspot are transmitted by spp. mites the lyssaviruses and are transmitted to their ver- virus Brevipalpus (Acarina) (16, 43). Mite-vectored rhabdoviruses tebrate hosts by hematophagous dipteran in- are similarly transmitted in a persistent, possi- sects. The L gene sequence is not yet avail- bly propagative, mode by their vectors (77). A able for the Drosophila-infecting rhabdovirus, few plant rhabdoviruses are transmitted verti- Sigma virus (SiV). However, on the basis of cally, i.e., transovarially from infected female phylogenetic relationships of other less con- vectors to their progeny, normally at a low rate served genes, SiV appears to be closest to the (91). dimarhabdoviruses, and although the branches Plant and animal (vertebrate-infecting) are not well supported (29), this is consistent rhabdoviruses share several characteristic fea- with SiV biological characteristics because it by U.S. Department of Agriculture on 12/31/08. For personal use only. tures. Their genomes have similar organiza- also has a dipteran host. The genus Novirhab- tions (29) (Supplemental Figure 2), they both dovirus forms a separate cluster, the members of replicate in and invade the nervous system of Annu. Rev. Entomol. 2009.54:447-468. Downloaded from arjournals.annualreviews.org which infect only aquatic animals. their insect hosts (6, 38, 44, 91), and rhab- Rhabdoviruses can negatively affect humans dovirus gene function is generally conserved and wild animals and reduce yields in live- among different viruses (29). Furthermore, the stock and crop production systems. For ex- vesiculovirus Vesicularstomatitis virus (VSV) was ample, Rabies virus (RV) kills approximately reported to replicate in the planthopper vector 55,000 people each year, mostly in poor areas of MMV (50) as well as in grasshoppers, with the of Africa and Asia (10), whereas vesiculoviruses latter possibly playing a role in VSV epidemi- and ephemeroviruses can cause severe produc- ology in nature (66). The invertebrates might tion losses in the livestock industry (29, 66). In be viewed as the key to evolution and diversity addition, at least 90 confirmed or tentative plant of the rhabdoviruses, as suggested by Sylvester rhabdoviruses infect mono- and dicotyledonous & Richardson (91), because they constitute a plants (43, 44). Serious yield losses have been as- 448 Ammar et al. ANRV363-EN54-23 ARI 23 October 2008 14:4 Table 1 Plant-infecting rhabdoviruses assigned to the Cytorhabdovirus and Nucleorhabdovirus genera and their plant hosts and insect vectorsa Virus species Acronyme Plant host Vector family Vector genera/spp. Genus: Cytorhabdovirus Barley yellow striate mosaic virus BYSMV Monocot Delphacidae Laodelphax striatellus Broccoli necrotic yellows virus BNYV Dicotd Aphididae Brevicoryne brassicae Northern cereal mosaic virus NCMV Monocot Delphacidae Laodelphax, Muellrianella, Ribautodelphax, Unkanodes Festuca leaf streak virus FLSV Monocot – – Lettuce necrotic yellows virus LNYV Dicotd Aphididae Hyperomyzus lactucae Lettuce yellow mottle virus LYMV Dicotd – – Sonchus virus SonV Dicotd – – Strawberry crinkle virus SCV Dicotd Aphididae Chaetosiphon spp. Wheat American striate mosaic virus WASMV Monocot Cicadellidae Elymana virescens, Endria inimica Genus: Nucleorhabdovirus Cereal chlorotic mottle virus CCMoV Monocot Cicadellidae Nesoclutha, Cicadulina Datura yellow vein virus DYVV Dicot – – Eggplant mottled dwarf virusb EMDV Dicotd Cicadellidae Agallia vorobjevi Maize fine streak virus MFSV Monocot Cicadellidae Graminella nigrifrons Maize mosaic virus MMV Monocot Delphacidae Peregrinus maidis Potato yellow dwarf virus PYDV Dicotd Cicadellidae Agallia constricta, A. quadripunctata, Aceratagallia sanguinolenta Rice yellow stunt virusc RYSV Monocot Cicadellidae Nephotettix spp. Sonchus yellow net virus SYNV Dicotd Aphididae Aphis coreopsis Sowthistle yellow vein virus SYVV Dicot Aphididae Hyperomyzus lactucae Taro vein chlorosis virus TaVCV Monocot – – aModified from References 8, 44, 71, 91, with added references for LYMV (36), EMDV (9), and TaVCV (74). bEMDV has two synonyms: Pittosporum vein yellowing virus and Tomato vein clearing virus (TVCV). cRYSV has one synonym: Rice transitory yellowing virus (RTYV). dThese viruses can be mechanically transmitted to their plant hosts (61). eAcronyms in this table are used for plant rhabdoviruses throughout the text. –,
Recommended publications
  • 15 Foottit:15 Foottit
    REDIA, XCII, 2009: 87-91 ROBERT G. FOOTTIT (*) - H. ERIC L. MAW (*) - KEITH S. PIKE (**) DNA BARCODES TO EXPLORE DIVERSITY IN APHIDS (HEMIPTERA APHIDIDAE AND ADELGIDAE) (*) Canadian National Collection of Insects, National Environmental Health Program, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada;[email protected] (**) Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Road, Prosser, WA 99350, U.S.A Foottit R.G., Maw H.E.L., Pike K.S. – DNA barcodes to explore diversity in aphids (Hemiptera Aphididae and Adelgidae). A tendency towards loss of taxonomically useful characters, and morphological plasticity due to host and environmental factors, complicates the identification of aphid species and the analysis of relationships. The presence of different morphological forms of a single species on different hosts and at different times of the year makes it difficult to consistently associate routinely collected field samples with particular species definitions. DNA barcoding has been proposed as a standardized approach to the characterization of life forms. We have tested the effectiveness of the standard 658-bp barcode fragment from the 5’ end of the mitochondrial cytochrome c oxidase 1 gene (COI) to differentiate among species of aphids and adelgids. Results are presented for a preliminary study on the application of DNA barcoding in which approximately 3600 specimens representing 568 species and 169 genera of the major subfamilies of aphids and the adelgids have been sequenced. Examples are provided where DNA barcoding has been used as a tool in recognizing the existence of cryptic new taxa, linking life stages on different hosts of adelgids, and as an aid in the delineation of species boundaries.
    [Show full text]
  • The Viruses of Vervet Monkeys and of Baboons in South Africa
    THE VIRUSES OF VERVET MONKEYS AND OF BABOONS IN SOUTH AFRICA Hubert Henri Malherbe A Thesis Submitted to the Faculty of Medicine University of the Witwatersrand, Johannesburg for the Degree of Doctor of Medicine Johannesburg 1974 11 ABSTRACT In this thesis are presented briefly the results of studies extending over the period 1955 to 1974. The use of vervet monkeys in South Africa for the production and testing of poliomyelitis vaccine made acquaintance with their viruses inevitable; and the subsequent introduction of the baboon as a laboratory animal of major importance also necessitates a knowledge of its viral flora. Since 1934 when Sabin and Wright described the B Virus which was recovered from a fatal human infection contracted as the result of a macaque monkey bite, numerous viral agents have been isolated from monkeys and baboons. In the United States of America, Dr. Robert N. Hull initiated the classification of simian viruses in an SV (for Simian Virus) series according to cytopathic effects as seen in unstained infected tissue cultures. In South Africa, viruses recovered from monkeys and baboons were designated numerically in an SA (for Simian Agent) series on the basis of cytopathic changes seen in stained preparations of infected cells. Integration of these two series is in progress. Simian viruses in South Africa have been recovered mainly through the inoculation of tissue cultures with material obtained by means of throat and rectal swabs, and also through the unmasking of latent agents present in kidney cells prepared as tissue cultures. Some evidence concerning viral activity has been derived from serological tests.
