Towards Relating the Evolution of the Gene Repertoire in Mammals to Tissue Specialisation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Analysis of Retinopathy in Type 1 Diabetes
Genetic Analysis of Retinopathy in Type 1 Diabetes by Sayed Mohsen Hosseini A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by S. Mohsen Hosseini 2014 Genetic Analysis of Retinopathy in Type 1 Diabetes Sayed Mohsen Hosseini Doctor of Philosophy Institute of Medical Science University of Toronto 2014 Abstract Diabetic retinopathy (DR) is a leading cause of blindness worldwide. Several lines of evidence suggest a genetic contribution to the risk of DR; however, no genetic variant has shown convincing association with DR in genome-wide association studies (GWAS). To identify common polymorphisms associated with DR, meta-GWAS were performed in three type 1 diabetes cohorts of White subjects: Diabetes Complications and Control Trial (DCCT, n=1304), Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR, n=603) and Renin-Angiotensin System Study (RASS, n=239). Severe (SDR) and mild (MDR) retinopathy outcomes were defined based on repeated fundus photographs in each study graded for retinopathy severity on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Multivariable models accounted for glycemia (measured by A1C), diabetes duration and other relevant covariates in the association analyses of additive genotypes with SDR and MDR. Fixed-effects meta- analysis was used to combine the results of GWAS performed separately in WESDR, ii RASS and subgroups of DCCT, defined by cohort and treatment group. Top association signals were prioritized for replication, based on previous supporting knowledge from the literature, followed by replication in three independent white T1D studies: Genesis-GeneDiab (n=502), Steno (n=936) and FinnDiane (n=2194). -
Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H. -
Constraints and Consequences of the Emergence of Amino Acid Repeats in Eukaryotic Proteins
ARTICLES Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins Sreenivas Chavali1 , Pavithra L Chavali1,2,5, Guilhem Chalancon1,5, Natalia Sanchez de Groot1, Rita Gemayel3,4, Natasha S Latysheva1, Elizabeth Ing-Simmons1, Kevin J Verstrepen3,4, Santhanam Balaji1 & M Madan Babu1 Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype– phenotype landscape of a population, thereby contributing to adaptation and fitness. Repetitive sequences are -
The Transition from Primary Colorectal Cancer to Isolated Peritoneal Malignancy
medRxiv preprint doi: https://doi.org/10.1101/2020.02.24.20027318; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . The transition from primary colorectal cancer to isolated peritoneal malignancy is associated with a hypermutant, hypermethylated state Sally Hallam1, Joanne Stockton1, Claire Bryer1, Celina Whalley1, Valerie Pestinger1, Haney Youssef1, Andrew D Beggs1 1 = Surgical Research Laboratory, Institute of Cancer & Genomic Science, University of Birmingham, B15 2TT. Correspondence to: Andrew Beggs, [email protected] KEYWORDS: Colorectal cancer, peritoneal metastasis ABBREVIATIONS: Colorectal cancer (CRC), Colorectal peritoneal metastasis (CPM), Cytoreductive surgery and heated intraperitoneal chemotherapy (CRS & HIPEC), Disease free survival (DFS), Differentially methylated regions (DMR), Overall survival (OS), TableFormalin fixed paraffin embedded (FFPE), Hepatocellular carcinoma (HCC) ARTICLE CATEGORY: Research article NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.02.24.20027318; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . NOVELTY AND IMPACT: Colorectal peritoneal metastasis (CPM) are associated with limited and variable survival despite patient selection using known prognostic factors and optimal currently available treatments. -
Kidney V-Atpase-Rich Cell Proteome Database
A comprehensive list of the proteins that are expressed in V-ATPase-rich cells harvested from the kidneys based on the isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-EGFP mice, which express EGFP under the control of the promoter of the V-ATPase-B1 subunit. In these mice, type A and B intercalated cells and connecting segment principal cells of the kidney express EGFP. The protein identification was performed by LC-MS/MS using an LTQ tandem mass spectrometer (Thermo Fisher Scientific). For questions or comments please contact Sylvie Breton ([email protected]) or Mark A. Knepper ([email protected]). -
Proteomic Analysis of the Marine Diatom Thalassiosira Pseudonana Upon Exposure to Benzo(A)Pyrene Raquel N Carvalho and Teresa Lettieri*
