Virus Diseases of Trees and Shrubs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
COVID-19: Perspective, Patterns and Evolving Strategies
COVID-19: Perspective, Patterns and Evolving strategies Subject Category: Clinical Virology Vinod Nikhra* Department of Medicine, Hindu Rao Hospital & NDMC Medical College, New Delhi, India Submitted: 02 June 2020 | Approved: 06 July 2020 | Published: 09 July 2020 Copyright: © 2020 Nikhra V. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. DOI: https://dx.doi.org/10.29328/ebook1003 ORCID: https://orcid.org/0000-0003-0859-5232 *Corresponding author: Dr. Vinod Nikhra, M.D. Consultant and Faculty, Department of Medicine, Hindu Rao Hospital & NDMC Medical College, New Delhi, India, Tel: 91-9810874937; Email: [email protected]; drvinodnikhra@rediff mail.com Open Access COVID-19: Perspective, Patterns and Evolving strategies Table of Contents - 7 Chapters Sl No Chapters Title Pages The Trans-Zoonotic Virome Interface: Measures to 1 Chapter 1 003-011 Balance, Control and Treat Epidemics Exploring Pathophysiology of COVID-19 Infection: Faux 2 Chapter 2 012-020 Espoir and Dormant Therapeutic Options The Agent and Host Factors in COVID-19: Exploring 3 Chapter 3 021-036 Pathogenesis and Therapeutic Implications Adverse Outcomes for Elderly in COVID-19: Annihilation 4 Chapter 4 037-047 of the Longevity Dream Identifying Patterns in COVID-19: Morbidity, Recovery, 5 Chapter 5 048-058 and the Aftermath The New Revelations: Little-known Facts about COVID-19 6 Chapter 6 059-068 and their Implications Fear, Reaction and Rational Behaviour to COVID-19 in 7 Chapter 7 069-076 Public, Health Professionals and Policy Planners La Confusion: Caring for COVID-19 patients 8 Postscript 077-079 and the raging, engulfi ng and debilitating pandemic 9 Acknowledgement 080-080 *Corresponding HTTPS://WWW.HEIGHPUBS.ORG author: Dr. -
Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial. -
Vector Capability of Xiphinema Americanum Sensu Lato in California 1
Journal of Nematology 21(4):517-523. 1989. © The Society of Nematologists 1989. Vector Capability of Xiphinema americanum sensu lato in California 1 JOHN A. GRIESBACH 2 AND ARMAND R. MAGGENTI s Abstract: Seven field populations of Xiphineraa americanum sensu lato from California's major agronomic areas were tested for their ability to transmit two nepoviruses, including the prune brownline, peach yellow bud, and grapevine yellow vein strains of" tomato ringspot virus and the bud blight strain of tobacco ringspot virus. Two field populations transmitted all isolates, one population transmitted all tomato ringspot virus isolates but failed to transmit bud blight strain of tobacco ringspot virus, and the remaining four populations failed to transmit any virus. Only one population, which transmitted all isolates, bad been associated with field spread of a nepovirus. As two California populations of Xiphinema americanum sensu lato were shown to have the ability to vector two different nepoviruses, a nematode taxonomy based on a parsimony of virus-vector re- lationship is not practical for these populations. Because two California populations ofX. americanum were able to vector tobacco ringspot virus, commonly vectored by X. americanum in the eastern United States, these western populations cannot be differentiated from eastern populations by vector capability tests using tobacco ringspot virus. Key words: dagger nematode, tobacco ringspot virus, tomato ringspot virus, nepovirus, Xiphinema americanum, Xiphinema californicum. Populations of Xiphinema americanum brownline (PBL), prunus stem pitting (PSP) Cobb, 1913 shown through rigorous test- and cherry leaf mottle (CLM) (8). Both PBL ing (23) to be nepovirus vectors include X. and PSP were transmitted with a high de- americanum sensu lato (s.1.) for tobacco gree of efficiency, whereas CLM was trans- ringspot virus (TobRSV) (5), tomato ring- mitted rarely. -
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification
ORIGINAL RESEARCH published: 10 March 2017 doi: 10.3389/fmicb.2017.00380 Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification Arshan Nasir 1, 2 and Gustavo Caetano-Anollés 1* 1 Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2 Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new Edited by: additions, suggesting it could be a useful supplement to experimental approaches and Ricardo Flores, to aid qualitative assessment of viral diversity in metagenome samples. Polytechnic University of Valencia, Spain Keywords: capsid, virion, protein structure, virus taxonomy, SCOP, fold superfamily Reviewed by: Mario A. Fares, Consejo Superior de Investigaciones INTRODUCTION Científicas(CSIC), Spain Janne J. Ravantti, The last few years have dramatically increased our knowledge about viral systematics and University of Helsinki, Finland evolution. -
Virus Particle Structures
Virus Particle Structures Virus Particle Structures Palmenberg, A.C. and Sgro, J.-Y. COLOR PLATE LEGENDS These color plates depict the relative sizes and comparative virion structures of multiple types of viruses. The renderings are based on data from published atomic coordinates as determined by X-ray crystallography. The international online repository for 3D coordinates is the Protein Databank (www.rcsb.org/pdb/), maintained by the Research Collaboratory for Structural Bioinformatics (RCSB). The VIPER web site (mmtsb.scripps.edu/viper), maintains a parallel collection of PDB coordinates for icosahedral viruses and additionally offers a version of each data file permuted into the same relative 3D orientation (Reddy, V., Natarajan, P., Okerberg, B., Li, K., Damodaran, K., Morton, R., Brooks, C. and Johnson, J. (2001). J. Virol., 75, 11943-11947). VIPER also contains an excellent repository of instructional materials pertaining to icosahedral symmetry and viral structures. All images presented here, except for the filamentous viruses, used the standard VIPER orientation along the icosahedral 2-fold axis. With the exception of Plate 3 as described below, these images were generated from their atomic coordinates using a novel radial depth-cue colorization technique and the program Rasmol (Sayle, R.A., Milner-White, E.J. (1995). RASMOL: biomolecular graphics for all. Trends Biochem Sci., 20, 374-376). First, the Temperature Factor column for every atom in a PDB coordinate file was edited to record a measure of the radial distance from the virion center. The files were rendered using the Rasmol spacefill menu, with specular and shadow options according to the Van de Waals radius of each atom. -
The Role of Rnai and Micrornas in Animal Virus Replication and Antiviral Immunity
Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of RNAi and microRNAs in animal virus replication and antiviral immunity Jennifer L. Umbach and Bryan R. Cullen1 Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA The closely related microRNA (miRNA) and RNAi path- enzyme, and its cofactor TRBP. Binding of Dicer/TRBP ways have emerged as important regulators of virus–host to the base of the pre-miRNA is followed by cleavage to cell interactions. Although both pathways are relatively release the terminal loop, yielding an RNA duplex of ;20 well conserved all the way from plants to invertebrates bp flanked by 2-nt 39 overhangs (Fig. 1A; Chendrimada to mammals, there are important differences between et al. 2005). The RNA strand that is less tightly base- these systems. A more complete understanding of these paired at the 59 end is loaded into the RNA-induced differences will be required to fully appreciate the re- silencing complex (RISC) and forms the mature miRNA lationship between these diverse host organisms and the (Khvorova et al. 2003; Schwarz et al. 2003). The miRNA various viruses that infect them. Insights derived from then guides RISC to mRNAs bearing complementary this research will facilitate a better understanding of target sites (Hammond et al. 2000). viral pathogenesis and the host innate immune response Although the vast majority of miRNAs are generated as to viral infection. described above, some exceptions exist. For example, some miRNAs are derived from short, excised introns, MicroRNAs (miRNAs) are small regulatory RNAs ;22 called mirtrons, which resemble pre-miRNA hairpins, nucleotides (nt) in length that are typically derived from bypassing the need for Drosha, and only require Dicer for a single arm of imperfect, ;80-nt long RNA hairpins maturation (Berezikov et al. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Transmission of Virus by the Progeny of Crosses Between Xiphinema Diversicaudatum
Transmission of virus by the progeny of crosses between XQhinema diversicaudatüm (Nematoda : Dorylaimoidea) from Italy and Scotland Derek J. F. BROWN Scottish Crop Research Institute, Invergowrie, Dundee, 002 SDA, Scotland. SUMMARY Transmission of the type-British strainsof arabis mosaic (AMV-T) and strawberry latent ringspot viruses (SLRV-T) and a strain of SLRV from Italy (SLRV-Ip) by FI and F2 hybrid Xiphinenza diversicaudatum was examined in the laboratory. The hybrid nematodes were crossbred from populations which readily (Scotland) and only infrequently (Italy) transmitted viruses.The ability of X. diversicaudatum hybrids to transmit viruses was foundto be inherited withthe choice of both maternaland paternal parents affecting the hybrids ability to transmit viruses. It is possible that the genetic influence on the hybrids ability to transmit viruses was cytoplasmically inherited. The principal factor likely to be involved is the ability of X. di ver sic au da tu??^ selectively and specifically to retain virus particles at sites of retention within its feeding apparatus. RBSUME La transnzission des virus par la descendance de croiselnents entre Xiphjnema diversicaudatum (Nernatoda :Do ylainzoidea) provenantd’ltalie et d’Ecosse La transmission de souches de type britannique des virus de la mosaïque arabis (AMV-T), du virus du G ringspot n latent du fraisier (SLRV-T)et d’une souchede SLRV provenant d‘Italie (SLRV-Ip) par des hybridesFI et F2 de Xiphinewa diversicaudatuwz .a été Ctudiée au laboratoire. Les nématodes hybrides étaient obtenus par croisements entre populations qui transmettent les virus soit activement (Ecosse), soit seulement occasionnellement (Italie). La capacité de transmission des virus montrée par les X. -
Ictvdb the Universal Virus Database of the International Committee on Taxonomy of Viruses Virus Infection Is Host Specific
ICTVdB the Universal Virus Database of the International Committee on Taxonomy of Viruses on the web since 1993 http://phene.cpmc.columbia.edu/ Cornelia Büchen-Osmond Australian National University Columbia University Viruses coming to TaiBNET How might ICTVdB assist construction of a virus database for TaiBNET? • briefly introduce viruses, potentially the 8th kingdom of life (Mimivirus) • describe ICTV, the International Committee on Taxonomy of Viruses that decides on virus nomenclature and classification • outline distinctive functions of ICTVdB • show how ICTVdB could be used to add viruses to TaiBNET. What is a virus ? Viruses are found in all forms of life – subcellular entities consisting of •protein capsids in remarkable diversity •may have a lipid envelope •nucleoprotein/genome – dsDNA, ssDNA, dsDNA-RT, dsRNA, ssRNA, ssRNA-RT – totally dependent on the host •for genome transcription and replication •for assembly, maturation and egression Taichung Aug 2008 ICTVdB the Universal Virus Database of the International Committee on Taxonomy of Viruses Virus infection is host specific Viruses usually • infect specific hosts – host from one or more families – species specific (Influenza B virus) – Influenza A viruses have a wide-spread host range (birds, fish, reptiles, mammals) • have a high mutation rates • recombine in the host cell • can acquire genes from the host • can transfer genes to another host Although much reduced forms of life, viruses have been called “master explorers of evolutionary space” and perhaps are a driving force -
Journal of Virological Methods 153 (2008) 16–21
Journal of Virological Methods 153 (2008) 16–21 Contents lists available at ScienceDirect Journal of Virological Methods journal homepage: www.elsevier.com/locate/jviromet Use of primers with 5 non-complementary sequences in RT-PCR for the detection of nepovirus subgroups A and B Ting Wei, Gerard Clover ∗ Plant Health and Environment Laboratory, Investigation and Diagnostic Centre, MAF Biosecurity New Zealand, P.O. Box 2095, Auckland 1140, New Zealand abstract Article history: Two generic PCR protocols were developed to detect nepoviruses in subgroups A and B using degenerate Received 21 April 2008 primers designed to amplify part of the RNA-dependent RNA polymerase (RdRp) gene. It was observed that Received in revised form 17 June 2008 detection sensitivity and specificity could be improved by adding a 12-bp non-complementary sequence Accepted 19 June 2008 to the 5 termini of the forward, but not the reverse, primers. The optimized PCR protocols amplified a specific product (∼340 bp and ∼250 bp with subgroups A and B, respectively) from all 17 isolates of the 5 Keywords: virus species in subgroup A and 3 species in subgroup B tested. The primers detect conserved protein motifs Nepoviruses in the RdRp gene and it is anticipated that they have the potential to detect unreported or uncharacterised Primer flap Universal primers nepoviruses in subgroups A and B. RT-PCR © 2008 Elsevier B.V. All rights reserved. 1. Introduction together with nematode transmission make these viruses partic- ularly hard to eradicate or control (Harrison and Murant, 1977; The genus Nepovirus is classified in the family Comoviridae, Fauquet et al., 2005). -
Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs.