Guide for the Selection of Chemical and Biological Decontamination Equipment for Emergency First Responders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloads/DL Praevention/Fachwissen/Gefahrstoffe/TOXIKOLOGI SCHE BEWERTUNGEN/Bewertungen/Toxbew072-L.Pdf
Distribution Agreement In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. Signature: _____________________________ ______________ Jedidiah Samuel Snyder Date Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. Snyder Master of Public Health Global Environmental Health _________________________________________ P. Barry Ryan, Ph.D. Committee Chair _________________________________________ Eugene Demchuk, Ph.D. Committee Member _________________________________________ Paige Tolbert, Ph.D. Committee Member Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. Snyder Bachelor of Science in Engineering, B.S.E. The University of Iowa 2010 Thesis Committee Chair: P. Barry Ryan, Ph.D. An abstract of A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Public Health in Global Environmental Health 2015 Abstract Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. -
Methanesulfonyl Chloride
A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein. -
SAPRC07T Mechanism Species Definition Molecular Weight ACETONE Acetone 58.08 ACETYLENE Acetylene 26.04 ACROLEIN Acrolein 56.06 A
SAPRC07T Mechanism Species Molecular Species Definition weight ACETONE Acetone 58.08 ACETYLENE Acetylene 26.04 ACROLEIN Acrolein 56.06 ACROLEIN_PRIMARY Acrolein emissions tracer 56.06 Lumped photoreactive monounsaturated dicarbonyl aromatic AFG1 fragmentation products that photolyze to form radicals 98.10 Lumped photoreactive monounsaturated dicarbonyl aromatic fragmentation products that photolyze to form non-radical AFG2 products 98.10 Lumped diunsaturatred dicarbonyl aromatic fragmentation AFG3 product. 124.14 Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 2 and 5 x 102 ppm-1 min-1. ALK1 (Primarily ethane) 30.07 Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 5 x 102 and 2.5 x 103 ppm-1 ALK2 min-1. (Primarily propane and acetylene) 36.73 Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 2.5 x 103 and 5 x 103 ppm-1 ALK3 min-1. 58.61 Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 5 x 103 and 1 x 104 ppm-1 ALK4 min-1. 77.6 Alkanes and other non-aromatic compounds that react only ALK5 with OH, and have kOH greater than 1 x 104 ppm-1 min-1. 118.89 SAPRC07T Mechanism Species Molecular Species Definition weight SOA precursor compounds products from largest alkanes ALK5RXN (ALK5) 118.9 APIN -pinene 136.23 ARO1 Aromatics with kOH < 2x104 ppm-1 min-1. 95.16 ARO2 Aromatics with kOH > 2x104 ppm-1 min-1. 118.72 BACL Biacetyl 86.09 BALD Aromatic aldehydes (e.g., benzaldehyde) 106.13 BENZENE Benzene 78.11 SOA precursor compounds from benzene via peroxy radical BNZHRXN reaction with HO2 127 SOA precursor compounds from benzene via peroxy radical BNZNRXN reaction with NO 127 BNZRO2 SOA precursor surrogate from benzene 127 BUTADIENE13 1,3-butadiene 54.09 BZCO3 Peroxyacyl radical formed from Aromatic Aldehydes 137.11 BZO Phenoxy Radicals 93 CCHO Acetaldehyde 44.05 CCHO_PRIMARY Acetaldehyde Emissions Tracer 44.05 CCOOH Acetic Acid. -
Assessment of Portable HAZMAT Sensors for First Responders
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Assessment of Portable HAZMAT Sensors for First Responders Author(s): Chad Huffman, Ph.D., Lars Ericson, Ph.D. Document No.: 246708 Date Received: May 2014 Award Number: 2010-IJ-CX-K024 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Assessment of Portable HAZMAT Sensors for First Responders DOJ Office of Justice Programs National Institute of Justice Sensor, Surveillance, and Biometric Technologies (SSBT) Center of Excellence (CoE) March 1, 2012 Submitted by ManTech Advanced Systems International 1000 Technology Drive, Suite 3310 Fairmont, West Virginia 26554 Telephone: (304) 368-4120 Fax: (304) 366-8096 Dr. Chad Huffman, Senior Scientist Dr. Lars Ericson, Director UNCLASSIFIED This project was supported by Award No. 2010-IJ-CX-K024, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. -
Xyfluor Chemical Compatibility Guide
456456 Xyfluor® Chemical Compatibility Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers. A = Swell < 10% after exposure. Suitable. B = Swell > 10% & < 20% after exposure. Generally suitable. C = Swell >20% & < 40% after exposure. May be suitable in some situations. D = Swell > 40% after exposure. Not suitable. N = Insufficient data. Test: Full immersion, Room Temperature, 3 days The information contained herein is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. Full-scale testing and end-product performance are the responsibility of the user. CHEMICAL RATING CHEMICAL RATING acetaldehyde A amomnium phosphate A acetic acid, ammonium stearate A glacial A ammonium sulfate A hot A ammonium thiocyanate A 5% A amyl acetate A/B acetic anhydride A amyl alcohol A acetone A amyl nitrate A acetone cyanohydrin A aniline A acetyl chloride A aniline hydrochloride A acetylene gas A anti-freeze, alcohol or glycol based A acrylonitrile A aqua regia N adipic acid A argon gas A alcohol, denatured A arsenic acid A alkyl benzene A ash slurry A alkyl-arylsulphonic acid A asphalt A alumina trihydrate N barium chloride A aluminum acetate -
Quantum Chemical Study of the Acrolein (CH2CHCHO) + OH + O2 Reactions
8302 J. Phys. Chem. A 2010, 114, 8302–8311 Quantum Chemical Study of the Acrolein (CH2CHCHO) + OH + O2 Reactions Rubik Asatryan,† Gabriel da Silva,‡ and Joseph W. Bozzelli*,† Department of Chemistry and EnVironmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA, and Department of Chemical and Biomolecular Engineering, The UniVersity of Melbourne, Victoria 3010, Australia ReceiVed: May 26, 2010; ReVised Manuscript ReceiVed: July 5, 2010 Acrolein, a -unsaturated (acrylic) aldehyde, is one of the simplest multifunctional molecules, containing both alkene and aldehyde groups. Acrolein is an atmospheric pollutant formed in the photochemical oxidation of the anthropogenic VOC 1,3-butadiene, and serves as a model compound for methacrolein (MACR) and methyl vinyl ketone (MVK), the major oxidation products of the biogenic VOC isoprene. In addition, acrolein is involved in combustion and biological oxidation processes. This study presents a comprehensive theoretical analysis of the acrolein + OH + O2 addition reactions, which is a key photochemical oxidation sequence, using the G3SX and CBS-QB3 theoretical methods. Both ab initio protocols provide relatively similar results, although the CBS-QB3 method systematically under-predicts literature heats of formation using atomization enthalpies, and also provides lower transition state barrier heights. Several new low-energy pathways for unimolecular reaction of the acrolein-OH-O2 radicals are identified, with energy at around or below that of the acrolein-OH isomers + O2. In each case these novel reactions have the potential to reform the hydroxyl radical (OH) and form coproducts that include glyoxal, glycolaldehyde (HOCH2CHO), formaldehyde (HCHO), CO, and substituted epoxides. Analogous reaction schemes are developed for the photochemical oxidation of MACR and MVK, producing a number of observed oxidation products. -
덴드리틱 벤질 클로라이드의 효율적인 합성 Facile Synthesis of Dendritic Benzyl Chlorides from Their Alcohols W
Polymer(Korea), Vol. 31, No. 5, pp 417-421, 2007 덴드리틱 벤질 클로라이드의 효율적인 합성 이재욱F,7ㆍ한승철Fㆍ김희주ㆍ김정환ㆍ이언엽ㆍ김병기ㆍ성새름ㆍ강화신ㆍ김지현FFㆍ허도성FFF 동아대학교 화학과, F동아대학교 의생명과학과, FF동국대학교 생명화학공학과, FFF인제대학교 의생명화학과 (2007년 5월 9일 접수, 2007년 6월 29일 채택) Facile Synthesis of Dendritic Benzyl Chlorides from Their Alcohols with Methanesulfonyl Chloride/Et3N Jae Wook Lee*,7, Seung Choul Han*, Hee Joo Kim, Jung Hwan Kim, Un Yup Lee, Byoung-Ki Kim, Sae Reum Sung, Hwa-Shin Kang, Ji Hyeon Kim**, and Do-Sung Huh*** Department of Chemistry, Dong-A University, Hadan-2-dong, Busan 604-714, Korea *Department of Medical Bioscience, Dong-A University, Hadan-2-dong, Busan 604-714, Korea **Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 100-715, Korea ***Department of Biomedicinal Chemistry, Inje University, Gim Hai 621-749, Korea (Received May 9, 2007; Accepted June 29, 2007) 초록: 덴드리틱 벤질 알코올을 트리에틸아민과 메탄술포닐클로라이드와 반응시켜서, 덴드리틱 벤질 클로라이드 의 효율적인 합성이 이루어졌다. 이 반응은 히드록시기의 메실화 반응과 염소화 반응의 2단계 반응으로 이루어지 는데, 중간체의 분리없이 한 반응 용기내에서 반응이 진행되는 경제적인 방법이다. Abstract: A successful rapid synthesis of dendritic benzyl chlorides from dendritic benzyl alcohols using methanesulfonyl chloride/Et3N as activating agents was described. In this method, each dendritic benzyl chloride can be prepared in one pot: no isolation of intermediate mesylated dendrons is required. The key steps in the syntheses of dendritic benzyl chlorides were the mesylation of the hydroxymethyl group followed by the chlorination by in-situ generated triethylammonium chloride. Keywords: benzylic alcohol, chlorination. Introduction vation and coupling steps in high yield. In addition, the coupling step must be very efficient to enable complete Dendrimers represent a novel type of polymeric material reaction. -
Measurement Technique for the Determination of Photolyzable
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D13, PAGES 15,999-16,004,JULY 20, 1997 Measurement techniquefor the determination of photolyzable chlorine and bromine in the atmosphere G. A. Impey,P. B. Shepson,• D. R. Hastie,L. A. Bartie• Departmentof Chemistryand Centre for AtmosphericChemistry, York University,Toronto, Ontario, Canada Abstract. A techniquehas been developed to enablemeasurement of photolyzablechlorine and bromineat tracelevels in the troposphere.In thismethod, ambient air is drawnt•ough a cylindricalflow cell, whichis irradiatedwith a Xe arc lamp. In the reactionvessel of the photoactivehalogen detector (PHD), photolyrically active molecules Clp (including C12, HOC1, C1NO,C1NO2, and C1ONO2) and Brp (including Br2, HOBr, BrNO, BrNO2, and BrONO2) are photolyzed,and the halogenatoms produced react with properieto form stablehalogenated products.These products are thensampled and subsequently separated and detected by gas chromatography.The systemis calibratedusing low concentrationmixtures of C12and Br2 in air from commerciallyavailable permeation sources. We obtaineddetection limits of 4 pptv and 9 pptv as Br2 andC12, respectively, for 36 L samples. 1. Introduction (or C12)in the Arctic, largely as a result of the lack of suitable analyticalmethodologies. This paperreports the developmentof The episodicdestruction of groundlevel ozonein the Arctic at a measurementtechnique for the determinationof rapidly sunriseis a phenomenonthat hasbeen observed for many years. photolyzingchlorine (referred to hereas Clp) and bromine (Brp) With the onsetof polar sunrise,ozone levels are often observed speciesat pansper trillion by volume(pptv) mixingratios in the to drop from a backgroundconcentration of •40 ppbv to almost atmosphere.Impey et al. [this issue]discuss the resultsobserved zero on a timescaleof a day or less [Barrie et al., 1988] for from a field studyconducted in the Canadianhigh Arctic at Alert, periodsof 1-10 days. -
Particularly Hazardous Substances
Particularly Hazardous Substances In its Laboratory Standard, OSHA requires the establishment of additional protections for persons working with "Particularly Hazardous Substances" (PHS). OSHA defines these materials as "select" carcinogens, reproductive toxins and acutely toxic materials. Should you wish to add: explosive, violently reactive, pyrophoric and water-reactve materials to this category, the information is included. Carbon nanotubes have also been added due to their suspected carcinogenic properties. This table is designed to assist the laboratory in the identification of PHS, although it is not definitively conclusive or entirely comprehensive. *Notes on the proper use of this table appear on page 12. 1 6 5 2 3 4 Substance CAS National Toxicity National Program Carcinogen Toxin Acute Regulated OSHA Carcinogen Group IARC Carcinogen Toxin Reproductive Violently Reactive/ Explosive/Peroxide Forming/Pyrophoric A-a-C(2-Amino-9H-pyrido[2,3,b]indole) 2648-68-5 2B Acetal 105-57-7 yes Acetaldehyde 75-07-0 NTP AT 2B Acrolein (2-Propenal) 107-02-8 AT Acetamide 126850-14-4 2B 2-Acetylaminofluorene 53-96-3 NTP ORC Acrylamide 79-06-6 NTP 2B Acrylyl Chloride 814-68-6 AT Acrylonitrile 107-13-1 NTP ORC 2B Adriamycin 23214-92-8 NTP 2A Aflatoxins 1402-68-2 NTP 1 Allylamine 107-11-9 AT Alkylaluminums varies AT Allyl Chloride 107-05-1 AT ortho-Aminoazotoluene 97-56-3 NTP 2B para-aminoazobenzene 60-09-3 2B 4-Aminobiphenyl 92-67-1 NTP ORC 1 1-Amino-2-Methylanthraquinone 82-28-0 NTP (2-Amino-6-methyldipyrido[1,2-a:3’,2’-d]imidazole) 67730-11-4 2B -
Fragment-Based Discovery of a New Class of Inhibitors Targeting Mycobacterial Trna Modification
Supplementary Data Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification Sherine E. Thomas*1, Andrew J. Whitehouse*2, Karen Brown3,4, Juan M. Belardinelli5, Ramanuj Lahiri6, M. Daben J. Libardo7, Pooja Gupta1, Sony Malhotra8, Helena I. M. Boshoff7, Mary Jackson5, Chris Abell 2, Anthony G. Coyne2, Tom L. Blundell §1, R. Andres Floto3,4, Vitor Mendes §1 1 Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK. 2 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. 3 MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, U.K. 4 Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, CB23 3RE, U.K. 5 Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA. 6 National Hansen’s Disease Program, Healthcare Systems Bureau, HRSA, DHHS, USA 7 Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA. 8 Birkbeck College, University of London, Malet Street, WC1E7HX, UK * Contributed equally § To whom correspondence should be addressed Results Conservation of catalytic residues in mycobacterial TrmD A multiple sequence alignment of 5 mycobacterial TrmD enzyme sequences with 10 TrmD ortholog amino acid sequences (Figure S1) shows conservation of important catalytic residues and residues involved in tRNA recognition and methyl transfer reactions. The catalytic residues Asp169 and Arg154 are highly conserved across TrmD orthologs. Key residues such as Asp50, Gly59, His46 involved in tRNA G36 and G37 base recognition, interactions with bases at positions 38, 32 and anticodon branch of wild type tRNA respectively, are also broadly conserved. -
Safe Handling and Disposal of Chemicals Used in the Illicit Manufacture of Drugs
Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Safe handling and disposal of chemicals used in the illicit manufacture of drugs United Nations publication USD 26 Printed in Austria ISBN 978-92-1-148266-9 Sales No. E.11.XI.14 ST/NAR/36/Rev.1 V.11-83777—September*1183777* 2011—300 Guidelines for the Safe handling and disposal of chemicals used in the illlicit manufacture of drugs UNITED NATIONS New York, 2011 Symbols of United Nations documents are composed of letters combined with figures. Mention of such symbols indicates a reference to a United Nations document. ST/NAR/36/Rev.1 UNITED NATIONS PUBLICATION Sales No. E.11.XI.14 ISBN 978-92-1-148266-9 eISBN 978-92-1-055160-1 © United Nations, September 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Requests for permission to reproduce this work are welcomed and should be sent to the Secretary of the Publications Board, United Nations Headquarters, New York, N.Y. 10017, U.S.A. or also see the website of the Board: https://unp.un.org/Rights.aspx. Governments and their institutions may reproduce this work without prior authoriza- tion but are requested to mention the source and inform the United Nations of such reproduction. -
4 Methanesulfonyl Chloride1 Acute Exposure Guideline Levels
Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was supported by Contract No. W81K04-11-D-0017 and EP-W-09-007 be- tween the National Academy of Sciences and the U.S. Department of Defense and the U.S. Environmental Protection Agency. Any opinions, findings, conclusions, or recom- mendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the organizations or agencies that provided support for this project. International Standard Book Number-13: 978-0-309-28308-3 International Standard Book Number-10: 0-309-28308-6 Additional copies of this report are available for sale from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334- 3313; http://www.nap.edu/. Copyright 2013 by the National Academy of Sciences. All rights reserved. Printed in the United States of America The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare.