Quick viewing(Text Mode)

Tamiflu)(R)Intermediates

Tamiflu)(R)��Intermediates

ENANTIOSELECTIVECHEMOENZYMATICSYNTHESISOFOSELTAMIVIR (TAMIFLU)(R)INTERMEDIATES

ATHESISSUBMITTEDTO THEGRADUATESCHOOLOFNATURALANDAPPLIEDSCIENCES OF MIDDLEEASTTECHNICALUNIVERSITY BY HACIEĐYOK INPARTIALFULFILLMENTOFTHEREQUIREMENTS FOR THEDEGREEOFMASTEROFSCIENCE IN BIOTECHNOLOGY JANUARY2008 Approvalofthethesis: ENANTIOSELECTIVECHEMOENZYMATICSYNTHESISOF OSELTAMIVIR(TAMIFLU)(R) INTERMEDIATES submitted by HACI EĐYOK in partial fulfillment of the requirements for the degree of Master of Science in Biotechnology Department, Middle East TechnicalUniversity by, Prof.Dr.CananÖzgen______ Dean,GraduateSchoolof NaturalandAppliedSciences Prof.Dr.GülayÖzcengiz______ HeadofDepartment, Biotechnology Prof.Dr.AyhanS.Demir Supervisor, ChemistryDept. ,METU______ Prof.Dr.UfukBakır CoSupervisor, ChemicalEngineeringDept.,METU______ ExaminingCommitteeMembers: Assoc.Prof.Dr.ÖzdemirDoğan ______ ChemistryDept.,METU Prof.Dr.AyhanS.Demir______ ChemistryDept.,METU Assoc.Prof.Dr.Nezire Saygılı______ FacultyofPharmacy,HU Assoc.Prof.Dr.EmineBayraktar______ ChemicalEngineeringDept.,AU Assoc.Prof.Dr.NursenÇoruh______ ChemistryDept.,METU Date: 30.01.2008 I hereby declare thatall information in this documenthasbeen obtained and presentedinaccordancewithacademicrulesandethicalconduct.Ialsodeclare that,asrequiredbytheserulesandconduct,Ihavefullycitedandreferenced allmaterialandresultsthatarenotoriginaltothiswork. Name,Lastname:HacıEiyok

Signature:

iii ABSTRACT ENANTIOSELECTIVECHEMOENZYMATICSYNTHESISOFOSELTAMIVIR (TAMIFLU)(R)INTERMEDIATES Eiyok,Hacı M.S.,DepartmentofBiotechnology Supervisor :Prof.Dr.AyhanS.Demir CoSupervisor:Prof.Dr.UfukBakır

January2008,72pages Theobjectiveofthispresentedstudywastosynthesizeopticallyactivecompounds considered to be key intermediates in the synthesis of Oseltamivir (Tamiflu) by performing chemical and biotechnological methods. Thereof, the carboethoxy cyclohexenone skeletonfirst was synthesized utilizing easily available substances. Thesynthesisofalphahydroxyketonesinenantiomericallypureformoffersagreat importanceinthesynthesisofbiologicallyactivecompounds.Towardthisfact,the enantioselectivesynthesisofalphahydroxycarboethoxycyclohexenonescaffoldhas been accomplished by following the routes which were manganese(III) acetate mediated chemical oxidation followed by enzymemediated hydrolysis and additionally microbial direct biooxidation by whole cells of fungi expressly A. oryzae and A. flavus. A very satisfying results havebeenobtainedbybothofthe methods. Keywords: AlphaHydroxy Ketone, Manganese(III) Acetate, Enzymatic Kinetic Resolution,Microbial,Fungi.

iv ÖZ OSELTAMIVIR(TAMIFLU)(R)ANTĐVĐRALĐLAÇHAMMADDELERĐNĐN KEMOENZĐMATĐKSENTEZLERĐ Eiyok,Hacı YüksekLisans,BiyoteknolojiBölümü TezYöneticisi:Prof.Dr.AyhanS.Demir OrtakTezYöneticisi:Prof.Dr.UfukBakır

Ocak2008,72sayfa Bu çalımanın amacı antiviral bir ilaç olan Oseltamivir (Tamiflu) sentezinde kullanılabilecek optikçe aktif hammaddelerin kimyasal ve biyoteknolojik yöntemlerle sentezlenmesidir. Bu nedenle ilk olarak karboetoksi siklohekzenon yapısı kolayca bulunabilen basit maddeler kullanılarak sentezlendi. Alfahidroksi ketonların enansiyomerikçe saf hallerinin eldesi biyolojik açıdan aktif bileiklerin sentezinde büyük bir önem tekil eder. Bu gerçeğe yönelik olarak, alfahidroksi karboetoksi siklohekzenon yapısının enansiyoseçici sentezi, mangan(III) asetat vasıtasıylakimyasaloksidasyonveberaberindeenzimyardımıylahidrolizveayrıca A. oryzae ve A. flavus türündeki mantarların tüm hücreleri kullanılarak yapılan mikrobiyel biyooksidasyonla gerçekletirildi. Her iki metodla da tatmin edici sonuçlareldeedildi. Anahtar kelimeler: AlfaHidroksi Keton, Mangan(III) Asetat, Enzimatik Kinetik Resolüsyon,MikrobiyelHidroksilasyon,Mantar.

v

ToMyFamily

vi

ACKNOWLEDGMENTS Iwouldliketoremarkmyfeelingsofappreciationandgratitudetomy supervisor Prof.Dr.AyhanS.Demirforhissupport,encouragementandguidancethroughout thestudy. IwouldliketothanktomycosupervisorProf.Dr.UfukBakırforherhelps,and understanding. My distinctive thanks extent to Peruze Ayhan for her endless support and suggestionsduringmystudy.IwouldliketothankalsotomylabmatesBetülSopacı, UmutErkılıç,UmutDemirtaandĐlkeimekfortheirfriendship. Ialsoexpressmysincereappreciationtoallofthemembers of Demir’s Research Group. I am grateful to the Scientific and Technological Research Council of Turkey (TÜBĐTAK)fortheirfinancialsupportduringmystudy. AndIamindeptedtomyfamily… vii TABLEOFCONTENTS

ABSTRACT………………………………………………………………………iv ÖZ…………………………………………………………………………………v ACKNOWLEDGMENT………………………………………………………….vii TABLEOFCONTENTS…………………………………………………………viii LISTOFTABLES………………………………………………………………...xi LISTOFFIGURES……………………………………………………………….xii CHAPTER

1. INTRODUCTION 1.1BioconversionsinOrganicChemistry………………………..1 1.2ChiralityandAsymmetricSynthesis………………………….6 1.2.1ChiralityActivity,StructureActivity Relationships………………………………………...7 1.2.2MethodsfortheSynthesisofChiralCompounds…..10 1.2.2.1Resolution…………………………………10 1.2.2.1.1KineticResolution………………10 1.2.2.1.2 OtherMethodsAvailable ForResolution…………………..12 1.2.2.2AsymmetricSynthesis…………………….12 1.2.2.2.1ChiralStartingMaterial………….13 1.2.2.2.2ChiralReagents…………………..13 1.2.2.2.3ChiralEnvironments……………..14

viii 1.3SynthesisofαHydroxyKetones……………………………..14 1.3.1ChemicalMethods…………………………………..14 1.3.1.1 Manganese(III)AcetateMediated OxidationofEnones………………………15 1.3.2BiotechnologicalMethods…………………………..16 1.4FungiMediatedConversions:FungiasChemicalReagents…18 1.5 OseltamivirPhosphate(TAMIFLU)…………………………21 1.6AimoftheWork………………………………………………27 2. RESULTSANDDISCUSSION 2.1PerspectiveoftheWork………………………………………28 2.2RetrosyntheticAnalysisofOseltamivir………………………30 2.3SynthesisofEnoneStructure…………………………………31 2.4OxidationofEnonebyChemoenzymaticMethod……………34 2.5MicrobialDirectOxidationReactions………………………..43 3. EXPERIMENTAL 3.1MaterialsandEquipments…………………………………….49 3.2GeneralProcedures 3.2.1Synthesisof1hydroxycyclohexanecarbonitrile(65).50 3.2.2Synthesisof1hydroxycyclohexanecarboxylic acid(74)……………………………………………..51 3.2.3 Synthesisofethyl 1hydroxycyclohexanecarboxylate(66)…………….51 3.2.4Synthesisofethylcyclohex1enecarboxylate(67)...52 3.2.5Synthesisofethyl3oxocyclohex 1enecarboxylate(68)……………………………….53

ix 3.2.6 Synthesisof(±)4acetoxy1 carboethoxycyclohexene3one(75)……………….54 3.2.7 Synthesisof4hydroxy1carboethoxy cyclohexene3one(69)……………………………. 56 3.2.7.1EnzymaticKineticResolutionof (±)4acetoxy1carboethoxy cyclohexene3one……………………..56 3.2.7.2 DirectMicrobialOxidation Ofethyl3oxocyclohex 1enecarboxylate(68)………………….56 4.CONCLUSION…………………………………………………………67 REFERENCES……………………………………………………………………68 x LISTOFTABLES TABLES Table1Enzymatichydrolysisof4acetoxy1carboethoxy cyclohexene3one(75)………………………………………………….42 Table2Microbialhydroxylationof1carboethoxycyclohexene3one(68) byfungi A. oryzae OUT5048and A. flavus 200120……………………..47

xi

LISTOFFIGURES

FIGURES Figure1Wholecellcatalyzedbiotransformationofnitriles……………………..2 Figure2Epoxidehydrolasemediatedenantioselectivehydrolysis………………3 Figure3Somereactionscatalyzedbylipasesinaqueousandorganicmedia……4 Figure4Asymmetricreductionofenonewithareductasefrombaker’syeast….5 Figure5 Epoxidationofstyrenecatalyzedbyperoxidasefromthe culturedcellsof N.tabacum …………………………………………….6 Figure6Examplesforthechiralbiologicallyactivecompounds………………..8 Figure7Thehypotheticalinteractionbetweenthetwoenantiomersofachiral druganditsbindingsite…………………………………………………9 Figure8Catalytickineticresolution……………………………………………...11 Figure9Kineticresolutionofallylic16 asreportedbySharpless……...12 Figure10Cyclocarbonylationreactionof(1R,4R)isolimonene(19)…………...13 Figure11αHydroxyketonesasbuildingblocksforseveralactivecompounds...15 Figure12Mn(OAc) 3oxidationfollowedbyenzymatickineticresolution yieldsα´hydroxyandα´acetoxyketones…………………………….16 Figure13Synthesisof(1R,2S)ephedrine………………………………………..17 Figure14Thiaminepyrophosphate(TPP)structure……………………………..17 Figure15Fungimediatedconversionofbenziltobenzoinandhydrobenzoin…..20 Figure16Oseltamivirphosphate(34)anditsactivemetabolite(35)……………21 Figure17Keyintermediatestooseltamivirphosphatefromshikimicacid……...22 Figure18Anewazidefreeproductionofoseltamivirstarting fromshikimicacid.…………………………………………………….24 xii Figure19Coreyandcoworker’sapproach……………………………………...25 Figure20Shibasakiandcoworker’sapproach…………………………………..26 Figure21Aimofthework……………………………………………………….27 Figure22Syntheticroutetointermediate69…………………………………….30 Figure23RetrosynthesisofOseltamivir…………………………………………30 Figure24Synthesisofcyclohexanonecyanohydrin……………………………..31 Figure25Synthesisof1hydroxycyclohexanecarboxylicacid…………………..32 Figure26Synthesisofcyclohexanol1ethylcarboxylate………………………...33 Figure27Synthesisof1carboethoxycyclohexene………………………………34 Figure28Synthesisof1carboethoxycyclohexene3one………………………34 Figure29Synthesisof4acetoxy1carboethoxycyclohexene3one…………...35 Figure30Proposedmechanismsforselectiveα’acetoxylation…………………36 Figure31Enzymemediatedhydrolysisofacetoxyenone rac 75……………….38 Figure32HPLCchromatogramofracemicacetoxyenone75…………………..40 Figure33HPLCchromatogramofracemichydroxyenone69………………….40 Figure34HPLCchromatogramofacetoxyenone75hydrolyzedbyCCL……...41 Figure35HPLCchromatogramofhydroxyenone69 yieldedbyCCL………….43 Figure36Wholecellmediatedhydroxylation…………………………………...45 Figure37 1HNMRspectrumof1hydroxycyclohexanecarbonitrile…………….58 Figure38 13 CNMRspectrumof1hydroxycyclohexanecarbonitrile……………58 Figure39 1HNMRspectrumof1hydroxycyclohexanecarboxylicacid………...59 Figure40 13 CNMRspectrumof1hydroxycyclohexanecarboxylicacid………..59 Figure41 1HNMRspectrumofethyl1hydroxycyclohexanecarboxylate………60 Figure42 13 CNMRspectrumofethyl1hydroxycyclohexanecarboxylate……...60 xiii Figure43 1HNMRspectrumofethylcyclohex1enecarboxylate………………61 Figure44 13 CNMRspectrumofethylcyclohex1enecarboxylate……………...61 Figure45 1HNMRspectrumofethyl3oxocyclohex1enecarboxylate………...62 Figure46 13 CNMRspectrumofethyl3oxocyclohex1enecarboxylate……….62 Figure47Massspectrumofethyl3oxocyclohex1enecarboxylate…………….63 Figure48 1HNMRspectrumof4acetoxy1carboethoxycyclohexene3one…63 Figure49 13 CNMRspectrumof4acetoxy1carboethoxycyclohexene3one...64 Figure50Massspectrumof4acetoxy1carboethoxycyclohexene3one……..64 Figure51 1HNMRspectrumof4hydroxy1carboethoxycyclohexene3one...65 Figure52 13 CNMRspectrumof4hydroxy1carboethoxycyclohexene3one..65 Figure53Massspectrumof4hydroxy1carboethoxycyclohexene3one……..66

xiv CHAPTER1 INTRODUCTION 1.1 BioconversionsinOrganicChemistry Incorporationofbiotransformationstepsincludingtheuseofmicroorganismsand/or isolatedenzymesisincreasinglybeingmadeuseofbothinindustryandacademic synthesis laboratories. Regio and stereocontrol in organic synthesis can be succeededusinganenzymecatalyzedreactionwhichisthefactprimarilyconsidered forconsolidationofabiotransformationinasyntheticsequence.Biotransformations arebecomingacceptedasamethodbothforgeneratingopticallyactivecompounds and for developing efficient pathways to desired target molecules. Biotransformationsensureanalternativetothechemicalsyntheticmethodologythat issometimescompetitiveandthereforeasectionoftoolsavailabletothesynthetic chemist[1]. Theuseofisolatedenzymesystemsorintactwholeorganismsforbiotransformation applicationshasownadvantagesanddisadvantages.Manyisolatedenzymesystems arecommerciallyavailableorarerelativelyeasytoisolate,atleastinacrudeform. Theycanbestableandeasytousebygenerallygivingcleanandsingleproducts. Despite the fact that many hydrolytic reactions do not need a cofactor, reactions in which cofactor is used are present. This gives rise to need for regeneration and thus complication of procedure. On the other hand, whole organisms do not have this disadvantage. They do tend to give more than one product,whichmayormaynotbeanadvantage.However,theyareoftencheaperto usethanisolatedenzymesystems[2].

1 Biotransformations have a number of advantages as compared with traditional chemical methods. They are not only regio and stereospecific but are also enantiospecificprovidingtheproductionofchiralproductsfromracemicmixtures. Conditionsforbiotransformationsaremildanddonotrequiretheprotectionofother functionalgroupsformostofthecases[2].Ontheotherhand,itisworthytonote thatthechoicebetweenabiotransformationandchemicaltechnologywillbedriven bythecommercialperformanceoftheselectedsyntheticstrategyonaspecifictarget. Many chemical reactions for which there is no equivalent biotransformation are present.Thereexistsanumberofchemicalmethodsforintroducingachiralityintoa moleculeinwhichbiotransformationsmightnotbecompetitive.However,biology might be useful in cases where there is no chemical solution or might allow extensionofthearsenalofchemicaltransformations[3].

Biotransformation applications are mainly composed of hydrolytic transformations catalyzed by hydrolase type enzymes. They include and bonds transformations by using proteases, esterases or lipases. In addition to that the formationand/orcleavageofepoxides,nitrilesandphosphateareothertypes of hydrolase enzymes applications. For instance, the microbial wholecell biocatalyst, Rhodococcus erythropolis AJ270 , catalyzedthebiotransformationof3 arylpent4enenitriles (1) byanenzymecouplenitrilehydratase/amidaseundervery mildconditions[4](Figure1).

Ph Ar CONH CONH R 2 Ar R 2 CellsCN Cells 4 + 2 R + Ph Ar Racemic CO H CO H R 2 1 R 2 5 3 Figure1 Wholecellcatalyzedbiotransformationofnitriles

2 The hydrolytic kinetic resolution of glycidaldehyde acetal derivatives 6 was examined by using the recombinant Aspergillus niger epoxide hydrolase as biocatalyst[5](Figure2).Itwasdevelopedamethodalsothatmakespossiblethe specific incorporation of sterically demanding αfluoroalkyl as well as αmethyl amino acids into P 1 position of peptides using commercially available proteases namelytrypsinandαchymotrypsin[6].

O R O R , A.niger HO OR , * * OR OR, + HO , , Epoxide hydrolase OR OR OR, R Racemic 6 7 8 Figure2 Epoxidehydrolasemediatedenantioselectivehydrolysis The efficacy and high enantioselectivity of esterase producing strain Trichosporon beigelli in its crude native form has been effectively demonstrated on a broad spectrumofmolecules,whichincludethealkylesterofandcarboxylicacids such as 1aryl alkanols, nonsteroidal antiinflammatory drugs (NSAIDS) such as ibuprofenandavarietyofthiocarboxylicacids[7].Overthelastfewyears,therehas beenadramaticincreaseinthenumberofpublicationsinthefieldoflipasecatalyzed reactions performed in common organic solvents, ionic liquids or even non conventionalsolvents.Afairlylargepercentageofthesepublicationshaveemerged fromorganicchemistswhohaverecognizedthepotentialofbiocatalysisasaviable andpopulartechniqueinorganicsynthesis[8].Figure3illustratesapplicationsfor certaintypesofreactions. Dehydrogenases have been widely used for the reduction of carbonyl groups of aldehydesorketonesandofcarboncarbondoublebonds.Thesignificanceoftheuse oftheseenzymesisthatchiralproductcanpotentiallybeobtainedfromaprochiral

3 substrate. Carbonyl reductases from various microorganisms have been used to prepareopticallyactivealcoholsfromcarbonylcompounds. It was reported that a versatile biocatalyst that shows high enantioselectivity for a variety of ketones, Saccharomyces cerevisiae carbonylreductase(SCR),hasbeenidentifiedandutilized forenantioselectivebioreductions[9].Otherfunctionalgroupreductionsincludethe reductionofcarboncarbondoublebonds.Carboncarbondoublebondreductasehas been isolated from the cells of baker’s yeast [10]. The corresponding enzyme catalyzedthereductionofα,βunsaturatedketones9andresultedintheformationof saturated(S)ketone 10 selectivelyascanbeseenfromtheFigure4.

1. Hydrolysis (aqueous medium)

O Lipase O R OH R OR R OH + 2 1 2 water 1

2. Esterification (organic medium)

O OH Lipase O R2 + + H2O R1 OH R2 R3 org. solvent R1 O R3

3. Transesterification

a) alcoholysis

O R O OH Lipase 3 R OH + R O R + 2 R1 OR2 R3 R4 org. solvent 1 4

b) acidolysis

O O O O Lipase + R OR + R OH R1 OR2 R3 OH org. solvent 3 2 1

4. Interesterification O O O O Lipase + R OR + R OR R1 OR2 R3 OR4 org. solvent 1 4 3 2

Figure3 Somereactionscatalyzedbylipasesinaqueousandorganicmedia

4 Oxygenasesmajorlyleadtooxidationbiotransformationsbyincorporatingmolecular oxygenintoamoleculeeitherbyincorporationofoneorbothatomsofO 2orbyan electrontransfer oxygen donor process. It is important to note that direct oxyfunctionalizationofunactivatedorganicsubstratesinaregioorenantioselective mannerisasignificantprobleminorganicsynthesishoweverthatcanbeovercome by use of biotransformation step. A study in which 3αhydroxysteroid dehydrogenase from a microorganism Pseudomonas paucimobilis catalyze the preparative scale and stereospecific oxidation of hydroxyl groups of several C21 bileacidswasreported[11].Thesynthesisofopticallypure2hydroxyacidsbyα hydroxylationoflongchaincarboxylicacidswithmolecularoxygenwasachievedby αoxidase of peas ( Pisum satiuum ) [12]. Furthermore, an enzyme possessing both peroxidase and epoxidation activity was isolated from culture cells of Nicotiana tabacum foruseinepoxidationofstyrenes 11 [13](Figure5). O O NADPH Ar Ar Reductase from 9yeast 10 Figure4 Asymmetricreductionofenonewithareductasefrombaker’syeast In spite of these mentioned biooxidation applications, it is also needed to state anotherinterestingstudy[14]inwhichthebenzo(a)pyrenehasbeentransformedinto benzo[a]pyrene 1,63,6and 6,12quinones by purified extracellular laccase of Pycnoporus cinnabarinus byoxidation.

5 H O Cell suspension H

N. tabacum 11 12 Figure5 Epoxidationofstyrenecatalyzedbyperoxidasefromtheculturedcellsof N. tabacum Othertypesofbiotransformationsdevelopanareaofincreasingimpact.Isolationof new enzymes and control of existing enzymes under conditions enabling synthetically useful biotransformations gave rise to arise of new areas such as carboncarbonbondformations.Enzymaticsystemsbelongingtotheclassoflyases, which are capable of forming carboncarbon bonds in a highly stereoselective manner are known and include reactions such as aldol condensation, acyloin reactions,Michaeladditions,DielsAlderreactionand.Forexample,it waspresentedthatasymmetricsynthesisofmixedbenzoins, thatis, benzoinswith nonidenticalaromaticmoietiesusinganenzymecatalyzedbenzoincondensationwas performed[15]. 1.2 ChiralityandAsymmetricSynthesis The discovery of chirality that is formally defined as geometric property of rigid object of not being superimposable with its mirror image [16], during the last century, called for that chemists concern themselves with developing methods in order to obtain enantioenriched substances. The importance of chirality is emphasized by the fact that almost all natural products are chiral and that their physiologicalorpharmacologicalpropertiesdependupontheirrecognitionbychiral receptors.Thesechiralreceptorsinteractonlywithmoleculesoftheproperabsolute configuration[17].

6 Organiccompoundsplayanimportantpartinmodern life, not least in thearea of pharmaceuticals, agrochemicals, and other materials which illustrate useful biologicalactivity.Oftensuchbiologicalactivityarisesthroughtheinteractionofthe organic compound with a biomolecule such as an enzyme or a receptor. As previouslymentionedsuchsitesofactionareconstructedfromchiralbuildingblocks such as amino acids or carbohydrates. Being natural chiral compounds, these buildingblocksarepresentassingleenantiomers,anditfollowsofcoursethatthe resultingbiomoleculesaresingleenantiomers[18]. Asmanynaturalproductsexistasonestereoisomer,theterm asymmetric synthesis is neededtopreparenatureidenticalmaterial.Asymmetricsynthesiscanbedefinedas areactionwhereanachiralunitinanensembleofsubstratemoleculesisconverted byareactantintoachiralunitinsuchamannerthat stereoisomeric products are formedinunequalamounts.Thefactthatnatureproducesawidevarietyofchiral compounds,asymmetricsynthesisisstrictlyrequiredtoobtainenantiomericallypure compounds[19]. 1.2.1 ChiralityActivity,StructureActivityRelationships Enantiomers of any biologically active compound have identical physical and chemicalpropertiesinanachiralenvironment,howeverinachiralenvironment,one enantiomermaydisplaydifferentchemicalandpharmacological behavior than the other enantiomerandsolikelytointeract differently with the natural biomolecule [16].Theenantiomersprobablyshowdifferentlevelsofbiologicalactivityandcould alsoexhibitquitedifferenttypesofactivitysinceitisclearthatlivingsystemsare themselves chiral. As it is considered the effect, the two enantiomers should be seemedastwodistinctcompounds[18].

Oneenantiomerusuallyismoreactivethantheother.Thisprovesthefactthatuseof racemic biologically active compounds is clearly undesirable only one of the enantiomerspossessesthedesiredbeneficialactivityhoweverbothenantiomerscan havetheriskofundesirableactivitythatissideeffect.Inaddition,thesideeffects

7 couldbedifferentforeachenantiomer.Theriskofsideeffectsisfarpredominated by the positive effect for the active enantiomer whereas the inactive enantiomer provideslittleornobenefit,butdoescarrytherisk[18]. Forachiralbiologicallyactivecompoundthefollowingpossibilitiespresent[18]:  Onlyoneoftheenantiomersisactive,theotherbeingdevoidofactivity.  Bothenantiomersareactive,buttheyhaveverydifferentpotencies.  Bothenantiomershavesimilarorequalactivity.  Bothenantiomersareactive,butthetypeofactivityisdifferent. ThefirsttwosituationsareprevalentforinstanceLenantiomerofhypertensiveagent αmethyldopa (13) isactivebutDenantiomerisnot.Itisrarethatbothenantiomers have similar potency however examples are known for the case in which the enantiomers have different activities. Propoxyphene is interesting in that both enantiomershaveusefulbutdifferentbiologicalactivities.TheDenantiomerthatis givenatradenameDarvon ®(14) isananalgesic,ontheotherhand,theantipode (15) (Novrad ®)showsantitussivepropertiesbutnoanalgesiceffect(Figure6)[18]. For a pharmaceutical as biologically active compound it is useful to illustrate a hypotheticalinteractionbetweenachiraldruganditschiralbindingsiteinFigure7 [16] to view the difference between two enantiomers of a drug. The figure demonstratesthattheactiveenantiomerhasathreedimensionalstructurethatallows drugdomainAtointeractwithbindingsitedomaina,Btointeractwithb,andCto

Ph Ph CO - HO 2 Ph Ph Me Ph Ph + CO Et NH3 CO2Et 2 HO NMe2 NMe2

L-alpha-methyldopa Darvon (R) Novrad (R)

13 14 15 Figure6 Examplesforthechiralbiologicallyactivecompounds

8 interact withc. Incontrast, the inactive enantiomercannotbealignedtobindthe samethreesitessimultaneously.Thedifferenceinthreedimensionalstructureallows the active enantiomer to bind and have a biological effect, whereas the inactive enantiomercannotdothat.

Figure7 Thehypotheticalinteractionbetweenthetwoenantiomersofachiraldrug anditsbindingsite

Insomecases,theportionofamoleculecontainingthechiralcenter(s)maybeina regionthatdoesnotplayaroleinthemolecule’sabilitytointeractwithitstarget.In thesecases,theindividualenantiomersmaypossessverysimilarorevenequivalent pharmacologyattheirtargetsite.Eveninthesecases,theenantiomersmaydifferin theirmetabolicprofilesaswellastheiraffinitiesforotherreceptors,transporters,or enzymes[16].

9 1.2.2MethodsfortheSynthesisofChiralCompounds Enantioselective synthesis can be obtained in such away thatatleast one ofthe agentsinthesystemmustbechiral.Itisknownthattherearetwomajormethodsto achievethisobjectivenamely:ResolutionorAsymmetricSynthesiswhichincludes theuseofachiralstartingmaterial,chiralauxiliariesorreagents[19]. 1.2.2.1Resolution Theseparationofanopticallyinactiveenantiomericpairintoitsconstituentoptically activeenantiomersiscalled resolution andachiralagentofsomesortisrequiredin the process [20]. Although this method often is seen as the last way out of an enantioselective synthesis, and the least glamorous, there are many circumstances whenitisworthlookingintoaresolutionmethod.Untilrecently,theuseofachiral natural product as starting material or a resolution were the only two methods availableforthepreparationofachiralmaterial[19]. Asageneralway,thefirststepintheresolutionofracemicmixtureistheconversion oftheracemicmixtureintoadiastereomericmixturebymeansofareactionwithan optically active substance. Since the diastereomers will have different physical properties, they might be separated, for example, by recrystallization. Once this is achieved,thenextstepisthereversereactiontogivebacktheoriginalenantiomers. The whole process is then repeated until the optical rotation reaches a maximum [21]. 1.2.2.1.1KineticResolution Kinetic resolution involves using a chiral catalyst or reagent to promote selective reaction of one enantiomer over the other giving a mixture of enantioenriched startingmaterialandproduct,andthedesiredcomponentisthenisolatedascanbe seenfromtheFigure8[22]. 10 chiral catalyst separation SS + SR + reagent SS + PR SS or PR racemic substrate isolated Figure8 Catalytickineticresolution The theoretical yields for such resolutions are usually 50%. If the undesired resolutionbyproductcanberacemizedorcomebacktothedesiredenantiomer,then this can improve the yield, and thus the practicality, of the resolution process, provided the additional cost in time and materialsdoes not eclipse the cost of the initial resolution [22]. In some special circumstances, it is possible to induce substrateracemizationundertheconditionsofresolution.Itthenbecomespossiblein principletoconvertessentialy100%oftheracemate to the desired product. Such processesconstituteaveryspecialsubclassofkineticresolutionreactionsknownas dynamic kinetic resolution [22]. The variety of enzymecatalyzed kinetic resolutions of enantiomers reported in recent years is enormous. Similar to asymmetric synthesis enantioselective resolutions are carried out in either hydrolytic or esterificationtransesterification modes.Bothmodeshaveadvantagesanddisadvantages.Hydrolyticresolutionsthat are carried out in a predominantly aqueous medium are usually faster and, as a consequence, require smaller quantities of enzymes. On the other hand, esterifications in organic solvents are experimentally simpler procedures, allowing easyproductisolationandreuseoftheenzymewithoutimmobilization[23]. Althoughenzymecatalyzedkineticresolutionshavebeenknownforalongtime,the useofchemicalcatalyststoperformkineticresolutionsisarelativelynewresearch topic.Thefirstexampleofasuccessfulkineticresolutionusingachemicalcatalyst, although in stoichiometric amounts, was published in 1981 by Sharpless and his researchgroup(Figure9)[24].

11 OH OH OH (+)-DIPT (1.2 equiv) O Ti(Oi-Pr)4(1.0 equiv) + TBHP (0.6 equiv) R-alcohol threo/erythro:97/3 >96% ee 16 17 18

Figure9 Kineticresolutionofallylicalcohol 16 asreportedbySharpless 1.2.2.1.2OtherMethodsAvailableForResolution In order to achieve a resolution, there has been wide variety of methods either chemical such as chromatographic separation, selective crystallization of a single isomer,fractionalcrystallization,selectiveisomercrystallizationbyentrainmentand selective extraction with a chiral host compound or biological, for instance, enzymaticresolutionandcatalyticantibodies.Thesementionedmethodshavetobe triedtoobtainfortheparticularsysteminuse.Thefunctionalgroupspresentwithin thesubjectmoleculeoftendeterminewhichofthemethodsstatedcanbeutilized. Costandthescaleareothermajorfactors[19]. 1.2.2.2AsymmetricSynthesis Chiralcenterinamoleculecanbegeneratedbybeingawareofonthesynthesisto attaindesiredmoleculebyconsideringthreemajoroptionswhicharechiralstarting material,chiral reagent either chemical or biological,andchiralenvironment[19]. Chirality canalso beintroducedina temporary manner through the use of chiral auxiliarythatcanbeconsideredasasubclassofchiralsubstrates.Eachapproachhas advantagesanddisadvantagesandthesemustbeenvisionedonacasebycasebasis inordertoincreasethechanceofsuccessinsyntheticplan[19].

12 1.2.2.2.1ChiralStartingMaterial A substrate bearing one or more asymmetric centers which react with an achiral reagentinthepresenceofanachiralcatalystcanbeasourceofstereodifferentiation togainstereoselectivity[25].Itwaspublishedthatcyclocarbonylationof(1R,4R) isolimonene (19) (Figure10)inwhichthestereogeniccenterC 4isfarfromC 1that bears the isopropenyl group was accomplished. The reaction was catalyzed by palladium(II) precursors containing the nonchiral ligands 1,4 bis(diphenylphosphino)butane (dppb), or 1,1’bis(diphenylphosphino)ferrocene (dppf)[26].

4 [HPd(SnCI3)L2]

1 1 65oC, CO:40 bar 3 4

(1R, 4R)-isolimonene 19 20

Figure10 Cyclocarbonylationreactionof(1R,4R)isolimonene (19) 1.2.2.2.2ChiralReagents Ascanbeseeninmanyoftheways,thisistheapproachofchoiceasnatureutilizes thismethodologythroughenzymes.Thereagentmustbeselectivebothintermsof induction and functional group specificity. The need for protection should be considered carefully since the fact that this gives rise to the introduction of extra steps.Inaddition,chiralreagentshouldallowfortheexpensivecostcomponenttobe recycled,ifnecessary,orhaveaveryhighturnovernumber.Asdecidingtheuseof anychiralreagent,chemicalorbiological,inanyoftheenantioselectivesynthesis, someoftheissueshavetobecomparedproperly,forinstance,throughput,catalyst

13 cost, selectivity, yield, isolation and processing, operating conditions and catalyst design[19]. 1.2.2.2.3ChiralEnvironments Theenvironmentofachemicalreactioncanbemadeachiral.Themajorityofthe examplesinthisclassusechiralsolventsoradditives.Toaffectthedifferentiationof thefreeenergiesofthediastereomerictransitionstates,andthereforeenableuseful induction,theseagentsmustbecloselyassociatedwiththereactioncenter[19].In most cases, this has not been fruitful, as in the use of chiral solvents, but some reactionsthatusechiralligandsdoprovidegoodenantiomericexcessvalues[27]. 1.3 SynthesisofαHydroxyKetones The availabilityofefficientmethodsfor theconstruction of enantipure αhydroxy carbonylcompoundsisofconsiderableinterestsincethisstructuralarrayisfeatured inmanybiologicallyrelevantmolecules[28].Compoundscontainingthismoietyare indispensablebuildingblocksfortheasymmetricsynthesisofnaturalproducts[28] includingantitumoragents,antibiotics,pheromones,andsugarsduetotheirversatile functional groups which can be easily transformed to other functionalities, for examples,diols,halooraminoderivatives,andepoxidesthatcanbeseenfromthe Figure11[29]. 1.3.1ChemicalMethods Asitisstatedpreviously,chiralαhydroxyketonesareimportantbuildingblocksfor theasymmetricsynthesisofnaturalproductsandmedicines,consequently,numerous studies have aimed at their stereoselective synthesis [30]. αHydroxy ketones are generally prepared by one of the following methods such as αhydroxylation by treatmentoftheirenolateformswithamolybdenumperoxidereagentinTHFhexane at–70 oC[31],αhydroxylationofsilylenoletherswith mchloroperbenzoicacid[32] thatisknownasRubottomreaction,orwithcertainotheroxidizingagents,for 14 * R2 R1 NH2 * R * R2 OH * 2 R1 R1 * O OH

OH O R3 NH R * R2 2 * 2 R1 R1 * * R2 R1 OH OH * OH

NH2 R3 OH R * R2 * 2 OH R1 R1 * * NH OH * R2 2 R1 * NH2 Figure11 αHydroxyketonesasbuildingblocksforseveralactivecompounds example, 2sulfonyloxaziridine [33]. It is also known that there has been considerable interestinthe developmentof direct methodsforthesynthesisofα hydroxy ketones using nontoxic hypervalent iodine reagents. Recently, it was developed a microwaveassisted clean, simple and convenient method for the synthesisofαhydroxyketones[34].Thedirectformationofacyloinsfromolefins via ketohydroxylation thatisaprocessinwhichthreeCObondsareformedinone stepbyusingcertainoxidizingagentslikeKMnO 4orosmiumandrutheniumsalts

(OsO 4,OsCl 3,RuO 4,RuCl 3)seemsanotherefficientalternative[35]. 1.3.1.1Manganese(III)AcetateMediatedOxidationofEnones Synthesisofαhydroxyketonescanbeaccomplished byanother usefulmethodin which manganese(III) acetate (Mn(OAc) 3) is utilized as oxidizing agent. It is a versatilereagentandhasvarioustypeofapplicationinorganicchemistryandoneof themisthattheoxidationofenones 21 yieldingα´acetoxyenones[36].Oncetheα´ acetoxyenone 22 hasbeensynthesized,enzymemediatedkineticresolutionresultsin

15 theformationofα´hydroxyketone 23 derivativesofcorrespondingacetoxyenones (Figure 12). It was reported that many of the chemoenzymatic synthesis of pharmacologically interesting compounds were synthesized in optically pure form, such as (R)2hydroxypropiophenones [37], and both enantiomers of 4 hydroxycyclohex2ene1one[38]. O O Mn(OAc)3 O R RCO2H solvent O reflux 21 22 Enzyme

O O OH O R * + * O

23 24

Figure12 Mn(OAc) 3oxidationfollowedbyenzymatickineticresolutionyieldsα´ hydroxyandα´acetoxyketones 1.3.2BiotechnologicalMethods The synthesis of chiral αhydroxy ketones can be performed by using another methodology namely biotechnology. As it was previously stated that chiral α hydroxy ketones has great synthetic importance in organic and pharmaceutical chemistry,forinstance,thesynthesisofvitaminEandantifungals[39].Anotherwell knownexampleis(R)phenylacetylcarbinol (26) (PAC).Formanydecades,thispre step for the synthesis of (1R,2S)ephedrine (27) has been obtained by biotransformationofbenzaldehyde (25) usingfermentingyeast[40]ascanbeseen fromFigure13.

16 O OH OH

CH3 CH3 H Glucose MeNH2

O NH2CH3 Yeast Pt/H2

(R)-phenylacetylcarbinol (1R,2S)-ephedrine 25 26 27

Figure13 Synthesisof(1R,2S)ephedrine (27) Chiralαhydroxyketones(acyloins)canbeobtainedbyanumberofenzymesunder relativelymildconditionsviaapolaritychange(umpolung)onthecarbonylcarbon in order to form an acylanion equivalent synthon. Several enzymes, such as acetohydroxyacid synthase (AHAS), benzaldehyde lyase (BAL), benzoylformate decarboxylase (BFD), phenylpyruvate decarboxylase (PhPDC), and pyruvate decarboxylase(PDC)catalyzedesiredreaction.Theseenzymesallrelyonacofactor, namely thiamine pyrophosphate (TPP) (28) (Figure 14). The cofactor thiamine pyrophosphate (TPP) or thiamine diphosphate(TDP),anaturalthiazoliumsalthas three distinctive units, which include a pyrophosphate part, a thiazolium core and pyrimidineunit.Itactsbyacovalentinteractionwiththesubstrate.TPPismainly engagedinavarietyofcarboncarbonbondformingreactions,inwhicheachunithas aspecialroleinenzymaticcatalysts[29].

O O N P S O O O H2N N P 28 N O O Figure14 Thiaminepyrophosphate(TPP)structure

17 1.4 FungiMediatedConversions:FungiasChemicalReagents Fungiareeukaryoticorganisms,thatis,membraneboundnucleicontainingseveral chromosomesandcytoplasmicorganelles.Theytypicallygrowasfilaments,termed hyphae with apical growth in contrast to many other filamentous organisms like filamentousgreenalgae.Fungiareheterotrophs.Inotherwords,theyneedpreformed organic compounds as energy sources and also as carbon skeletons for cellular synthesis.Theyhavedistinctiverangeofwallcomponentswhichtypicallyincluding chitinandglucans.Fungihavehaploidnucleithat is an important differencefrom almost all other eukaryotes. In addition, they produce spores by both sexual and asexualmeans[41].Yeasts,molds,mushroomsareexamplesoffungi. Fungihavemanytraditionalrolesinbiotechnologybutalsosomenovelroles,and thereismajorscopefortheirfuturecommercialdevelopment.Forexample,fungiare usedtoproduceseveraltraditionalfoodsandbeverages including alcoholic drinks and bread. Several metabolites of both primary and secondary metabolites are produced commercially from fungal cultures such as secondary metabolites of penicillinsandgriseofulvin.Inspiteofthese,itisimportanttonotethatfungihave many internal enzymes and enzymic pathways that can be exploited for the bioconversionofmanyorganiccompounds[41]. Fungiandtheirenzymeshavebeenusedtofunctionalizenonactivatedcarbonatoms, to introduce centers of chirality into optically inactive substrates,and to carry out optical resolutions of racemic mixtures. The types of chemistries catalyzed by microbialfungi catalysts canbe outlinedas hydrolysis, oxidations, reductions and other additional chemistries (e.g. acyloin condensation, isomerization, decarboxylation,)[42]. Stereo and regioselective hydrolysis are among the most widely applied fungi mediated bioconversion reactions. Application of hydrolysis for stereoselective resolutionsofmanyesters,epoxides,nitrilesandhavebeencoveredinmany studies[42].Asymmetrichydrolysisof1,2epoxyoctaneto1,2octanediolwas

18 studiedandexcellentenantioselectivityfor1,2epoxyoctanewasreported[43].The enantioselectivebiohydrolysisofvarioussubstitutedalkylepoxidesbyusingseven differentfungiinhighenantiomericpurityweredescribed[44].Inanotherstudy,the enzymatic kinetic resolution of 2hydroxymethyl2,5dihydrofuran and pyrrole derivatives has been studied. of primary alcohols as well as the hydrolysis and alcoholysis of the corresponding acetates were investigated in the presenceofdifferentlipasesextractedfromdifferentkindsoffungus[45]. Fungimediatedbiooxidationreactionshavealsomanyoftheexamplesinliterature. Forinstance,baeyervilligerbiooxidationofprochiral3substitutedcyclobutanones were carried out using the fungus Cunninghamella echinulata . βsubstituted γ butyrolactones were obtained in high enantiomeric excess (ee ≥ 98%) [46]. The fungus Beauveria bassiana was employed to hydroxylate pyrimidine heterocycles regioselectively.Carbamatewashydroxylatedby B.bassiana attheC 5positionofthe pyrimidinering[47]. Stereospecificbioreductionreactionshavebecomea key approachfor asymmetric synthesisofchiralalcoholsinpharmaceuticalandotherindustries,andareamongthe mostwidelyusedmicrobialreactionsinsyntheticorganicchemistry[42].Specific examplescanbestatedaschemoenzymaticsynthesis of optically active(R)(+)2 methylbutan1olinwhichthekeystepinvolvedareduction catalyzed by baker’s yeast was performed [48]. The synthon was used in the synthesis of (R)10 methyldodecan1yl acetate,thechiralmethylbranchedpheromone of Adoxophyes sp.Inspiteofthis,fungimediatedbioreductionofbenzil (29) tobenzoin (30 ,32) ,as wellasbenzointohydrobenzoin (31) wasaccomplished(Figure15)[49].

19 O

O 29 Benzil

O OH O

OH OH OH

R-benzoin (R,R)-hydrobenzoin S-benzoin

30 31 32

O 33

OH

Racemic benzoin Figure15 Fungimediatedconversionofbenziltobenzoinandhydrobenzoin Severaladditionalbiocatalyticchemistrieshavebeenofkeyimportancetoproducts. Asymmetric microbial acyloin condensation was discovered in 1921 and utilized since1934inthesynthesisofthenatural(1R,2S)ephedrine (27) . In this thiamine pyrophosphate (28) mediated process, benzaldehyde (25) is added to fermenting yeast and reacts with acetaldehyde, generated from glucose by the biocatalyst, to yield (R)1phenyl1hydroxy2propanone (26) . The enzymatically induced chiral centerhelpsintheasymmetric,reductive(chemical)condensationwithmethylamine to yield (1R,2S)ephedrine (27) (Figure 13). Substituted benzaldehyde derivatives react in the same manner. Similar asymmetric aldol condensations have been developed for the synthesis of unusual sugars for pharmaceutical and materials applications[42].

20 1.5 OseltamivirPhosphate(TAMIFLU) Oseltamivirphosphate (34) (Figure16)isaprodrugwhichishydrolyzedhepatically to the active metabolite (35) , the free carboxylate of oseltamivir (GS4071). It is a potentinhibitorofinfluenzaAandBneuraminidasecommerciallydeveloped.Itis orallyadministeredforthetreatmentandpreventionofinfluenzainfections[50].It wasdevelopedbyGileadSciencesandiscurrentlymarketedbyHoffmanLaRoche (Roche)underthetradenameTamiflu ®.Itisusedworldwideandtherecentspread of the avian virus H5N1 has prompted governments to stockpile Tamiflu as a precautionarymeasureagainstaninfluenzapandemic.However,thehighcostofthe drugmakesitdifficultfordevelopingcountriestostockpileTamiflu[51].

O O O O O O

O N O N H H NH2.H3PO4 NH2 34 35

Figure16 Oseltamivirphosphate (34) anditsactivemetabolite (35) Commercialproductionofoseltamivirstartsfromthebiomoleculeshikimicacid (36) harvestedfromChinesestaranise.Largescaleproductionofthedrugislimitedby thescarcityofthissyntheticprecursor.ItwasreportedthatUSgovernmentplanto store300milliondosesofTamiflu,23tonsofbulkdrugsubstanceandthatwouldbe required(assumingayieldof35%fromshikimicacidtooseltamivirphosphateanda doseof75mg),equivalenttoabout840tonsofstaranise[52]. TheneedsfortheUSaloneclearlyrequireanalternative source of shikimicacid. This was partially addressed by Frost and coworkers [53]. They were able to genetically modify E.coli to produce shikimic acid by recombinant microbial

21 biocatalysis.Currently,thefermentationapproachsuppliesapproximately30%ofthe presentrequirements[52]. ThecurrentmanufacturingprocessisillustratedinFigure17.Thesynthesisproceeds throughintermediate 37 ,whichisregioselectivelyreducedtoepoxide 38 [54].The process involves the use of potentially hazardous azide 39 . Overall yield was mentionedas2729%,howeverthedependenceonusingazidechemistryinorderto convert 38 intooseltamivirphosphate (34) wasconsideredaweaknessinthisfirst generationmanufacturingprocess[52].

CO2H CO2Et CO2Et

HO OH O OMs O O OH O

36 37 38

CO2Et CO2Et

O O NH +H PO - NR 3 2 4 NHAc 39 34

Figure17 Keyintermediatestooseltamivirphosphatefromshikimicacid ThereactionsequencedescribedinFigure18representsanew,unprecedentedazide freetransformationofan 38 intoa1,2diaminocompound 44 avoidingreductionand hydrogenationconditions[55].Overallyieldwasincreasedupto3538%compared withpreviousmethodologyshowninFigure17. Thesynthesisstartsfrom()shikimicacid.The3,4pentylideneacetalmesylate (37) ispreparedafterthreesteps:esterificationwithethanolandthionylchloride,

22 ketalization with ptoluenesulfonic acid and 3pentanone and mesylation with andmethanesulfonylchloride.Thecorrespondingepoxide 38 isformed underbasicconditionswithpotassiumbicarbonate.Theepoxideisopenedwithallyl by using magnesium bromide diethyl etherate as lewis acid to yield the corresponding 1,2aminoalcohol 42 . The deprotected 1,2aminoalcohol 43 is obtainedbyreductiononpalladiumwhichispromoted by ethanolamine and after acidicworkup.Theaminoalcoholisconvertedintocorrespondingallyldiamine 44 after four steps. Selective acylation with acetic anhydride yields the desired N acetylated product 45 which is then deallylated in order to get freebase of oseltamivir, which is converted to the desired oseltamivir phosphate (34) by treatmentwithphosphoricacid. SomeofthenewapproachesforthesynthesisofTamifluhavebeenreportedfrom the academic chemists. Corey and coworkers reported an interesting approach (Figure 19) employing 1,3butadiene (46) and trifluoroethyl acrylate (47) as raw materials [56]. Butadiene reacts in an asymmetric DielsAlder reaction with trifluoroethyl acrylate catalyzed by oxazaborolidine CBS catalyst (48) . This cycloadditionwasfollowedbyamidation,iodolactamization,andprotectiontoyield 50 ,dehydrohalogenationofwhichfollowedbyallylicbrominationyielded 52 . promoted dehydrohalogenation gave 53 , and itsregio and stereoselective bromo amidation yielded 54 . Sequential dehydrohalogenation gave an intermediate aziridine, which was regioselectively opened with 2pentanol to furnish 55 . After that, deprotection of 55 produced oseltamivirphosphate (34) in11chemicalsteps andabout30%overallyield.

23 CO2H CO2Et CO2Et EtOH O SOCI TsOH HO OH 2 HO OH O OH OH OH O 36 40 41

CO2Et CO2Et

MsCI 1.TMSOTf, BH3-Me2S Et N OMs 2.KHCO aq.EtOH O 3 O 3, O O 37 38

1. NH2 CO Et MgBr .OEt (O.2 equiv.) 2 2 2 1. Pd/C, EtOH t-BuOMe/MeCN 9:1 H NCH CH OH o 2 2 2 55 C, 16 h reflux, 3 h O NH

2. (NH4)2SO4/H2O OH 2. H2SO4/H2O 97% 77% 42

CO2Et CO2Et 1. PhCHO, t-BuOMe,-H2O

2. MsCI, NEt3, filtration O NH2 O NH NH , 112oC, 15h OH 3. 2 NH2 4. HCI/H O 43 2 44

CO2Et 1. 10% Pd/C, EtOH H2NCH2CH2OH 1. Ac2O, AcOH,MsOH reflux, 3h O NH o 2. t-BuOMe, 15h, 20 C NHAc 2. H3PO4,EtOH, 70% 45

CO2Et

+ - O NH3 .H2PO4 NHAc 34 Figure18 Anewazidefreeproductionofoseltamivirstartingfromshikimicacid

24 H Ph 48 N Ph NTf2 H B O 1. NH3, CF3CH2OH,5h o-Tol 2. TMSOTf, Et3N, pentane I + o 3. I Et O/THF,2h CO2CH2CF3 10 mol%, 23 C CO2CH2CF3 2, 2 30h 4. (Boc)2O, Et3N N DMAP, CH CI Boc O 46 47 49 2 2 50

Br DBU, THF NBS, cat.AIBN Cs2CO3, EtOH

N 25 min reflux, 12h CCI4, reflux, 2h N NHBoc CO2Et Boc O Boc O 51 52 53

NHAc 5 mol % SnBr4 O Br n-Bu4NBr, KHMDS, DME NBA, MeCN AcHN o -40 C, 4h cat. Cu+2, 3-pentanol BocHN CO2Et BocHN CO2Et 54 55

H3PO4 34 EtOH Figure19 Coreyandcoworker’sapproach Shibasakiandcoworkersalsopublishedanenantioselectiveapproachtooseltamivir by using another cheap and widely available raw material, 1,4cyclohexadiene as illustratedinFigure20[57].Acylaziridine 56 openingisachievedbytheuseofY III catalystandchiralligand 57 with91%ee.Aftersomefunctionalmanipulationsand allylic oxidation in twosteps usingselenium dioxideandDessMartin periodinane yielded 60 . Nicatalyzed cyanation yielded 61 , which was then stereoselectively reducedto 62 .ThecrucialetherbondwasformedbyaMitsunobureaction,andthen standardrequiredmanipulationsyielded 34 in17stepsandoverallyieldof1%. CongandYaoalsoreportedasynthesisoftheactivepharmaceuticalingredientby usingacheapandwidelyavailablechiralrawmaterial, Lserine[58].Thesynthesis is based on a ringclosing metathesis reaction, catalyzed by secondgeneration Ru carbenespecies.

25 Shibasakiandcoworkersrecentlyreportedanewcatalyticasymmetricsynthesisof Tamiflu which is mainly based on cyanophosphorylation of enone skeleton and allylic substitution with an oxygen nucleophile [59]. This study was followed by anothersyntheticroutebythesamegroup.Inthiswork,synthesisofTamifluwas achievedin12stepsusingtheDielsAlderreactionandCurtiesrearrangementaskey steps[60].

O 1. Boc2O, DMAP, CH3CN NO NHCOAr 2. NaOH, rt, 2h NHBoc N 2 Me3SiN3

Y(OR)3 N 3. Ph P, CH CN, H O NHBoc cat. 57 3 3 3 2 4. Boc2O, Et3N, CH2Cl2 NO2 56 58 59

O 1. Ni(COD)2, COD O NHBoc SeO2 TMSCN NHBoc

Dess-Martin NHBoc 2. NBS, THF, Et N periodinane 3 CN NHBoc 60 61

OH O LiAlH(OBu) NHBoc 3 NHBoc o THF, 4 C, 30min CN NHBoc CN NHBoc 62 63 O O 34 P Ph Ph HO O F 57 HO F Figure20 Shibasakiandcoworker’sapproach Another interesting study was published by Fang and coworkers [61]. They synthesizedtheTamifluanditsphosphonatecongenerandtheguanidineanalogues withreasonablyhighyields(5.213.5%).

26 In spite of these approaches, Fukuyama and coworkers reported recently a new synthetic way to get oseltamivir starting from and acrolein [51]. The synthesiscommenceswiththeasymmetricDielsAlderreactionlikeCorey’sstarts. 1.6 AimoftheWork The enantioselectivechemoenzymaticsynthesisof oseltamivir’s intermediates was aimed in this study. Influenza remains a major health problem for humans and animals. Oseltamivir is an antiinfluenza drug and a competitive inhibitor of both influenza A and B neuraminidase. It is orally administered for the treatment and preventionofinfluenzainfections[51].Forthesereasons,theasymmetricsynthesis of oseltamivir’s intermediates has a great importance in terms of development of concise methodologies to yield this biologically active molecule. It is therefore requiredtosynthesizefirstlythecarboethoxycyclohexenoneskeleton 68 thatexists inthestructureofdrug,commencingfromcheapandreadilyavailablesubstances. Synthetic sequence is considered to start with cyanohydrin formation from cyclohexanone (64) and is followed by acidcatalyzed oxidation and then esterificationtoyield 66 .Basecatalyzedeliminationandallylicoxidationfurnish 68 . Next, the chiral center is considered to be generated on the αcarbon of enone structure 68 toattain 69 eitherbychemicaloxidationinwhichMn(OAc) 3isusedas an oxidant, followed by enzymemediated hydrolysis, or by direct microbial biooxidationinwhichfungiareutilizedasbiocatalyst(Figure21).

O OH OH CO2Et CN CO2Et Cyanation Esterification Elimination

64 65 66 67

CO2Et CO2Et Oxidation Mn(OAc)3, enzyme or * 69 O O 68 Whole cell biocatalyst OH Figure21 Aimofthework

27 CHAPTER2 RESULTSANDDISCUSSION 2.1PerspectiveoftheWork OseltamivirisoneofthemostpromisingtherapeuticsforthetreatmentoftheH5N1 avian influenza virus and is employed in the inhibition of neuraminidase (NA), whichisamajorsurfaceglycoproteinexpressedbybothinfluenzaAandBviruses [62],asitwaspointedoutpreviously. Thesynthesisofnovelprecursorspossessingpotentialsuchthattheycanbeutilized inthetotalsynthesisofoseltamivir,carryagreatimportanceinordertodesignand develop new routes to synthesize oseltamivir. A molecule, ethyl 4hydroxy3 oxocyclohex1enecarboxylate (69) ,hasbeenconsideredavaluablekeyintermediate thatcanbeemployedintheoseltamivirtotalsynthesisandforthisreason,apossible syntheticpathwayhasbeenfiguredoutinFigure21 starting from easily available compoundstogetthismolecule. Thesynthesiswasstartedwithcyanohydrinformationfromcyclohexanone (64) to furnishcyclohexanonecyanohydrin (65) whichwashydrolyzedtocarboxylicacidin acidicconditionandathightemperature.Afteresterificationinordertogetethyl1 hydroxycyclohexanecarboxylate (66) , basecatalyzed elimination yielded 1 carboethoxycyclohexene (67) .Next,allylicoxidationassistedtoform1carboethoxy cyclohexene3one (68) .Asymmetriccenterwasgeneratedontheαcarbonofenone 68 bybothofthestrategiesstatedearliernamely,manganese(III)acetatemediated α´acetoxylationfollowedbystereoselectiveenzymemediatedhydrolysis,andfungi mediateddirectmicrobialbiooxidation.

28 Manganese(III)acetate(Mn(OAc) 3)isaversatilereagentthatcanbeutilizedinthe oxidationof enone in order to yieldα´acetoxyenone structure [36]. This racemic enone scaffold was then hydrolyzed enantioselectively by lipase type enzymes isolated from different microorganisms in order to get enantioenriched α´ acetoxyenoneandα´hydroxyenone. Lipasecatalyzedasymmetricaccesstoenantiomericallypurecompoundsisarapidly growingfieldinsyntheticorganicchemistry[63].Lipaseshaveprovenparticularly to be useful for asymmetric synthesis because of their abilities to discriminate betweenenantiotopicesterandhydroxylgroups.Lipasecatalyzedkineticresolutions areoftenpracticalforthepreparationofopticallyactivepharmaceuticals[23]. Fungimediated bioconversion reactions have been widely used in recent years as they are easy to handle, environmentally benignand inexpensive. Fungi mediated biooxidation reactions have interesting examples in literature as stated earlier [46,47].Inthisstudy,manyofthereadilyavailablefungibelongingto Aspergillus and Fusarium genera have been screened for their ability to catalyze oxidation of carboethoxyenonestructure 68 atα´positiontofurnish 69 .Itwasdeterminedthat two Aspergillus species namely, A. oryzae , A. flavus , had enzyme system that catalyzeddesiredreactionwhichwasα´hydroxylation. AchemoenzymaticsyntheticpathwayshowninFigure22toattainethyl4hydroxy 3oxocyclohex1enecarboxylate (69) have been developed starting from easily availablecompounds.Itisbelievedthatthisenantioenrichedcompound 69 mightbe akeyintermediateinconcisealternativemethodstosynthesizeoseltamivir.

29 O OH CO2Et CO2Et

O 64 66 68

CO2Et

69 ∗ O OH Figure22 Syntheticroutetointermediate 69 2.2RetrosyntheticAnalysisofOseltamivir Thestructureofoseltamiviractuallycorrespondstotheethylesterofthecarbocyclic sialic acid analogue that was originally designed as a transition state based neuraminidaseinhibitor[64].Itpossessesahydrophobicmoietythatformsastrong bondwiththeinteriorcleftofneuraminidaseandthusinactivatingit[65].Inorderto get this deserving trisubstituted cyclohexene ethylcarboxylate structure, the retrosyntheticanalysisoutlinedinFigure23canbeproposed.

CO2Et CO2Et CO2Et

+ - O NH3 .H2PO4 O NH2 O NHAc NHAc NHAc

34 70 71

CO2Et CO2Et CO2Et

HO O O

NH2 OH 72 73 68

Figure23 RetrosynthesisofOseltamivir

30 The molecule 1carboethoxycyclohexene3one (68) seems a potential starting materialforthesynthesisof 34 afterretrosyntheticanalysis.Thisvaluableprecursor could be converted into α´hydroxyenone 73 either by Mn(OAc) 3 mediated acetoxylation followed by enzyme mediated hydrolysis or direct microbial α´ hydroxylation. The cyclic trans amino alcohol 72 could be derived from 73 by regioselective reduction and amine formation. A molecule 71 , a precursor of 70 , couldbeconstructedfrom 72 byselectiveacylationandhydrophobicmoietyin 71 couldbegeneratedbypentyloxylation.Finally,oseltamivirphosphate (34) couldbe derivedfromthediaminocompound 70 asasalt. 2.3SynthesisofEnoneStructure Thesynthesis(Figure22)ofenonestructure 68 consideredtobethestartingpointin theroutetooseltamivir,havebeencommencedwiththesynthesisofcyclohexanone cyanohydrin (65) startingwithcyclohexanone (64) ascanbeseenfromtheFigure 24.

O OH CN NaCN, Et2O

H2O, conc. HCI 64 65

Figure24 Synthesisofcyclohexanonecyanohydrin In a threenecked round bottom flaskcyclohexanone, diethylether and water were placedandthensodiumcyanidewasaddedallatoncewithvigorousstirring. The flask was surrounded by an icesalt bath. When most ofthe sodium cyanide was dissolved and the temperature of the mixture was fallen to 5 oC, concentrated hydrochloric acid was added from the dropping funnel at such a rate that the temperatureremainedbetween5 oCand10 oC.Itisimportanttokeepthetemperature

31 ofmixtureinthisrangesincethisacidcatalyzedcyanideadditionisanexothermic reaction. Afterall theacidhas beenadded,thecoolingbathwasremovedandthe stirringwascontinuedfor2hours.Then,themixturewasallowedtosettle.Organic layerwasseparatedandtheaqueouslayerwaswashedwithanadditionalamountof watertodissolvethesalts.Aqueoussolutionwasextracted four times with 50mL portions of ether that was combined with original ether layer. Ether was then evaporatedandcyanohydrinproductwasattainedwith88%yieldascolourlessoil.It shouldbenotedthatthementionedpreparationwas conductedinahoodtoavoid exposuretothepoisonoushydrogencyanidethatwasevolved. The synthesis of cyclohexanol1ethylcarboxylate (66) was considered to be accomplishedbyusingethanolicconcentratedHClsolution(20%v/v)underreflux. However,thiswasnotthecase.Forthisreason,anothermethodologywasconceived. Itwasdecidedthat cyanohydrincould behydrolyzed to corresponding carboxylic acid 74 inacidicconditionsandathightemperature(Figure25),then 74 couldbe esterifiedtothedesiredcyclohexanol1ethylcarboxylate (66) asillustratedinFigure 26.

OH OH CN COOH gla. CH3CO2H

conc. HCI, reflux 3h 65 74

Figure25 Synthesisof1hydroxycyclohexanecarboxylicacid

The cyclohexanone cyanohydrin (65) was refluxed with glacial acetic acid and concentrated HCl for 3 hours. The solution was then concentrated in vacuo, the residue dissolvedinchloroform,washed withwater andpurified bymeans ofthe sodiumsaltusingNaOHsolution.SolutionwasthenacidifiedbyconcentratedHCl.

32 Chloroformextractionandthenevaporationofchloroformgavewhitegranulesofthe desiredproduct 74 withanisolatedyieldof60%.

OH OH COOH CO2Et EtOH, C6H6

conc. H2SO4 74 reflux overnight 66

Figure26 Synthesisofcyclohexanol1ethylcarboxylate

Inordertoobtain 66 ,catalyticamountofconcentratedH 2SO 4wasaddedtoastirred solutionof 74 andethanolinandthemixturewasrefluxedovernight.After that, the solvent was removed in vacuo and the residue dissolved in ether. The unchanged acid was filtered off, the solution was washed with sodium hydrogencarbonatesolutiontoeliminateanyunreactedacidresidue.Afterrequired separationandpurificationthe 66 wasgatheredwith65%yield. It was decided that 1carboethoxycyclohexene (67) can be synthesized from previouslyobtained 66 by firstchlorinationwiththionylchloride(SOCl 2)andthen eliminationcatalyzedbypyridineasaweakbaseasshowninFigure27.Itshouldbe notedthatcaremustbetakensincethetemperaturewasrisedrapidlywhileaddition ofSOCl 2tothereactionmixtureandsomehazardousgasesSO 2andHClmightbe evolved.Afterworkup,thedesiredproduct 67 wasobtainedin86%yield.Itwasalso consideredtodothiseliminationinacidicmediathatconcentratedH 2SO 4and85%

H3PO 4wereusedseparately,however,inthesecasestheproductyieldswerevery lowandmanyofthebyproductswereobserved.

33 OH CO2Et CO2Et SOCl2 pyridine 66 under Ar 67

Figure27 Synthesisof1carboethoxycyclohexene Theoxidationofolefin 67 toanα,βunsaturatedketone 68 hasbeenaccomplishedby utilizing chromium trioxide (CrO 3) as an oxidant in acetic acid (AcOH). The procedure[66]publishedbeforewasapplied.WhiletheadditionofCrO 3toreaction mixture in which olefin was dissolved in AcOH and small amount of water, the temperaturestartedtoincreasesoitwasmaintainedat40 oCbyexternalcooling.The isolated product 68 was obtained in 57% yield. The reaction pattern can be summarizedinFigure28asfollows.

CO2Et CO2Et

CrO3, AcOH

H2O O 67 68

Figure28 Synthesisof1carboethoxycyclohexene3one

2.4OxidationofEnonebyChemoenzymaticMethod Selective α´acetoxylation of α,βunsaturated ketones enables key precursors for pharmaceuticallyimportantcompoundsandusefulchiralligands[67].Manyofthe successfulα´acetoxylationinwhichmanganese(III)acetatehavebeenutilizedas anoxidant,ofagreatvarietyofsubstrateshavebeenreportedinliteratureandtoday,

Mn(OAc) 3 mediated acetoxylation is one of the most useful methods for the synthesisofα´acetoxyα,βunsaturatedketones[68].

34 Itis clear that theenone structure 68 previously synthesizedcould betransformed intocorrespondingα´acetoxyenonebytheuseofMn(OAc) 3.Inordertodothat first Mn(OAc) 3 was synthesized starting from commercially available

Mn(OAc) 2.4H 2O. Powdered Mn(OAc) 2.4H 2O was added to glacial acetic acid and waitedfor1hourforstirring.Towellstirredmixture,KMnO 4powderwasaddedin small portions and waited for 12 hours. The mixture was allowed to cool room temperatureandsmallamountofwaterwasadded.After 24hours precipitate was collectedonaglassfilterbywashingwithglacialaceticacid.Then,itwasdriedover

P2O5underhighvacuumtoremovewater.Finally,Mn(OAc) 3wasobtainedasadark browncoloredcrystall. Itshouldbenotedthattherehavebeensomeproblems associated with the use of

Mn(OAc) 3 due to inconsistent results in literature, and unclear synthetic and mechanistic aspects of Mn(OAc) 3 mediated oxidation of enones. However, Demir andcoworkers[68]solvedthesemisunderstandings.Intheirreport,theprocedure fordirectacetoxylationofenoneshasbeenimprovedbytheuseofaceticacidasa cosolvent from a synthetic point of view and by use of as low as 1.25 equiv.

Mn(OAc) 3whichaddstoeconomyoftheprocess.Thereactionwascarriedoutina AcOHbenzene(1:10)mixture.Forthesereasons,basedonaprocedurereportedby Demir and coworkers [68] 4acetoxy1carboethoxycyclohexene3one (rac 75) hasbeensynthesizedasaracematethatisillustratedinFigure29.

CO2Et CO2Et

Mn(OAc)3

O PhH, AcOH O reflux OAc 68 rac-75 Figure29 Synthesisof4acetoxy1carboethoxycyclohexene3one

35 TheroleofaceticacidcouldberelatedtoanincreasedsolubilityofMn(OAc) 3 inthe reactionmixturehowever,aceticanhydridecouldbealsousedinsteadofaceticacid. Although benzene was employed as a solvent, cyclohexane and MeCN could be utilizedforthepresentedreactioninFigure29[68]. Itwaswaitedforatimeatwhichnofurtherchangewasobservedinreactionmixture thereforethereactionwasterminatedafter17hoursreflux.Thecrudeproductswere purified by flash column chromatography using EtOAchexane (1:5) as eluent. 4 acetoxy1carboethoxycyclohexene3one (rac 75) was obtained with 98% yield andnootherproductswereobserved.Thatseemsaveryefficientreactionintermsof yieldandselectivity. The mechanism for the oxidation of enones to α´acetoxyenones was not fully describedinliterature.Severalmechanismswereproposedforthisoxidation.Oneof themdeclaredthatα´acetoxyenonescouldbegeneratedbytheformationofametal enolate followed by acetate transfer as can be seen from the Figure 30 (path a), analogous tothe lead(IV) acetate oxidation [69]. However, since the oxidation of carbonyl compounds with Mn(OAc) 3 was reported to involve an αoxo radical resulting from the oxidation of an enol or enolate anion by Mn(OAc) 3 [70], it is viablethatthisreactionalsoproceeds via theformationofanαoxoradicalfollowed byligandtransfer(Figure30(pathb))toyieldthecorrespondingacetoxyenone.

Mn(III) O O O Mn(III) a

EtO2C EtO2C EtO2C

Mn(III) AcO Mn O O O O OAc Mn(III) O b

EtO C EtO C 2 EtO2C 2

Figure30 Proposedmechanismsforselectiveα’acetoxylation

36 Thestructureof rac 75 hasbeenconfirmedbyNMRandGCMSanalysis. 1HNMR spectrum(Figure48)ofthecorrespondingcompoundshowedthatsingletat6.7ppm results from olefinic proton. Doublet of doublet at 5.25 shows a proton that is attached to αcarbon (CH) and coupled with two different protons at βposition.

Quartetat4.21ppmisduetothetwoequalmethylene(CH 2)protonsinethylester moiety. Multiplets at 2.83 ppm, 2.61 ppm, and 2.25 ppm are due to the two methyleneγprotonsandonemethyleneβproton,respectively. Singlet at 2.1 ppm proves the presence of three methyl (CH 3) protons of the acetoxy group. Additionally, asignal due to one of the βproton splitted as multiplet at2.05ppm overlapsthesingletat2.1ppm.Tripletat1.3ppmindicatesthethreemethylprotons intheethylestergroup. Inadditiontothat, 13 CNMRspectrum(Figure49)illustratedthatthereisacarbonyl carbonpeakat194ppm.Thepeaksat169and165ppmillustratethepresenceof othercarbonylcarbonsattachedtooxygens.Olefiniccarbonsgivesignalsat148and 131 ppm.Thepeakat73ppm isdueto thetertiary methine carbon. The carbon attachedtooxygeninestermoietygivesasignalat61ppmandtherestofthefour peaksbetween27and14ppmsupportthepresenceofsp 3hybridizedsaturatedfour carbonatoms. Furthermore,GCMSanalysisrevealedthatmolecularionpeak(M +)isobservedat masstochargeratio(m/z)of226whichisthemolecularweightofdesiredacetoxy enonemolecule rac 75 .Basepeakisatm/z43showsthepresenceofacetylgroup andremovalofthissidegroupfrommoleculepredominatestheotherpeaks.Other related peaks and their relative abundances are possessed in Figure 50. These characterizationproceduresrevealedthefactthatthesynthesisofthedesiredacetoxy enone rac 75 hasbeenaccomplished. It is required to state that lipases have enormous potential in chemical synthesis because of several reasons: (1) They are stable in organic environment; (2) they possess broad substrate specificity; (3) they exhibit high regio and enantioselectivity.Anumberoflipaseshavebeenisolatedfromfungiandbacteria

37 andcharacterized[71].Lipasesareusedtoprepareenantiomericallypureesters,and alcohols. The study presented in here constitutes a good example for the aforementionedstatement such that several lipase typeenzymes were screened for enantioselectivehydrolysisofacetoxyenone rac 75 inordertoyieldenantioenriched acetoxyandhydroxyenone 69 . InatypicalexperimentshowninFigure31,forenzymatichydrolysis,theracemic acetoxyenone 75 wasdissolvedinDMSOandthenphosphatebuffer(pH:6.9)was added.Themixturewasthenstirredatroomtemperatureinthepresenceofenzyme. The reaction was monitored by TLC. As approximately 50% conversion was attained, the reactions were terminated. The crude product was separated by preparativeTLCtoaffordenantioenrichedacetoxyenone 75 andhydroxyenone 69 .

O O O OAc enzyme, DMSO OAc OH **+ buffer (pH=6.9) EtO2C EtO2C EtO2C 75 75 69 rac-

Figure31 Enzymemediatedhydrolysisofacetoxyenone rac 75 The structure of hydroxy enone compound 69 has been determinedby theuse of previouslystatedtechniques;NMRandGCMS. 1HNMRspectrum(Figure51)of correspondinghydroxyenoneshowedthefactthatsingletat 6.7ppmresultsfrom olefinic proton at αposition. Quartet at 4.2 ppm is resulted from two methylene protonsattachedtoestergroupandtheywerecoupledwithsaturatedmethylprotons ofethylestermoiety.Doubletofdoubletat4.1ppmisduetotheprotonattachedto methinecarbonwhichisadjacenttocarbonylandhydroxygroupsanditappearsthat itiscoupledwithtwodifferentprotonsatβposition.Protonofhydroxygroupcanbe seenat3.45ppmasasinglet.Multipletat2.8ppm isduetooneof theγproton adjacenttoolefin.Anothermethyleneprotonadjacenttodoublebondgivemultiplet

38 at2.55ppm.Multipletat2.4ppmisbecauseofoneofthemethyleneprotonatβ positionthatissplittedbyonegeminalproton,onemethineprotonatαpositionand two unequal vicinal protons adjacent to double bond. The presence of other methyleneprotoncanbefiguredoutasdoublet(duetoonegeminalandtwovicinal protons)ofquartet(duetovicinalprotonatαposition)at1.8ppm.Tripletat1.3ppm provesthepresenceofthethreemethylprotonscoupledwithtwomethyleneprotons attachedtooxygenintheethylestergroup. 13 CNMRspectrum(Figure52)ofthecorrespondingcompoundillustratedthatthere havebeenninedifferentcarbonatomssuchthatthesignalat200ppmisduetothe carbonylcarbonadjacenttodoublebondatαposition. The othercarbonylcarbon adjacenttobothdoublebondandoxygeninestermoietygivesasignalat165ppm. The sp 2 hybridized tertiary carbon at αposition gives a signal 150 ppm and the presenceoftheothersp 2hybridizedquaternarycarboncanberealizedbyasignalat 130 ppm. The peakat73 ppm is due to the sp 3 hybridized carbon at αposition.

Methylenecarbon(CH 2)adjacenttooxygengivesasignalat62ppmwhereasthe presenceofsaturatedmethylenecarbonatβpositioncanbeseenasasignalat31 ppm. Another sp 3hybridizedcarbonadjacenttodoublebondgivesa signal at 25 ppmandasignalat14ppmisbecauseofmethylcarboninestergroup. Additionally,itisrequiredtomentiontheGCMSanalysissuchthatmolecularion (M +)peakcanberealizedatm/z184.Basepeakinthespectrumcanbeseenasam/z 112thatmightbegeneratedbytheremovalofestermoietyfromthemoleculeand thatseemspossiblesincetheresultingenonecanberearrangedandstabilizeditself asenol.OtherrelatedpeaksandtheirrelativeabundancesaredemonstratedinFigure 53.Theseinformationsstatedabovepossessthatthehydroxyenonestructure 69 has beenattained. Once the kinetic resolution of acetoxy enone to hydroxy enone have been accomplished, it was required to determine the enantiomeric excess values of acetoxyandhydroxylenones.TheywereassignedbyHPLCusingchiralcolumn

39 (Chiralpak ASH column, UV detection at 254 nm, eluent hexane/2propanol = 85/15, flow 0.7 mL/min 20 oC, using racemic compounds as references). Racemic hydroxyenone 69 synthesizedfromracemicacetoxyenone 75 withK 2CO 3/MeOH according to previously reported procedure [72]. The HPLC chromatogram of racemicacetoxyenone 75 isdemonstratedinFigure32. Theretentiontimesfortwoenantiomersofacetoxyenonemoleculewererecordedas 15.4and18.0min.,respectively,ascanbeseenfromtheFigure32.Inadditionto thatinformation,itisneededtonotethattheretentiontimesfortwoenantiomersof correspondinghydroxyenoneweredeterminedas18.7amd23.9min.asillustrated inFigure33.

Figure32 HPLCchromatogramofracemicacetoxyenone 75

Figure33 HPLCchromatogramofracemichydroxyenone 69

40 Ithasbeenemployedaseriesoflipasesforscreeningtheenantioselectivehydrolysis ofracemicacetoxyenone 75 asitwasstatedbefore.Table1exhibitsresultsofthis enzymemediatedhydrolysisof rac 75 . TheresultstabulatedinTable1,showedthatCCL(seeFigure34andFigure35for acetoxyandhydroxyenones,respectively),LipaseOF,andLipaseMY30furnished thebestresultsforbothenantioenrichedacetoxy(88–94%ee)andhydroxyenones (88–92%ee).Theotherresultsalsoseemreasonablygoodforacetoxyenone(95% ee)andhydroxyenone(91–97%ee)separately.Sihandcoworkers[73]introduced a parameter describing the selectivity of enzymatic kinetic resolution as the dimensionless Enantiomeric Ratio (E) which remains constant through out the reactionandisonlydeterminedbytheenvironment of the system. It can be seen from the Table 1, unacceptable selectivity results (E=811) have beenattained for practical purposes in addition to the good selectivities (E=3295) that have been achievedwiththelipasestestedfortheenzymaticresolution.

Figure34 HPLCchromatogramofacetoxyenone 75 hydrolyzedbyCCL

41 Table1 Enzymatichydrolysisof4acetoxy1carboethoxycyclohexene3one (75) EntryEnzymeTimeConversionAcetateAlcoholE b (h)(%) a(ee%)(ee%) 1CCL d245092928 2LipaseOF c352948855 3 LipaseMY30 c1749889055 4LipaseQLM c363945511 5LipaseSL c36895459 6PRL d7432439132 7HPL d7428389795 8MML d9732449343 a Conversion( c)=ee s/(ee s+ee p) bSeeRef.73,

Enantiomericratio(E)=ln[(1ee s)/(1+ee s/ee p)]/ln[(1+ee s)/(1+ee s/ee p)] cMEITOSANGYOCo.,Ltd.,Tokyo,Japan dCommerciallyavailablelipases CCL( Candida cylindracea lipase) PRL( Penicillium roqueforti lipase) HPL( Hog pancreas lipase) MML( Mucor javanicus lipase) Theabsoluteconfigurationsoftheenantioenrichedacetoxyandhydroxyenoneswere notdetermined.However,itisknownthattheycanbeassignedwiththehelpofX ray analysis or 2DNMR. Additionally, their absolute configurations can be determined in such a way that they are converted to compounds whose absolute configurationsareknown.

42

Figure35 HPLCchromatogramofhydroxyenone 69 yieldedbyCCL

2.5MicrobialDirectOxidationReactions Theadditionofmolecularoxygentoorganicmoleculesusingbiologicalsystemsis an important tool in organic chemistry. Microbial hydroxylation is an established techniqueforthesynthesesofsteroidsandalkaloids,andhasbeenusedtoprepare derivatives of many complex natural products including ascomycin, artemether, paclitaxel and quinidine [74]. In the light of these informations, it was considered that direct oxidation of previously synthesized enone 68 can be accomplished utilizing microorganisms as biocatalysts, which would be a shortcut route when compared with the Manganase(III) acetate mediated acetoxylation coupled with enzymatichydrolysis. Sevendifferentfungiselectedfrom Aspergillus and Fusarium speciesweretargeted in order to find out their hydroxylation potential. Strains of A. niger 200910, A. oryzae OUT5048, A. flavus 200120, F. roseum OUT4019, F. solani OUT4021, F. anguioides OUT4017, F. bulbigenum OUT4115wereutilized. A. niger 200910and A. flavus 200120wereobtainedfromTÜBĐTAKMAMwhileothermicroorganisms usedinthisstudyweregenerousgiftsfromOsakaUniversityCultureCollection. Asageneralprocedure,screeningandtimecourseexperimentswereperformedin conical Erlenmeyer flasks (250mL) containing 100mL growth medium which was Malt/Glucose/Yeast/Peptone(MGYP):3g/Lmalt;10g/Lglucose;3g/Lyeastextract;

43 5g/Lpeptone.Beforeeachexperiment,culturesofmicroorganismswereaseptically transferredtoconicalErlenmeyerflasksandtheywerekeptonarotaryshaker(160 rpm)at25 oCfor4daysfor Fusarium species(average5mgofdrycellweight)andat 37 oCfor2daysfor Aspergillus speciestoacquirebiomass.For Aspergillus species, themyceliumfrom100mLofcultivationmedium(average20gofwetcellweight) was filtered off, and then resuspended in 100mL of the freshly prepared growth medium.Afterthat,1mLofmixture(substratewithaconcentrationof20mg/mLin DMSO)withoutpriorsterilization,wasaddedtothegrowthmedia.Itwassufficient tousesolvent(DMSO)todissolvethesubstratesinceitwasnotsolubleingrowth medium. At the desired time intervals, that is, in each 2 hours after substrate addition, the reactions were monitored by using 2mL portions of the substrate mixturewhichwereextractedwith0.5mLEtOAc.Thereactionsweremonitoredby TLCandtheywereterminatedwhennofurtherproductformationwasobservedin the reaction medium by addition of 50mL EtOAc to each mediums. Reaction mediums were extracted three times with 50mL portions of EtOAc. Combined organic phases were dried over MgSO 4and solventwas removedby evaporation. Thecrudeproductswereseparatedbyflashcolumnchromatography to afford the desiredhydroxyenoneproduct 69 . Itshouldbenotedthatenzymesystemsofthefunginamely; A. oryzae OUT5048, and A. flavus 200120catalyzedtheenantioselectivehydroxylationof1carboethoxy cyclohexene3one (68) to yield 4hydroxy1carboethoxycyclohexene3one (69) as shown in Figure 36. Other microorganisms, A. niger 200910, F. roseum OUT4019, F. solani OUT4021, F. anguioides OUT4017, and F. bulbigenum OUT4115failedtomediatethistransformation. Controlexperimentswerecarriedoutwithoutmicroorganisms( A. oryzae OUT5048, and A. flavus 200120) to verify the stability of the substrate or just with the microorganism (i.e., without substrate) to verify the normal products of microbial metabolism.Thesecontrolexperimentswereperformedwiththesamewaystatedfor standard procedureaboveandno oxidation products could be observed in control flasks. 44 O O A. oryzae OH * A. flavus EtO2C EtO2C 69 68 Figure36 Wholecellmediatedhydroxylation

Thehydroxyenonewasnottheonlyproductattained.Twomorebyproductswhich werenotcharacterized,wereobserved.Itisimportanttonotethatspecialcaremust have been given to separate the desired product from byproducts and unreacted substrate. EtOAchexane (1:3) solvent system has been utilized as eluent in flash columnchromatography. Formation of the desired product; hydroxy enone 69, attained by microbial hydroxylation was first controlled by TLC, by comparing with previously synthesized hydroxy enone via Mn(OAc) 3 acetoxylation followed by enzyme mediated hydrolysis. And it was realized that they were the same products. Identification of the product has been progressed with 1HNMR analysis and correspondingspectrumrevealedthesynthesisofthedesiredhydroxyenoneproduct obtained by microbial hydroxylation by both of the microorganisms, A. oryzae OUT5048,and A. flavus 200120. Enantiomericexcess(ee)valuesoftheproducedhydroxyenone 69 weredetermined by chiral HPLC analysis. Chiralpak ASH column eluted with hexane/2propanol (85/15)and0.7mL/minflowrate,hasbeenutilized.UVdetectorat254nmwasused tomonitortherelativeabundancesofenantiomers.TheresultsofHPLCanalysisare illustratedinTable2includingyieldsofthereactions. The results possess the fact that fungimediated direct hydroxylation of 1 carboethoxycyclohexene3one (68) atα´positionhasbeenaccomplished.Reaction times and enantiomeric excess values (>9997%ee) for both of the fungi are very satisfactorywhereasisolatedyieldsofthedesiredproductareneededtobeimproved. 45 The yields of the reaction for the direct microbial hydroxylation can be further improved by optimization of the reaction conditions. As these are wholecell mediatedreactions,selectionoftheappropriategrowthmediumwouldbebenefical forbothincreasingtheamountofbiomassthusincreasingtherateofthereactionand for changing the metabolism of the microorganism giving rise to increase in the productionoftheenzymeorenzymesystemsforthedesiredreaction. Another important parameter for an increased yield is pH of the medium. pH is a detrimental factor for enzymatic activity. Medium pH canbe adjustedso thatthe desiredenzymeorenzymesystemsoperateatmaximumrate. Physiological state of the microorganism is also thought to be effective. Growing cell,wetcell(alsonotedasstationarycell),crudecell(preparedbycrackingofthe cellular biomass) would show different yields. This is expected since the cells at thesephysiologicalstatewoulddifferinthemetabolism.Theuseofgrowingcellor wetcell,forexample,forthesubstrateswhichhavemasslimitations,i.e.,substrate cannotbetransportedintointracellularmediumofthecell(inthecaseofreactions catalyzedbyintracellularenzymes),willbeunwantedwhereastheuseofcrudecell preparationswillbepreferredinthesecases.Inaddition,nostudieswereperformed toclarifywhethertheresultsdependedontheageofthecultureornot. Itisknownthatthemainparameterforcarryingoutoxidoreductionreactionsshould bethe aeration conditions.Oxidation should requireaerobicconditionsinorderto allow the respiratory chain to provide oxidized NAD+ [75]. Therefore, oxidation reactionswereperformedinErlenmeyerflasksunderanairatmosphere. The fungi are relatively fast growing and more tolerant to high concentrations of substrate.Thatmakespossiblethedirectadditionofsubstratewhichwaspreviously dissolvedinasolventdimethylsulfoxide(DMSO),tothereactionmedia.DMSOisa commonsolventusedinorganicchemistryandenableshomogeneousconditionfor thereactiontoproceedbecauseofitshighmiscibilityinbothaqueousandorganic phases.Inadditiontothat,itisharmlesstomicroorganismsusedasbiocatalysts. 46 Table2 Microbialhydroxylationof1carboethoxycyclohexene3one (68) byfungi A. oryzae OUT5048and A. flavus 200120

EntryMicroorganismTime(h)Yield(%) aee(%) 1 A. oryzae OUT5048 b2431>99 2 A. flavus 200120 c241797 aIsolatedyieldaftercolumnchromatographyelutedwithEtOAc/hexane(1:3) bOsakaUniversityCultureCollection,Japan cTübitakMAMCultureCollection

It is evident that the reaction times are very applicable compared to other fungi mediated biotransformation reactions in literature. The rapid decrease in the concentrationofenone 68 orrapidconversionduring A. oryzae OUT5048 and A. flavus 200120cultivationcanbeexplainednotonlybymetabolic conversion, but alsobyadsorptiononto(orabsorptioninto)thefungalmycelium.Attachingapolar (oxygen)anchortoahighlylipophilicmoleculethatisthentransportedthroughthe cell wall by an active carrier system is wellknown microbial detoxification mechanism[76]. Discussionregardingthephysiologyofenonebiotransformationiscontroversial.No matter how, there exists a fact that enzymecatalyzed introduction of oxygen into molecules can be accomplished by a multitude of enzymes, such as hydrolases, peroxidases,laccasesandmonooxygenases. Itisrequiredtomentionthatmicrobialhydroxylationoftheenone 68 atα´position generatedachiralcenterandthisissocrucialsinceintroducinghydroxylgroupsat

47 nonactivated carbon centers regio and stereoselectively is a difficult reaction to performbystandardchemicalmethods.Additionally,predictingthereactionsiteand stereoselectivity of microbial is a major unresolved problem that continues to attract research interest as reported by Wong and coworkers [74]. Several groups have studied this problem with various microbial systems and substrates and active site models have been proposed for Bauveria bassiana , Calonectria decora , Absidia blakesleeana . In these studies, monocyclic and polycyclicsubstratesarefrequentlyselectedastargetsformicrobialhydroxylation.It is important to note that microbial hydroxylation may be useful technique for the selective modification of these compounds since their preparation by standard chemicalmethodsisnotstraightforward,andtheresultingproductsareoftenuseful intermediatestopharmaceuticalcompoundsornaturalproducts. Thelastbutnotleast,failureinsomeorganismsnamely A. niger 200910, F. roseum OUT4019, F. solani OUT4021, F. anguioides OUT4017, and F. bulbigenum OUT4115 used to mediate desired microbial hydroxylation of enone 68 may be explainedbyanenzymeactivesitemodelthatanelectronrichcenterinthesubstrate initiallybindstotheenzyme’sactivesitefollowedbyhydroxylationatacarbonatom located a specific distance away based on report published by Fonken and co workers[77].

48 CHAPTER3 EXPERIMENTAL 3.1MaterialsandEquipments 1HNMRand 13 CNMRspectrawererecordedwithBruckerSpectrospinDPX400, Ultra Shield, High Performance Digital FTNMR spectrometer using tetramethylsilane (TMS) as internal standard and deuterochloroform (CDCl 3) as solvent. Mass spectra were recorded with Thermo Quest GCMS in which Phenomenex ZebroncapillaryGCcolumn(60mlength,0.25mmID,0.25mfilmthickness)was utilized. Enantiomeric excess (ee) values were determined by using HPLC in which chiral column(Chiralpak ®ASH(0.4cm Ø x1cm))wasused. FlashcolumnchromatographywasperformedbyusingMerckSilicaGel60(particle size:4063m,230400meshASTM). Solventsusedintheextractionswereremovedbyusingrotaryevaporator. Thechemicalsusedinthestudywerepurchasedfrom Sigma, Aldrich, Fluka,and AcrosOrganics.

49 3.2GeneralProcedures 3.2.1Synthesisof1hydroxycyclohexanecarbonitrile(65)

Inathreeneckedroundbottomedflask8.7mLcyclohexanone(C 6H10 O),12.5mLof ether(Et 2O),20mLofwater(H 2O)and10.3grsodiumcyanide(NaCN)wereadded. 50mLofdroppingfunnelcontaining7.1mLofconcentratedhydrochloricacid(HCI) wasplacedonthetopoftheflask.Theapparatuswasassembledinawellventilated hood.Theflaskwassurroundedbyanicesaltbath,NaCNwasaddedallatoncewith vigorousstirring.WhenmostoftheNaCNhasdissolvedandthetemperatureofthe mixturehasfallento5 oC,concentratedHClwasaddedfromthedroppingfunnelat sucharatethatthetemperatureremainsbetween5 oCand10 oC.Afteralltheacidhas been added, the cooling bath was removed and vigorous stirring continues for 2 hours.Themixturewasallowedtosettle.Upperlayerwasether(organic)andlower layerwaswater(aqueous)phase.Waterphasewasextractedfourtimeswithether.

Organic phase was dried over MgSO 4, and concentrated in vacuo to afford a colourlessoilwith88%yield.C 7H11 NO:125.1g/mol. Spectraldatafor1hydroxycyclohexanecarbonitrile(65) ; 1 HNMR(400MHz,CDCl 3):δppm1.30(m,1H,CH 2)

1.63(m,5H,CH 2)

1.80(m,2H,CH 2)

2.07(m,2H,CH 2) 13 CNMR(100MHz,CDCI 3):δppm22.5(2CH 2)

24.5(CH 2)

37.9(2CH 2) 69.4(quarternaryC) 121.5(C≡N) 50 3.2.2Synthesisof1hydroxycyclohexanecarboxylicacid(74) The1hydroxycyclohexanecarbonitrile 65(4.6mL) wasrefluxedwithglacialacetic acid (CH 3CO 2H)(70mL) andconcentratedHCl(70mL)for 5hours. The solution was then concentrated in vacuo, the residue dissolved in chloroform (CHCI 3), washed with water, and purified by means of the sodium salt using 200mL 1N sodiumhydroxide(NaOH)solution.SolutionwasthenacidifiedbyconcentratedHCI suchthatpHwasabout1.0.Resultingmixturewasextracted with chloroformand organicphasewasconcentratedinvacuotoattainwhitegranulesofdesiredproduct with60%yield.C 7H12 O3:144.2g/mol Spectraldatafor1hydroxycyclohexanecarboxylicacid (74) ; 1 HNMR(400MHz,CDCl 3):δppm1.25(m,1H,CH 2)

1.501.70(m,7H,CH 2)

1.75(m,2H,CH 2) 13 CNMR(100MHz,CDCI 3):δppm21.0(2CH 2)

25.1(CH 2)

34.5(2CH 2) 73.4(quarternaryC)

182.4(CO 2H) 3.2.3Synthesisofethyl1hydroxycyclohexanecarboxylate(66) Toastirredsolutionof1hydroxycyclohexanecarboxylicacid (74) (2g=14mmol)and ethanol (EtOH)(1.7 mL=29mmol) in benzene (C 6H6)(6mL), 0.06mL concentrated sulfuricacid(H 2SO 4)wasaddedandthemixturewasrefluxedovernight.Thesolvent wasremovedinvacuoandtheresiduedissolvedinether.Then,unchangedacidwas filtered off and the solution washed with sodium hydrogen carbonate (NaHCO 3) solution.Resultingorganicphasewasdriedovermagnesiumsulfate(MgSO 4) and concentrated in vacuo. The residue was purified by flash column

51 chromatography eluted with ether/petroleum ether (1:1) to afford light yellow oil ethyl1hydroxycyclohexanecarboxylatein65%yield.C 9H16 O3:177.2g/mol Spectraldataforethyl1hydroxycyclohexanecarboxylate (66) ; 1 HNMR(400MHz,CDCl 3):δppm1.30(t,J=7.1Hz,3H,CH 3)

1.531.80(m,10H,CH 2) 2.86(broads,1H,OH)

4.21(q,J=7.1Hz,2H,CH 2) 13 CNMR(100MHz,CDCI 3):δppm14.2(CH 3)

21.1(2CH 2)

25.2(CH 2)

34.7(2CH 2)

61.3(CH 2attachedtooxygen) 73.2(quarternaryC)

177.1(carbonylcarbon,CO 2Et) 3.2.4Synthesisofethylcyclohex1enecarboxylate(67) A50mLreactionflaskequippedwithanargonandamagneticstirrerwascharged with 0.8mL ethyl 1hydroxy cyclohexane carboxylate (66) and 0.5mL pyridine

(C 5H5N).1.0mLthionylchloride(SOCl 2)wereaddedcarefullyduetoevolutionof

SO 2andHCIgases.Temperaturewascontrolledbyanicebath whileaddition of

SOCI 2.Then,thereactionmixturewasstirredwithroomtemperatureunderargonfor 1 hour. This mixture was quenched by pouring into ice water and extracted into ether.TheorganiclayerwasdriedoverMgSO 4andevaporated.Resultingmixture waspurifiedbyflashcolumnchromatographyelutedwithether/petroleumether(1:3) to attain ethyl cyclohex1enecarboxylate (67) in 86% yield as colourless oil.

C9H14 O2:154.2g/mol 52 Spectraldataforethylcyclohex1enecarboxylate (67) ; 1 HNMR(400MHz,CDCl 3):δppm1.20(t,J=7.1Hz,3H,CH 3)

1.501.78(m,8H,CH 2)

4.21(q,J=7.1Hz,2H,CH 2) 6.87(m,1H,olefinicCH) 13 CNMR(100MHz,CDCI 3):δppm14.3(CH 3)

21.4(CH 2)

24.0(CH 2)

25.6(CH 2)

36.8(CH 2)

59.8(CH 2attachedtooxygen) 130.5(quarternaryC) 138.9(olefinicC)

167.0(carbonylcarbon,CO 2Et) 3.2.5Synthesisofethyl3oxocyclohex1enecarboxylate(68)

Inatwoneckedroundbottomflask,1.00g(10mmol)chromiumtrioxide(CrO 3)was added over 5min. to a well stirring solution of 1mL (1.02g) ethyl cyclohex1 enecarboxylate (67) in 7mL of acetic acid and 0.15mL water while the reaction temperaturewasmaintainedat40 oCbyexternalcooling.Afteranother60min.at40 50 oC, the mixture was cooled by addition of ice, neutralized cautiously with a concentratedsolutionofpotassiumhydroxide(KOH),andextractedwithether.The etherextractwaswashedwithsaturatedNaHCO 3,water,andbrine,anddriedover

MgSO 4. The organic phase was then concentrated in vacuo, and the residue was purified by column chromatographyelutedwithether/petroleum ether (1:5) to get ethyl 3oxocyclohex1enecarboxylate (68) in 57% yield as slightly yellow oil.

C9H12 O3:168.2g/mol 53 Spectraldataforethyl3oxocyclohex1enecarboxylate (68) ; 1 HNMR(400MHz,CDCl 3):δppm1.28(t,J=7.1Hz,3H,CH 3)

2.00(m,J=6.5Hz,2H,CH 2)

2.36(t,J=6.5Hz,2H,CH 2)

2.51(t,J=6.5Hz,2H,CH 2)

4.21(q,J=7.1Hz,2H,CH 2) 6.65(s,1H,olefinicCH) 13 CNMR(100MHz,CDCI 3):δppm14.1(CH 3)

22.2(CH 2)

24.8(CH 2)

37.6(CH 2)

61.4(CH 2attachedtooxygen) 132.9(quarternaryC) 148.7(olefinicC)

166.1(carbonylcarbon,CO 2Et) 199.2(carbonylcarbon) Mass:m/z(relativeabundances)168(M +)(88);140(83);123(69);112(100);95(82); 84(100);67(85);55(75);41(86);39(100);29(83) 3.2.6Synthesisof(±)4acetoxy1carboethoxycyclohexene3one(75) A solution of 5mmol (0.84g) of ethyl 3oxocyclohex1enecarboxylate (68) and

6.25mmol (1.45g) of Mn(OAc) 3in50mLofbenzeneand5mLofaceticacidwas stirredunderrefluxduringwhichthedarkbrowncolorofMn(OAc) 3disappearedby time which was also monitored by TLC. After almost all starting material was consumed, the reaction mixture was diluted with ether and washed with brine.

Resulting organic phase was dried over MgSO 4 and concentrated under vacuum. CrudeproductswerepurifiedbycolumnchromatographyusingEtOAc/Hexane(1:5) aseluenttoattain4acetoxy1carboethoxycyclohexene3one (75) in98%yield.

54 HPLC:ChiralpakASHcolumn,UVdetectionat254nm,eluent:hexane/2propanol o =85:15flow0.7mL/min,20 C, R f for (±)75 :15.4minand18.0min.C 12 H16 O4: 224.2g/mol Spectraldatafor4acetoxy1carboethoxycyclohexene3one (75) ; 1 HNMR(400MHz,CDCl 3):δppm1.28(t,J=7.1Hz,3H,CH 3)

2.05(m,1H,CH 2)

2.10(s,3H,CH 3)

2.25(m,1H,CH 2)

2.61(m,1H,CH 2)

2.83(m,1H,CH 2)

4.21(q,J=7.1Hz,2H,CH 2) 5.25(dd,J=11.1,5.3Hz,1H,CH) 6.70(s,1H,olefinicCH) 13 CNMR(100MHz,CDCI 3):δppm14.1(CH 3)

20.6(CH 2)

24.5(CH 3)

27.9(CH 2)

61.7(CH 2attachedtooxygen) 73.3(tertiarycarbonCH) 131.7(quarternaryCatβposition) 148.3(olefinicCatαposition)

165.4(carbonylcarbon,CO 2Et)

169.5(carbonylcarbon,CO 2Me) 193.7(carbonylcarbon) Mass:m/z(relativeabundances)226(M +)(15);184(50);155(20);140(40);127(33); 112(80);99(12);83(36);53(31);43(100);29(50) 55 3.2.7Synthesisof4hydroxy1carboethoxycyclohexene3one(69) 3.2.7.1 Enzymatic Kinetic Resolution of (±)4acetoxy1carboethoxy cyclohexene3one To a stirred solution of (±)4acetoxy1carboethoxycyclohexene3one (3L) in dimetylsulfoxide(DMSO)(100L)andphosphatebuffer(pH6.9,300L),enzyme (0.5 mg) was added in one portion and the reaction mixture was stirred at room temperature.ConversionwasmonitoredbyTLCupto50%conversion.Thereaction mixturewasextractedwithEtOAc,driedoverMgSO 4,concentratedandpurifiedby preparative TLC eluted with EtOAc/Hexane (1:3) to afford 4hydroxy1 carboethoxycyclohexene3one (69) .HPLC:ChiralpakASHcolumn,UVdetection o at254nm,eluent:hexane/2propanol=85:15flow0.7mL/min,20 C,R ffor (±)69 :

18.7minand23.9min.C 9H12 O4:184.2g/mol 3.2.7.2DirectMicrobialOxidationofethyl3oxocyclohex1enecarboxylate(68) Erlenmeyer flasks (250mL) containing 100mL Malt/Glucose/Yeast/Peptone (MGYP): 3g/L malt; 10g/L glucose; 3g/L yeast extract; 5g/L peptone, growth mediumwassterilizedinautoclaveat121 oCfor15min.Culturesofmicroorganisms were aseptically transferred to conical Erlenmeyer flasksandthey werekept ona rotaryshaker(160rpm)at37 oCfor2daysfor Aspergillus speciesnamely A. oryzae OUT5048and A. flavus 200120toacquirebiomass.Themyceliumfrom100mLof cultivation medium (average 20g of wet cell weight) was filtered off, and then resuspended in 100mL of the freshly prepared growth medium (MGYP). 1mL of substratesolution(20mg/mLinDMSO)wasaddedtothegrowthmediumwithout priorsterilization.ThereactionsweremonitoredbyTLCandtheywereterminated after 24 hours of substrateaddition. After filtration, thefiltratewasextracted with threetimes50mLportionsofEtOAc,driedoverMgSO4,concentratedandpurified bycolumnchromatography(EtOAc/Hexane1:3)toafford4hydroxy1carboethoxy cyclohexene3onein1731%yields. 56 Spectraldatafor4hydroxy1carboethoxycyclohexene3one (69) ; 1 HNMR(400MHz,CDCl 3):δppm1.28(t,J=7.1Hz,3H,CH 3)

1.80(dq,J=13.0,5.0Hz,1H,CH 2)

2.40(m,1H,CH 2)

2.55(m,1H,CH 2)

2.80(m,1H,CH 2) 3.45(s,1H,OH) 4.12(dd,J=13.0,5.0Hz,1H,CH)

4.23(q,J=7.1Hz,2H,CH 2) 6.75(s,1H,olefinicCH) 13 CNMR(100MHz,CDCI 3):δppm14.1(CH 3)

24.6(CH 2)

30.7(CH 2)

61.7(CH 2attachedtooxygen) 72.9(tertiarycarbonCH) 130.1(quarternaryCatβposition) 150.0(olefinicCatαposition)

165.4(carbonylcarbon,CO 2Et) 200.3(carbonylcarbon) Mass:m/z(relativeabundances)184(M +)(7);155(12);140(39);137(14);112(100); 96(25);84(85);67(18);55(31);39(62);29(81)

57 Figure37 1HNMRspectrumof1hydroxycyclohexanecarbonitrile

Figure38 13 CNMRspectrumof1hydroxycyclohexanecarbonitrile

58 Figure39 1HNMRspectrumof1hydroxycyclohexanecarboxylicacid

Figure40 13 CNMRspectrumof1hydroxycyclohexanecarboxylicacid

59 Figure41 1HNMRspectrumofethyl1hydroxycyclohexanecarboxylate

Figure42 13 CNMRspectrumofethyl1hydroxycyclohexanecarboxylate

60 Figure43 1HNMRspectrumofethylcyclohex1enecarboxylate

Figure44 13 CNMRspectrumofethylcyclohex1enecarboxylate

61 Figure45 1HNMRspectrumofethyl3oxocyclohex1enecarboxylate

Figure46 13 CNMRspectrumofethyl3oxocyclohex1enecarboxylate

62 Figure47 Massspectrumofethyl3oxocyclohex1enecarboxylate

Figure48 1HNMRspectrumof4acetoxy1carboethoxycyclohexene3one

63 Figure49 13 CNMRspectrumof4acetoxy1carboethoxycyclohexene3one

Figure50 Massspectrumof4acetoxy1carboethoxycyclohexene3one

64 Figure51 1HNMRspectrumof4hydroxy1carboethoxycyclohexene3one

Figure52 13 CNMRspectrumof4hydroxy1carboethoxycyclohexene3one

65 Figure53 Massspectrumof4hydroxy1carboethoxycyclohexene3one

66 CHAPTER4 CONCLUSION The study presented herein described the first enantioselective chemoenzymatic synthesisof4hydroxy1carboethoxycyclohexene3one (69) whichwasthoughtas a valuable intermediate in the total synthesis of Oseltamivir (Tamiflu) that is a therapeutic used in treatment of infections due to influenza A and B virus. The synthetic pathway commenced with the synthesis of ethyl 3oxocyclohex1 enecarboxylate (68) , which has been envisioned as potential starting compound in thesynthesisofTamifluafterretrosyntheticanalysis,startingfromsimpleandeasily available substances. Then, two different routes have been followed to attain 69 .

Mn(OAc) 3mediated acetoxylation of 68 pursued by enzymemediated enantioselective kinetic resolution furnished great enantiomeric excess (ee) values for both acetoxy 75 (88 – 94%) and hydroxy enones 69 (88 – 92%ee). Besides, wholecellsoffungispecifically A. oryzae OUT5048and A. flavus 200120catalyzed thedirectoxidationof 68 toyield 69 enantioselectively(>9997%ee).Itisbelieved that the synthesized α´hydroxy enone 69 structure in optically pure form can be utilizedforthesynthesisofbiologicallyactivecompoundOseltamivir.

67 REFERENCES 1. Loughlin,W.A. Bioresour. Technol. , 2000 , 74 ,49. 2. Hanson, J.R. An Introduction to Biotransformations in Organic Chemistry , 1995 ,W.H.FreemanandComp.Ltd. 3. Meyer,H.P.;Leresche,J.E. Org. Process Res. Dev. , 2006 , 10 ,573. 4. Wang, M.X.;Gao,M.;Wang,D.X.;Zheng, Q.Y. J.Org.Chem. , 2006 , 71 , 9532. 5. Furstoss, R.; Doumeche, B.; Archelas, A. Adv. Synth. Catal. , 2006 , 348 , 1948. 6. Koksch,B.;Thust,S. J. Org. Chem. , 2003 , 68 ,2290. 7. Taneja, S.C.; Koul, S.; Koul, J.L.; Singh, B.; Kapoor, M.; Parshad, R.; Manhas,K.S.;Qazi,G.N. Tetrahedron: Asymmetry , 2005 , 16 ,2575. 8. Ghanesm,A. Tetrahedron , 2007 , 63 ,1721. 9. Ema,T.;Yagasaki,H.;Okita,N.;Takeda,M.;Sakai,T. Tetrahedron , 2006 , 62 ,6143. 10. Kawai,Y.;Hayashi,M.;Inaba,Y.;Saitou,K.;Ohno,A. Tetrahedron Lett. , 1998 , 39 ,5225. 11. Bianchini,E.;Chinaglia,N.;Dean,M.;Giovannini,P.P.;Medici,A.;Pedrini, P.;Poli,S. Tetrahedron , 1999 , 55 ,1391. 12. Adam,W.;Boland,W.;Schreier,J.H.;Humpf,H.U.; Lazarus, M.; Saffert, A.;Möller,C.R.J.;Schreier,P. J. Am. Chem. Soc. , 1998 , 120 ,11044. 13. Hirata,T.;Izumi,S.;Ogura,M.;Yawata,T. Tetrahedron , 1998 , 54 ,15993. 14. Rama, R.; Mougin, C.; Boyer, F.D.; Kollmann, A.; Malosse, C.; Sigoillot, J.C. Biotechnol. Lett. , 1998 , 20 ,1101. 15. Müller,M.;Dünkelmann,P.;Jung,D.K.;Nitsche,A.;Demir,A.S.;Siegert, P.;Lingen,B.;Baumann,M.;Potti,M. J. Am. Chem. Soc. , 2002 , 124 ,12084. 16. McConathy,J.;Owens,M.J. J. Clin. Psychiatry , 2003 , 5,70.

68 17. Penne, J.S. Chiral Auxiliaries and Ligands in Asymmetric Synthesis , 1995 , JohnWiley&Sons,Inc.,NewYork. 18. Procter,G. Asymmetric Synthesis , 1996 ,OxfordUniversityPress,NewYork. 19. Ager,D.J.;East,M.B. Asymmetric Synthetic Methodology , 1996 ,CRCPress, Florida. 20. Gutsche, C.D.; Pasto, D.J. Fundamentals of Organic Chemistry , 1975 , PrenticeHallInc.,NewJersey. 21. LeNoble,W.J. Highlights of Organic Chemistry , 1974 ,MarcelDekker,Inc. NewYork. 22. Jacobsen,E.N.;Keith,J.M.;Larrow,J.F. Adv. Synth. Catal., 2001 , 343 ,5. 23. Zaks, A. Kirk-Othmer Encyclopedia of Chemical Technology , 2007 , John Wiley&Sons,Inc. 24. Sharpless, K.B.; Martin, V.S.; Woodard, S.S.; Katsuki, T.; Yamada, Y.; Ikeda,M. J. Am. Chem. Soc. ,1981 , 103 ,6237. 25. Kalck,P.;Urritigoity,M. Coord. Chem. Rev. , 2004 , 248 ,2194. 26. LacazeDufaure, C.; Lenoble, G.; Urritigoity, M.; Gorrichon, J.P., Mijoule, C.,Kalck,P. Tetrahedron: Asymmetry , 2001 , 12 ,185. 27. Mukaiyama, T.; Soai, K.; Sato, T.; Shimizu, H.; Suzuki, K. J. Am. Chem. Soc.,1979 , 101 ,1455. 28. Davis,F.A.;Chen,B.C. Chem. Rev.,1992 , 92 ,919. 29. Demir,A.S.;Ayhan,P.;Sopaci,S.B. Clean: Soil, Air, Water, 2007 , 35(5) , 406. 30. Sharpless, K.B.; Hashiyama, T.; Morikawa, K. J. Org. Chem., 1992 , 57 , 5067. 31. Vedejs,E.J. J. Am. Chem. Soc.,1974 , 96 ,5944. 32. Rubottom, G.M.; Vazquez, M.A.; Pelegrina, D.R. Tetrahedron Lett., 1974 , 4319. 33. Davis,F.A.;Sheppard,A.C. J. Org. Chem.,1987 , 52 ,954. 34. Horiuchi, C.A.; Utsukihara, T.; Nakamura, H.; Watanabe, M. Tetrahedron Lett.2006 , 47 ,9359. 69 35. Plietker,P. Tetrahedron: Asymmetry , 2005 , 16 ,3453. 36. Demir,A.S.;Emrullahoğlu,M. Curr. Org. Synth. , 2007 , 4,223. 37. Demir, A.S.; Hamamcı, H.; eenoğlu, Ö.; Aydoğan, F.; Çapanoğlu, D.; Neslihanoğlu,R. Tetrahedron: Asymmetry , 2001 , 12 ,1953. 38. Demir,A.S.;eenoğlu,Ö. Org. Lett., 2002 , 4,2021. 39. Iding, H.; Siegert, P.; Mesch, K.; Pohl, M, Biochim. Biophys. Acta , 1998 , 1385 ,307. 40. Hildebrandt,G.;Klavehn,W. German Patent No: 548 459 , 1932 . 41. Deacon, J. Fungal Biology , 2006 , Blackwell Publishing, 4 th edition, Edinburgh. 42. Michels, P.C.; Khmelnitsky, Y.L.; Rich, J.O. Kirk-Othmer Encyclopedia of Chemical Technology , 2007 ,JohnWiley&Sons,Inc. 43. Botes,A.L.;Weijers,C.A.G.M.;vanDyk,M.S. Biotechnol. Lett. , 1998 , 20 , 421. 44. Moussou,P.;Archelas,A.;Furstoss,R. Tetrahedron , 1998 , 54 ,1563. 45. Schieweck,F.;Altenbach,H.J. Tetrahedron: Asymmetry , 1998 , 9,403. 46. Alphand,V.;Mazzini,C.;Lebreton,J.;Furstoss,R. J. Mol. Catal. B: Enzym. , 1998 , 5,219. 47. Gotor,V.;Quiros,M.;Liz,R.;Frigola,J.;Fernandez,R. Tetrahedron , 1998 , 53 ,6421. 48. Geresh,S.;Valiyaveettil,T.J.;Lavie,Y.;Shani,A. Tetrahedron: Asymmetry , 1998 , 9,89. 49. Demir,A.S.;Hamamci,H.;Ayhan,P.;Duygu,A.N.;Đgdir,A.C.;Capanoglu, D. Tetrahedron: Asymmetry , 2004 , 15 ,2579. 50. Harrington,P.J.;Brown,J.D.;Foderaro,T.;Hughes,R.C. Org. Process Res. Dev. , 2004 , 8,86. 51. Fukuyama,T.;Satoh,N.;Akiba,T.;Yokoshima,S. Angew. Chem. Int. Ed. , 2007 , 46 ,5734. 52. Farina,V.;Brown,J.D. Angew. Chem. Int. Ed. ,2006 , 45 ,7330. 53. Frost,J.W.;Oraths,K.M.;Knop,D.R. J. Am. Chem. Soc. , 1999 , 121 ,1603. 70 54. Federspiel, M.; Fischer, R.; Hennig, M.; Mair, H.J.; Oberhauser, T.; Rimmler,G.;Albiez,T.;Bruhin,J.;Estermann,H.;Gandert,C.;Göckel,V.; Götzö,S.;Hoffmann,U.;Huber,G.;Janatsch,G.;Lauper,S.;RöckelStabler, O.;Trussardi,R.;Zwahlen,A.G. Org. Process Res. Dev. , 1999 , 3,266. 55. Karpf,M.;Trussardi,R. J. Org. Chem. , 2001 , 66 ,2044. 56. Corey,E.J.;Yeung,YY.;Hong,S. J. Am. Chem. Soc., 2006 , 128 ,6310. 57. Shibasaki, M.; Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M. J. Am. Chem. Soc., 2006 , 128 ,6312. 58. Cong,X.;Yao,ZJ. J. Org. Chem.,2006 , 71 ,5365. 59. Shibasaki,M.;Fukuta,Y.;Mita,T.;Fukuda,N.;Kanai,M;Roca,F.X. Org. Lett.,2007 , 9,259. 60. Shibasaki,M.;Kanai,M.;Yamatsugu,K.;Kamijo,S.;Suto,Y. Tetrahedron Lett.,2007 , 48 ,1403. 61. Fang,JM.;Shie,JJ.;Wang,SY.;Tsai,KC.;E.Cheng,YS.;Yang,AS.; Hsiao,SC.;Su,CY.;Wong,CH. J. Am. Chem. Soc. , 2007 , 129 ,11892. 62. Kann, N.; Bromfield, K.M.; Graden, H.; Hagberg, D.P.; Olsson, T. Chem. Commun. , 2007 , 30 ,3183. 63. Ghanem,A. Tetrahedron , 2007 , 63 ,1721. 64. Kim,C.U.;Lew,W.;Williams,M.A.;Liu,H.;Zhang,L.;Swaminathan,S.; Bischofberger, N.; Chen, M.S.; Mendel, D.B.; Tai, C.Y.; Laver, W.G.; Stevens,R.C. J. Am. Chem. Soc. , 1997 , 119 ,681. 65. Dreitlein,W.B.;Maratos,J.;Brocavich,J. Clin.l Therapeutics , 2001 , 23 ,327. 66. Agosta,W.C.;Lowrance,W.W.Jr. J. Org. Chem. , 1970 , 35 ,3851. 67. Demir,A.S.;Jeganathan,A. Synthesis , 1991 ,235. 68. Demir,A.S.;Reis,Ö.;Igdir,A.C. Tetrahedron , 2004 , 60 ,3427. 69. William,G.J.;Hunter,N.R. Can. J. Chem. , 1976 ,54,3830. 70. Corey,E.J.;Kang,M. J. Am.Chem. Soc. , 1984 , 106 ,5384. 71. Pannuri,S.;DiSanto,R.;Kamat,S. Kirk-Othmer Encyclopedia of Chemical Technology , 2007 ,JohnWiley&Sons,Inc. 72. Floresca,R.;Kurihara,M.;Watt,D.S.;Demir,A.S. J. Org. Chem. , 1993 , 58 , 2196. 71 73. Chen,C.S.;Fujimoto,Y.;Girdauskas,G.;Sih,C.J. J. Am.Chem. Soc. , 1982 , 104 ,7294. 74. Wong,J.W.;Burns,M.P. Tetrahedron: Asymmetry , 1999 , 10 ,4295. 75. Larroche,C.;Cappaert,L. Biocatal. and Biotransform. , 2004 , 22 ,291. 76. Berger, R.G.; Nanzad, T.; Kaspera, R.; Krings, U. Appl. Microbiol. Biotechnol. , 2005 , 67 ,477. 77. Fonken,G.S.;Herr,M.E.;Murray,H.C.;Reineke,L.M. J. Am. Chem. Soc. , 1967 , 89 ,672.

72