    [Show full text]
  • RNA-Dependent RNA Polymerase Consensus Sequence of the L-A Double-Stranded RNA Virus: Definition of Essential Domains
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 2185-2189, March 1992 Biochemistry RNA-dependent RNA polymerase consensus sequence of the L-A double-stranded RNA virus: Definition of essential domains JUAN CARLOS RIBAS AND REED B. WICKNER Section on the Genetics of Simple Eukaryotes, Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 207, National Institutes of Health, Bethesda, MD 20892 Communicated by Herbert Tabor, November 27, 1991 (received for review October 2, 1991) ABSTRACT The L-A double-stranded RNA virus of Sac- lacking M1 (reviewed in refs. 10 and 18). M1 depends on L-A charomyces cerevisiac makes a gag-pol fusion protein by a -1 for its coat and replication proteins (19). MAK10 is one of ribosomal frameshift. The pol amino acid sequence includes three chromosomal genes needed for L-A virus propagation consensus patterns typical of the RNA-dependent RNA poly- within yeast cells (20). In a maklO host, L-A proteins merases (EC 2.7.7.48) of (+) strand and double-stranded RNA expressed from a cDNA clone of L-A support the replication viruses of animals and plants. We have carried out "alanine- of the M1 satellite virus but (for unknown reasons) do not scanning mutagenesis" of the region of L-A including the two support propagation of the L-A virus itself (21). Thus, while most conserved polymerase motifs, SG...T...NT..N (. = any L-A requires the MAK10 product itself, M1 requires MAK10 amino acid) and GDD. By constructing and analyzing 46 only because it requires the L-A-encoded proteins.
    [Show full text]
  • Symptoms and Yield Loss Caused by Rice Stripe Mosaic Virus Siping Chen, Weilin Li, Xiuqin Huang, Biao Chen, Tong Zhang and Guohui Zhou*
    Chen et al. Virology Journal (2019) 16:145 https://doi.org/10.1186/s12985-019-1240-7 RESEARCH Open Access Symptoms and yield loss caused by rice stripe mosaic virus Siping Chen, Weilin Li, Xiuqin Huang, Biao Chen, Tong Zhang and Guohui Zhou* Abstract Background: Rice stripe mosaic virus (RSMV) is a tentative new Cytorhabdovirus species in family Rhabdoviridae transmitted by the leafhopper Recilia dorsalis. Although the virus was first detected in southern China in 2015, few studies have investigated rice symptoms and yield losses caused by RSMV infection. Methods: In this study, we observed and systematically compared symptoms of three virally infected, representative varieties of indica,hybridandjaponica rice and determined the yield parameters of the artificially inoculated plants. Results: The three RSMV-infected cultivated rice varieties exhibited slight dwarfing, striped mosaicism, stiff, crinkled or even twisted leaves, an increased number of tillers, delayed heading, cluster-shaped shortening of panicles and mostly unfilled grains. Slight differences in symptom occurrence time were observed under different environmental conditions. For example, mosaic symptoms appeared earlier and crinkling symptoms appeared later, with both symptoms later receding in some infected plants. Yield losses due to RSMV also differed among varieties. The most serious yield reduction was experienced by indica rice (cv. Meixiangzhan), followed by hybrid indica rice (cv. Wuyou 1179) and then japonica (cv. Nipponbare). Single panicle weight, seed setting rate and 1000-kernel weight were reduced in the three infected varieties compared with healthy plants—by 85.42, 94.85 and 31.56% in Meixiangzhan; 52.43, 53.06 and 25.65% in Wuyou 1179 and 25.53, 49.32 and 23.86% in Nipponbare, respectively.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 112 I960 Number 3431 LACE-BUG GENERA OF THE WORLD (HEMIPTERA: TINGIDAE) « By Carl J. Drake and Florence A. Ruhoff Introduction A treatise of the generic names of the family Tingidae from a global standpoint embodies problems similar to those frequently encountered in corresponding studies in other animal groups. The more im- portant criteria, including such basic desiderata as fixation of type species, synonyms, priority, and dates of technical publications implicate questions concomitant with recent trends toward the clarification and stabilization of zoological nomenclature. Zoogeography, predicated and authenticated on the generic level by the distribution of genera and species, is portrayed here by means of tables, charts, and maps of the tingifauna of the world. This visual pattern of distribution helps one to form a more vivid concept of the family and its hierarchic levels of subfamilies and genera. To a limited extent the data indicate distributional concentrations and probable centers of evolution and dispersal paths of genera. The phylogenetic relationship of genera is not discussed. The present treatise recognizes 216 genera (plus 79 synonyms, homonyms, and emendations) of the Tingidae of the world and gives 1 Research for this paper was supported In part by the National Science Foundation, grant No. 4095. 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 112 the figure of 1,767 as the approximate number of species now recog- nized. These figures, collated with similar categories in Lethierry and Severin (1896), show that there has been an increase of many genera and hundreds of species of Tingidae during the past three- quarters of a century.
    [Show full text]
  • Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
    www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs.
    [Show full text]
  • The Occurrence of the Viruses in Narcissus L
    Journal of Horticultural Research 2016, vol. 24(2): 19-24 DOI: 10.1515/johr-2016-0016 _______________________________________________________________________________________________________ THE FREQUENCY OF VIRAL INFECTIONS ON TWO NARCISSUS PLANTATIONS IN CENTRAL POLAND Short communication Dariusz SOCHACKI1*, Ewa CHOJNOWSKA2 1Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-767 Warsaw, Poland 2Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice Received: November 2016; Accepted: December 2016 ABSTRACT Viral diseases in narcissus can drastically affect yields and quality of narcissus bulbs and flowers, leading even to a total crop loss. To test the frequency of viral infections in production fields in Central Poland, samples were collected over three years from two cultivars and two plantations, and tested for the presence of Arabis mosaic (ArMV), Cucumber mosaic (CMV), Narcissus latent (NLV), Narcissus mosaic (NMV) and the potyvirus group using the Enzyme Linked ImmunoSorbent Assay. Potyviruses, NLV and NMV were detected in almost all leaf samples in both cultivars, in all three years of testing. Other viruses were detected in a limited number of samples. In most cases mixed infections were present. Tests on bulbs have shown the presence of potyviruses and NMV, with the higher number of positives in cultivar ‘Carlton’. In addition, for most viruses an increase in their detectability was observed on both plantations in subse- quent seasons. Key words: ELISA, flower bulbs, negative selection, viral disease INTRODUCTION (NMV). Many of the most important viruses infect- ing narcissus belongs to the potyvirus group. Viral diseases can drastically affect yield as Asjes (1996) reported that degeneration of nar- well as quality of narcissus bulbs and flowers, some- cissus plants caused by viruses may decrease bulb times resulting in a total crop loss.
    [Show full text]
  • The Insect Database in Dokdo, Korea: an Updated Version Includes 22 Newly Recorded Species on the Island and One Species in Korea
    PREPRINT Posted on 14/12/2020 DOI: https://doi.org/10.3897/arphapreprints.e62027 The Insect database in Dokdo, Korea: An updated version includes 22 newly recorded species on the island and one species in Korea Jihun Ryu, Young-Kun Kim, Sang Jae Suh, Kwang Shik Choi Not peer-reviewed, not copy-edited manuscript. Not peer-reviewed, not copy-edited manuscript posted on December 14, 2020. DOI: https://doi.org/10.3897/arphapreprints.e62027 The Insect database in Dokdo, Korea: An updated version includes 22 newly recorded species on the island and one species in Korea Jihun Ryu‡,§, Young-Kun Kim |, Sang Jae Suh|, Kwang Shik Choi‡,§,¶ ‡ School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea § Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea | School of Applied Biosciences, Kyungpook National University, Daegu, South Korea ¶ Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea Corresponding author: Kwang Shik Choi ([email protected]) Abstract Background Dokdo, an island toward the East Coast of South Korea, comprises 89 small islands. Dokdo is a volcanic island created by a volcanic eruption that promoted the formation of Ulleungdo (located in the East sea), which is ~87.525 km away from Dokdo. Dokdo is an important island because of geopolitics; however, because of certain investigation barriers such as weather and time constraints, the awareness of its insect fauna is less compared to that of Ulleungdo. Dokdo’s insect fauna was obtained as 10 orders, 74 families, and 165 species until 2017; subsequently, from 2018 to 2019, 23 unrecorded species were discovered via an insect survey.
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • Comparison of Plant‐Adapted Rhabdovirus Protein Localization and Interactions
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Kathleen Marie Martin University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Martin, Kathleen Marie, "COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS" (2011). University of Kentucky Doctoral Dissertations. 172. https://uknowledge.uky.edu/gradschool_diss/172 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kathleen Marie Martin The Graduate School University of Kentucky 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Kathleen Marie Martin Lexington, Kentucky Director: Dr. Michael M Goodin, Associate Professor of Plant Pathology Lexington, Kentucky 2011 Copyright © Kathleen Marie Martin 2011 ABSTRACT OF DISSERTATION COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Sonchus yellow net virus (SYNV), Potato yellow dwarf virus (PYDV) and Lettuce Necrotic yellows virus (LNYV) are members of the Rhabdoviridae family that infect plants. SYNV and PYDV are Nucleorhabdoviruses that replicate in the nuclei of infected cells and LNYV is a Cytorhabdovirus that replicates in the cytoplasm. LNYV and SYNV share a similar genome organization with a gene order of Nucleoprotein (N), Phosphoprotein (P), putative movement protein (Mv), Matrix protein (M), Glycoprotein (G) and Polymerase protein (L).
    [Show full text]
  • Bacterial Associates of Orthezia Urticae, Matsucoccus Pini, And
    Protoplasma https://doi.org/10.1007/s00709-019-01377-z ORIGINAL ARTICLE Bacterial associates of Orthezia urticae, Matsucoccus pini, and Steingelia gorodetskia - scale insects of archaeoccoid families Ortheziidae, Matsucoccidae, and Steingeliidae (Hemiptera, Coccomorpha) Katarzyna Michalik1 & Teresa Szklarzewicz1 & Małgorzata Kalandyk-Kołodziejczyk2 & Anna Michalik1 Received: 1 February 2019 /Accepted: 2 April 2019 # The Author(s) 2019 Abstract The biological nature, ultrastructure, distribution, and mode of transmission between generations of the microorganisms associ- ated with three species (Orthezia urticae, Matsucoccus pini, Steingelia gorodetskia) of primitive families (archaeococcoids = Orthezioidea) of scale insects were investigated by means of microscopic and molecular methods. In all the specimens of Orthezia urticae and Matsucoccus pini examined, bacteria Wolbachia were identified. In some examined specimens of O. urticae,apartfromWolbachia,bacteriaSodalis were detected. In Steingelia gorodetskia, the bacteria of the genus Sphingomonas were found. In contrast to most plant sap-sucking hemipterans, the bacterial associates of O. urticae, M. pini, and S. gorodetskia are not harbored in specialized bacteriocytes, but are dispersed in the cells of different organs. Ultrastructural observations have shown that bacteria Wolbachia in O. urticae and M. pini, Sodalis in O. urticae, and Sphingomonas in S. gorodetskia are transovarially transmitted from mother to progeny. Keywords Symbiotic microorganisms . Sphingomonas . Sodalis-like
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]