Carvalho and Lettieri BMC Genomics 2011, 12:159 http://www.biomedcentral.com/1471-2164/12/159 RESEARCHARTICLE Open Access Proteomic analysis of the marine diatom Thalassiosira pseudonana upon exposure to benzo(a)pyrene Raquel N Carvalho and Teresa Lettieri* Abstract Background: Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants ubiquitously distributed. They are generated by incomplete combustion of organic materials such as wood or fossil fuels. Due to their carcinogenic, mutagenic effects and to their wide distribution in the environment, these pollutants pose many concerns to researchers and regulators. In our laboratories we investigated the effect of benzo(a)pyrene (BaP) exposure in the marine diatom Thalassiosira pseudonana, which has become an important model organism in aquatic toxicology studies. Results: In order to investigate the mechanism of action of PAHs, we exposed the diatoms for 24 h to 36.45 μg/L of BaP which inhibits the growth by about 30%, and analysed the relative protein expression profile by a quantitative proteomics approach based on iTRAQ labels. The proteomics profile analysis showed that around 10% of the identified proteins were regulated and one fourth of them confirmed the gene expression changes seen by DNA microarray. Particularly interesting was the down regulation of the Silicon transporter 1 (SIT1), an enzyme that is responsible for the uptake of silicon from the media into the diatom cells. Regulation of SIT1 upon BaP treatment was also confirmed at the gene expression level. Conclusions: The potential use of the regulated proteins found in this study as early indicators of environmental exposure to PAHs is discussed. In particular, SIT1 is considered a promising biomarker and SIT1 expression changes were confirmed also when the diatoms were exposed to field samples, e.g. -
Identification of Genomic Targets of Krüppel-Like Factor 9 in Mouse Hippocampal
Identification of Genomic Targets of Krüppel-like Factor 9 in Mouse Hippocampal Neurons: Evidence for a role in modulating peripheral circadian clocks by Joseph R. Knoedler A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Neuroscience) in the University of Michigan 2016 Doctoral Committee: Professor Robert J. Denver, Chair Professor Daniel Goldman Professor Diane Robins Professor Audrey Seasholtz Associate Professor Bing Ye ©Joseph R. Knoedler All Rights Reserved 2016 To my parents, who never once questioned my decision to become the other kind of doctor, And to Lucy, who has pushed me to be a better person from day one. ii Acknowledgements I have a huge number of people to thank for having made it to this point, so in no particular order: -I would like to thank my adviser, Dr. Robert J. Denver, for his guidance, encouragement, and patience over the last seven years; his mentorship has been indispensable for my growth as a scientist -I would also like to thank my committee members, Drs. Audrey Seasholtz, Dan Goldman, Diane Robins and Bing Ye, for their constructive feedback and their willingness to meet in a frequently cold, windowless room across campus from where they work -I am hugely indebted to Pia Bagamasbad and Yasuhiro Kyono for teaching me almost everything I know about molecular biology and bioinformatics, and to Arasakumar Subramani for his tireless work during the home stretch to my dissertation -I am grateful for the Neuroscience Program leadership and staff, in particular -
What Is Epigenetics? Two Views in Embryology
What is Epigenetics? Two views in embryology Preformationism (17-19th century): each cell contains preformed elements that enlarge during development. Epigenesis (19th century -): chemical Humunculus reactions among soluble components in Hartsoecker 1695 the cell that execute a complex developmental plan. Chromosomes are Necessary for Development Before the 20th century Walter Sutton, 1902 Theodor Boveri, 1903 Columbia University University of Würzburg USA Germany • Determined that all chromosomes had to be present for proper embryonic development. • Development encoded by irreversible changes in chromosomes? Cell Specialization is Reversible Late 20th and early 21st centuries Skin cell nuclear transfers 99 Central Question: How can a single Original explant fertilized egg give rise to a complex removed Adult frog of \-nu strain Outgrowth of organism with cells of varied as nuclear donor epidermal cells phenotypes? Parent of 1st transfer Donor cells for recipient eggs Enucleation of nuclear transfer recipient eggs 1st nuclear transfer Cells trypsinized Foot web outgrowth and washed prove frog was 2-nu Uncleaved Completely cleaved (70 V) Martially cleaved /c o/\ • Gurdon, Laskey & Reeves 1975 (25%) demonstrated that “cell Dissociated cells for specialization does not involve serial transfer I *^i/ KJpZ* Parent of serial ttransfei r any loss, irreversible activation or Enucleation of 1 recipient eggs recipient eggs Serial nuclear transfer permanent change chromosomal Foot web outgrowth prove frog was 2-nu genes required for development” Uncleaved Completely cleaved (40/O Partially cleaved (30/0 (30%) Nuclear transplant tadpole: l-nu diploid from nucleolus and chromosome counts (present in 36% of serial clones) Fig. 2. Plan of serial nuclear transfer experiments, using nuclei from adult skin celJs. -
Comparing the Effects of Vitamin E Tocotrienol-Rich Fraction Supplementation and Α-Tocopherol Supplementation on Gene Expression in Healthy Older Adults
ORIGINAL ARTICLE Comparing the effects of vitamin E tocotrienol-rich fraction supplementation and α-tocopherol supplementation on gene expression in healthy older adults Siti Madiani Abdul Ghani,I Jo Aan Goon,I,* Nor Helwa Ezzah Nor Azman,I Siti Nor Asyikin Zakaria,I Zalina Hamid,II Wan Zurinah Wan NgahI I Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. II Sime Darby Foods & Beverages Marketing Sdn Bhd, Petaling Jaya, Selangor, Malaysia. Abdul Ghani SM, Goon JA, Nor Azman NHE, Asyikin Zakaria SN, Hamid Z, Wan Ngah WZ. Comparing the effects of Vitamin E Tocotrienol-Rich Fraction supplementation and α-Tocopherol supplementation on gene expression in healthy older adults. Clinics. 2019;74:e688 *Corresponding author. E-mail: [email protected] OBJECTIVES: This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults. METHODS: A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis. RESULTS: The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). -
Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein -
Mass Spectrometry-Based Proteomics Analysis of Bioactive Proteins in EMD That Modulate Adhesion of Gingival Fibroblast to Improve Bio-Integration of Dental Implants
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 3-28-2019 3:00 PM Mass Spectrometry-Based Proteomics Analysis Of Bioactive Proteins In EMD That Modulate Adhesion Of Gingival Fibroblast To Improve Bio-Integration Of Dental Implants David Zuanazzi Machado Jr The University of Western Ontario Supervisor Siqueira, Walter L. The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © David Zuanazzi Machado Jr 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biochemistry Commons, Dental Materials Commons, Oral Biology and Oral Pathology Commons, and the Periodontics and Periodontology Commons Recommended Citation Zuanazzi Machado, David Jr, "Mass Spectrometry-Based Proteomics Analysis Of Bioactive Proteins In EMD That Modulate Adhesion Of Gingival Fibroblast To Improve Bio-Integration Of Dental Implants" (2019). Electronic Thesis and Dissertation Repository. 6064. https://ir.lib.uwo.ca/etd/6064 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i ABSTRACT Titanium (Ti) implants are used in dental practice to replace damaged or lost teeth. For effective treatment, the dental implant needs to integrate with the surrounding hard and soft tissues on the implant site. Despite improvements in bone-implant integration that have been achieved through surface modifications, the integration with the soft tissues is still deficient. The oral mucosa that embraces the transmucosal component of the implant only contacts the surface without making a strong attachment with the connective tissue. -
WRAP Theses Panetta 2021.Pdf
A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/154378 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Characterization of O-GlcNAc signalling in human placenta by Pamela Panetta Warwick Medical School University of Warwick A thesis submitted for the degree of Doctor of Philosophy January, 2021 TABLE OF CONTENTS List of figures 7 List of tables 10 Acknowledgments 11 Declaration 12 Abstract 13 List of abbreviations 14 Chapter 1 - Introduction 18 1.1 Human placenta 19 1.1.1 Formation of human placenta 19 1.1.2 Signalling pathways regulating syncytiotrophoblast formation 21 1.1.2.1 Experimental models to study human trophoblast differentiation 24 1.1.3 Functions of human placenta: role of placental barrier 27 1.1.3.1 Transport of macronutrients glucose, amino acids and lipids 29 1.1.3.2 Protective function 31 1.1.3.3 Endocrine function 31 1.1.4 Placental mechanisms of in utero programming: contribution of maternal overnutrition and stress 35 1.1.4.1 Epidemiologic evidence of in utero programming 35 1.1.4.2 Role of placental nutrient transport in fetal programming 37 1.1.4.3 Placental nutrient-sensing system in fetal