Tesisdoctoral

Total Page:16

File Type:pdf, Size:1020Kb

Tesisdoctoral Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata Tesis Doctoral “Mancha Gris de la Hoja del Tomate: Identificación, Biología y Genómica del Agente Etiológico” Doctorando: Lic. Mario Emilio Ernesto Franco Director: Ph. D. Pedro Alberto Balatti Director: Dr. Mario Carlos Nazareno Saparrat 2019 El presente trabajo de tesis, para optar por el título de Doctor en Ciencias Naturales de la Facultad de Ciencias Naturales y Museo de la Universidad Nacional de La Plata, fue realizado en el Centro de Investigaciones de Fitopatología, dependiente de la Facultad de Ciencias Agrarias y Forestales de la Universidad Nacional de La Plata y de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, bajo la dirección del Ph. D. Pedro Alberto Balatti y del Dr. Mario Carlos Nazareno Saparrat. Agradecimientos A la Facultad de Ciencias Naturales y Museo de la Universidad Nacional de La Plata, a la Facultad de Ciencias Exactas de la Universidad Nacional de La Plata y al Instituto San Patricio, por la formación. A mis directores, por haberme guiado en el desarrollo de este trabajo; por los conocimientos transmitidos y la confianza depositada. A mis compañeros del Centro de Investigaciones de Fitopatología y de la Cátedra de Microbiología de la Facultad de Ciencias Agrarias y Forestales, por la inmensa y desinteresada colaboración. A mis amigos, porque siempre están. Especialmente, a mi familia, por su amor y respaldo. ÍNDICE Resumen .............................................................................................................................. 7 Abstract ............................................................................................................................... 9 Capítulo I: Introducción General .................................................................................... 11 I. I. Tomate ....................................................................................................................... 12 I. I. I. Origen y Distribución ........................................................................................... 12 I. I. II. Sistemática .......................................................................................................... 12 I. I. II. I. Revisión Sistemática .................................................................................... 12 I. I. III. Características Morfológicas .............................................................................. 13 I. I. IV. Propiedades Nutricionales y Organolépticas ...................................................... 14 I. I. V. Cultivo ................................................................................................................. 16 I. I. VI. Producción ......................................................................................................... 17 I. I. VII. Enfermedades ................................................................................................... 21 I. I. VII. I. Enfermedades de Origen Abiótico ............................................................ 22 I. I. VII. II. Enfermedades de Origen Biótico ............................................................. 23 I. I. VII. II. III. Enfermedades de Tomate Causadas por Hongos y Oomicetes ..... 24 I. II. Mancha Gris de la Hoja del Tomate ....................................................................... 25 I. II. I. Distribución y Alcance del Daño ........................................................................ 25 I. II. II. Agentes Causales ............................................................................................... 25 I. II. III. Sintomatología ................................................................................................. 25 I. II. III. Ciclo de la Enfermedad y Epidemiología ........................................................ 27 I. II. IV. Condiciones Predisponentes ............................................................................ 28 I. II. V. Manejo de la Enfermedad .................................................................................. 28 I. II. V. I. Prácticas de Cultivo .................................................................................... 28 I. II. V. II. Cultivares Resistentes ................................................................................ 29 I. II. V. III. Control Químico ...................................................................................... 29 I. II. V. IV. Control Biológico ..................................................................................... 30 I. III. El Género Stemphylium ......................................................................................... 31 I. III. I. Sistemática ......................................................................................................... 31 I. III. I. II. Revisión Sistemática ................................................................................. 31 I. III. II. Características Morfológicas ............................................................................. 32 I. III. III. Hábitos y Rango de Hospedadores ................................................................. 35 I. IV. Interacción Planta-Hongo Fitopatógeno ............................................................... 36 I. IV. I. Infección y Colonización ................................................................................... 36 I. IV. II. Interacción Molecular ....................................................................................... 39 I. V. Hipótesis y Objetivos ................................................................................................ 41 I. V. I. Hipótesis General ................................................................................................. 41 I. V. II. Objetivos ............................................................................................................. 41 I. V. II. I. Objetivo General .......................................................................................... 41 I. V. II. II. Objetivos Específicos ................................................................................. 41 Capítulo II: Identificación y Caracterización de Aislados de Stemphylium Causantes de la Mancha Gris de la Hoja del Tomate en Argentina ................................................ 42 II. I. Introducción ............................................................................................................. 43 II. I. I. Hipótesis del Capítulo ......................................................................................... 47 II. I. II. Objetivos del Capítulo ....................................................................................... 47 II. II. Materiales y Métodos .............................................................................................. 48 II. II. I. Material Fúngico ................................................................................................ 48 II. II. I. I. Material Fúngico de Partida ....................................................................... 48 II. II. I. II. Material Fúngico Complementario ........................................................... 48 II. II. II. Caracterización Morfológica ............................................................................. 50 II. II. III. Análisis Molecular ........................................................................................... 51 II. II. III. I. Extracción de ADN Genómico ................................................................ 51 II. II. III. II. Amplificación y Secuenciación del ITS y Gpd ....................................... 51 II. II. III. III. Análisis Taxonómico ............................................................................. 53 II. II. III. IV. Análisis de Diversidad Genética ........................................................... 54 II. II. IV. Evaluación de la Agresividad .......................................................................... 56 II. II. V. Aislados CIDEFI-234 y CIDEFI-235 ................................................................ 56 II. II. VI. Inoculación Cruzada de Asilados Provenientes de Pimiento en Tomate ...... 57 II. III. Resultados ............................................................................................................. 58 II. III. I. Caracterización Morfológica ............................................................................. 58 II. III. II. Identificación Molecular ................................................................................ 68 II. III. III. Análisis de Diversidad Genética ................................................................... 73 II. III. IV. Agresividad .................................................................................................... 74 II. III. V. Material Fúngico Adicional ............................................................................. 77 II. III. VII. Aislados CIDEFI-234 y CIDEFI-235 ............................................................ 79 II. III. VI. Aislados Provenientes de Pimiento ............................................................... 83 II. IV. Discusión ............................................................................................................... 88 Capítulo III: Genoma Borrador de Stemphylium lycopersici CIDEFI-216 .................. 93 III. I. Introducción ..........................................................................................................
Recommended publications
  • Modern Fungicides and Antifungal Compounds IX
    buchcover_ Fungicides VII#83F05 17.06.2020 16:32 Uhr Seite 1 C M Y CM MY CY CMY K Proceedings of the 19th International Reinhardsbrunn Symposium on Modern Fungicides and Antifungal Com- pounds 2019 The tri-annual Reinhardsbrunn Symposia have a longstan- ding tradition and are the most important international H.B. Deising, B. Fraaije, A. Mehl, meetings focusing on fungicide science today. Participants H.B. Deising, B. Fraaije, A. Mehl E.C. Oerke, H. Sierotzki, G. Stammler E.C. Oerke, H. Sierotzki, G. Stammler from twenty-four different countries around the globe presented more than one hundred outstanding contributi- ons, covering topics like different modes of fungicide resistance, resistance monitoring and management in Modern Fungicides and different areas around the world, new applications and technologies, biorational fungicides and biocontrol, and Antifungal Compounds IX regulatory aspects. Highlighting these exciting scientific topics, the outstanding contributions of all presenters at the symposium demonstrated the excellence not only of experienced but also of young scientists in an increasingly important field of plant protection. Modern Fungicides and Antifungal Compounds IX Proceedings of the 19th International Reinhardsbrunn Symposium April 7 – 11, 2019 Friedrichroda, Germany ISBN: 978-3-941261-16-7 urn:nbn:de:0294-sp-2020-reinh-8 buchcover_ Fungicides VII#83F05 17.06.2020 16:32 Uhr Seite 1 C M Y CM MY CY CMY K Proceedings of the 19th International Reinhardsbrunn Symposium on Modern Fungicides and Antifungal Com- pounds 2019 The tri-annual Reinhardsbrunn Symposia have a longstan- ding tradition and are the most important international H.B. Deising, B. Fraaije, A.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • AR TICLE a Plant Pathology Perspective of Fungal Genome Sequencing
    IMA FUNGUS · 8(1): 1–15 (2017) doi:10.5598/imafungus.2017.08.01.01 A plant pathology perspective of fungal genome sequencing ARTICLE Janneke Aylward1, Emma T. Steenkamp2, Léanne L. Dreyer1, Francois Roets3, Brenda D. Wingfield4, and Michael J. Wingfield2 1Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; corresponding author e-mail: [email protected] 2Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa 3Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 4Department of Genetics, University of Pretoria, Pretoria 0002, South Africa Abstract: The majority of plant pathogens are fungi and many of these adversely affect food security. This mini- Key words: review aims to provide an analysis of the plant pathogenic fungi for which genome sequences are publically genome size available, to assess their general genome characteristics, and to consider how genomics has impacted plant pathogen evolution pathology. A list of sequenced fungal species was assembled, the taxonomy of all species verified, and the potential pathogen lifestyle reason for sequencing each of the species considered. The genomes of 1090 fungal species are currently (October plant pathology 2016) in the public domain and this number is rapidly rising. Pathogenic species comprised the largest category FORTHCOMING MEETINGS FORTHCOMING (35.5 %) and, amongst these, plant pathogens are predominant. Of the 191 plant pathogenic fungal species with available genomes, 61.3 % cause diseases on food crops, more than half of which are staple crops. The genomes of plant pathogens are slightly larger than those of other fungal species sequenced to date and they contain fewer coding sequences in relation to their genome size.
    [Show full text]
  • Supplementary Table S1 18Jan 2021
    Supplementary Table S1. Accurate scientific names of plant pathogenic fungi and secondary barcodes. Below is a list of the most important plant pathogenic fungi including Oomycetes with their accurate scientific names and synonyms. These scientific names include the results of the change to one scientific name for fungi. For additional information including plant hosts and localities worldwide as well as references consult the USDA-ARS U.S. National Fungus Collections (http://nt.ars- grin.gov/fungaldatabases/). Secondary barcodes, where available, are listed in superscript between round parentheses after generic names. The secondary barcodes listed here do not represent all known available loci for a given genus. Always consult recent literature for which primers and loci are required to resolve your species of interest. Also keep in mind that not all barcodes are available for all species of a genus and that not all species/genera listed below are known from sequence data. GENERA AND SPECIES NAME AND SYNONYMYS DISEASE SECONDARY BARCODES1 Kingdom Fungi Ascomycota Dothideomycetes Asterinales Asterinaceae Thyrinula(CHS-1, TEF1, TUB2) Thyrinula eucalypti (Cooke & Massee) H.J. Swart 1988 Target spot or corky spot of Eucalyptus Leptostromella eucalypti Cooke & Massee 1891 Thyrinula eucalyptina Petr. & Syd. 1924 Target spot or corky spot of Eucalyptus Lembosiopsis eucalyptina Petr. & Syd. 1924 Aulographum eucalypti Cooke & Massee 1889 Aulographina eucalypti (Cooke & Massee) Arx & E. Müll. 1960 Lembosiopsis australiensis Hansf. 1954 Botryosphaeriales Botryosphaeriaceae Botryosphaeria(TEF1, TUB2) Botryosphaeria dothidea (Moug.) Ces. & De Not. 1863 Canker, stem blight, dieback, fruit rot on Fusicoccum Sphaeria dothidea Moug. 1823 diverse hosts Fusicoccum aesculi Corda 1829 Phyllosticta divergens Sacc. 1891 Sphaeria coronillae Desm.
    [Show full text]
  • Molecular Phylogeny of Phoma and Allied Anamorph Genera: Towards a Reclassification of the Phoma Complex
    mycological research 113 (2009) 508–519 journal homepage: www.elsevier.com/locate/mycres Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex Johannes DE GRUYTERa,b,*, Maikel M. AVESKAMPa, Joyce H. C. WOUDENBERGa, Gerard J. M. VERKLEYa, Johannes Z. GROENEWALDa, Pedro W. CROUSa aCBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands bPlant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands article info abstract Article history: The present generic concept of Phoma is broadly defined, with nine sections being recog- Received 2 July 2008 nised based on morphological characters. Teleomorph states of Phoma have been described Received in revised form in the genera Didymella, Leptosphaeria, Pleospora and Mycosphaerella, indicating that Phoma 19 December 2008 anamorphs represent a polyphyletic group. In an attempt to delineate generic boundaries, Accepted 8 January 2009 representative strains of the various Phoma sections and allied coelomycetous genera were Published online 18 January 2009 included for study. Sequence data of the 18S nrDNA (SSU) and the 28S nrDNA (LSU) regions Corresponding Editor: of 18 Phoma strains included were compared with those of representative strains of 39 al- David L. Hawksworth lied anamorph genera, including Ascochyta, Coniothyrium, Deuterophoma, Microsphaeropsis, Pleurophoma, Pyrenochaeta, and 11 teleomorph genera. The type species of the Phoma sec- Keywords: tions Phoma, Phyllostictoides, Sclerophomella, Macrospora and Peyronellaea grouped in a sub- Ascochyta clade in the Pleosporales with the type species of Ascochyta and Microsphaeropsis. The new Coelomycetes family Didymellaceae is proposed to accommodate these Phoma sections and related ana- Coniothyrium morph genera.
    [Show full text]
  • Genome Anatomy of Pyrenochaeta Unguis-Hominis UM 256, a Multidrug Multilocus Phylogenetic Analysis of the Genus Pyrenochaeta
    RESEARCH ARTICLE Genome Anatomy of Pyrenochaeta unguis- hominis UM 256, a Multidrug Resistant Strain Isolated from Skin Scraping Yue Fen Toh1, Su Mei Yew1, Chai Ling Chan1, Shiang Ling Na1, Kok Wei Lee2, Chee- Choong Hoh2, Wai-Yan Yee2, Kee Peng Ng1, Chee Sian Kuan1* 1 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 2 Codon Genomics SB, Seri Kembangan, Selangor Darul Ehsan, Malaysia * [email protected] a11111 Abstract Pyrenochaeta unguis-hominis is a rare human pathogen that causes infection in human skin and nail. P. unguis-hominis has received little attention, and thus, the basic biology and pathogenicity of this fungus is not fully understood. In this study, we performed in-depth OPEN ACCESS analysis of the P. unguis-hominis UM 256 genome that was isolated from the skin scraping Citation: Toh YF, Yew SM, Chan CL, Na SL, Lee of a dermatitis patient. The isolate was identified to species level using a comprehensive KW, Hoh C-C, et al. (2016) Genome Anatomy of Pyrenochaeta unguis-hominis UM 256, a Multidrug multilocus phylogenetic analysis of the genus Pyrenochaeta. The assembled UM 256 Resistant Strain Isolated from Skin Scraping. PLoS genome has a size of 35.5 Mb and encodes 12,545 putative genes, and 0.34% of the ONE 11(9): e0162095. doi:10.1371/journal. assembled genome is predicted transposable elements. Its genomic features propose that pone.0162095 the fungus is a heterothallic fungus that encodes a wide array of plant cell wall degrading Editor: Joy Sturtevant, Louisiana State University, enzymes, peptidases, and secondary metabolite biosynthetic enzymes.
    [Show full text]
  • A Family Level Rdna Based Phylogeny of Cucurbitariaceae and Fenestellaceae with Descriptions of New Fenestella Species and Neocucurbitaria Gen
    Mycosphere 8(4): 397–414 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/4/2 Copyright © Guizhou Academy of Agricultural Sciences A family level rDNA based phylogeny of Cucurbitariaceae and Fenestellaceae with descriptions of new Fenestella species and Neocucurbitaria gen. nov. Wanasinghe DN1,2,3, Phookamsak R1,2,3, Jeewon R4, Wen Jing Li1,2,3, Hyde KD1,2,3,5, Jones EBG5, Camporesi E6,7 and Promputtha I8* 1 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan China 2 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan China 3 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4 Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 5 Nantgaredig, 33B St. Edwards Road, Southsea, Hants., PO5 3DH, UK 6 Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 7 A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy 8 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Wanasinghe DN, Phookamsak R, Jeewon R, Wen Jing Li, Hyde KD, Jones EBG, Camporesi E, Promputtha I 2017 – Fenestellaceae with descriptions of new Fenestella species and Neocucurbitaria gen. nov. Mycosphere 8(1), 397–414, Doi 10.5943/mycosphere/8/4/2 Abstract The taxonomy of the family Cucurbitariaceae and its allies, especially Fenestellaceae has received little attention despite its broad relevance.
    [Show full text]
  • Redisposition of Phoma-Like Anamorphs in Pleosporales
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 75: 1–36. Redisposition of phoma-like anamorphs in Pleosporales J. de Gruyter1–3*, J.H.C. Woudenberg1, M.M. Aveskamp1, G.J.M. Verkley1, J.Z. Groenewald1, and P.W. Crous1,3,4 1CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; 2National Reference Centre, National Plant Protection Organization, P.O. Box 9102, 6700 HC Wageningen, The Netherlands; 3Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 4Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands *Correspondence: Hans de Gruyter, [email protected] Abstract: The anamorphic genus Phoma was subdivided into nine sections based on morphological characters, and included teleomorphs in Didymella, Leptosphaeria, Pleospora and Mycosphaerella, suggesting the polyphyly of the genus. Recent molecular, phylogenetic studies led to the conclusion that Phoma should be restricted to Didymellaceae. The present study focuses on the taxonomy of excluded Phoma species, currently classified inPhoma sections Plenodomus, Heterospora and Pilosa. Species of Leptosphaeria and Phoma section Plenodomus are reclassified in Plenodomus, Subplenodomus gen. nov., Leptosphaeria and Paraleptosphaeria gen. nov., based on the phylogeny determined by analysis of sequence data of the large subunit 28S nrDNA (LSU) and Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS). Phoma heteromorphospora, type species of Phoma section Heterospora, and its allied species Phoma dimorphospora, are transferred to the genus Heterospora stat. nov. The Phoma acuta complex (teleomorph Leptosphaeria doliolum), is revised based on a multilocus sequence analysis of the LSU, ITS, small subunit 18S nrDNA (SSU), β-tubulin (TUB), and chitin synthase 1 (CHS-1) regions.
    [Show full text]
  • A Polyphasic Approach to Characterise Phoma and Related Pleosporalean Genera
    available online at www.studiesinmycology.org StudieS in Mycology 65: 1–60. 2010. doi:10.3114/sim.2010.65.01 Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera M.M. Aveskamp1, 3*#, J. de Gruyter1, 2, J.H.C. Woudenberg1, G.J.M. Verkley1 and P.W. Crous1, 3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Dutch Plant Protection Service (PD), Geertjesweg 15, 6706 EA Wageningen, The Netherlands; 3Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Maikel M. Aveskamp, [email protected] #Current address: Mycolim BV, Veld Oostenrijk 13, 5961 NV Horst, The Netherlands Abstract: Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region.
    [Show full text]
  • Volume 121: Cover, Table of Contents, Editorial Front Matter
    MYCOTAXON THE INTERNATIONAL JOURNAL OF FUNGAL TAXONOMY & NOMENCLATURE Volume 121 July–September 2012 Magnohelicospora iberica gen. & sp. nov. (Castañeda-Ruiz & al.— Fig. 2, p. 174) Rafael F. Castañeda-Ruiz, artist issn (print) 0093-4666 http://dx.doi.org/10.5248/121 issn (online) 2154-8889 myxnae 121: 1–502 (2012) Editorial Advisory Board Henning Knudsen (2008-2013), Chair Copenhagen, Denmark Seppo Huhtinen (2006-2012), Past Chair Turku, Finland Wen-Ying Zhuang (2003-2014) Beijing, China Scott A. Redhead (2010–2015) Ottawa, Ontario, Canada Sabine Huhndorf (2011–2016) Chicago, Illinois, U.S.A. Peter Buchanan (2011–2017) Auckland, New Zealand Published by Mycotaxon, Ltd. p.o. box 264, Ithaca, NY 14581-0264, USA www.mycotaxon.com & www.ingentaconnect.com/content/mtax/mt © Mycotaxon, Ltd, 2012 MYCOTAXON THE INTERNATIONAL JOURNAL OF FUNGAL TAXONOMY & NOMENCLATURE Volume 121 July–September, 2012 Editor-in-Chief Lorelei L. Norvell [email protected] Pacific Northwest Mycology Service 6720 NW Skyline Boulevard Portland, Oregon 97229-1309 USA Nomenclature Editor Shaun R. Pennycook [email protected] Manaaki Whenua Landcare Research Auckland, New Zealand Book Review Editor Else C. Vellinga [email protected] 861 Keeler Avenue Berkeley CA 94708 U.S.A. consisting of i–xii + 502 pages including figures ISSN 0093-4666 (print) http://dx.doi.org/10.5248/121.cvr ISSN 2154-8889 (online) © 2012. Mycotaxon, Ltd. iv ... Mycotaxon 121 MYCOTAXON volume one hundred twenty-one — table of contents Cover section Errata . .viii Reviewers . ix Submission procedures . x From the Editor . xi Research articles Agarics of alders I – The Alnicola badia complex Pierre-Arthur Moreau, Juliette Rochet, Enrico Bizio, Laurent Deparis, Ursula Peintner, Beatrice Senn-Irlet, Leho Tedersoo & Monique Gardes 1 A new species of Xerocomus from Southern China Ming Zhang, Tai-Hui Li, Tolgor Bau & Bin Song 23 Nomenclatural and taxonomic notes on Calvatia (Lycoperdaceae) and associated genera Johannes C.
    [Show full text]
  • Stemphylium Revisited
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 77–103 (2017). Stemphylium revisited J.H.C. Woudenberg1, B. Hanse2, G.C.M. van Leeuwen3, J.Z. Groenewald1, and P.W. Crous1,4,5* 1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2IRS, P.O. Box 32, 4600 AA Bergen op Zoom, The Netherlands; 3National Plant Protection Organization (NPPO-NL), P.O. Box 9102, 6700 HC, Wageningen, The Netherlands; 4Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 5Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa *Correspondence: P.W. Crous, [email protected] Abstract: In 2007 a new Stemphylium leaf spot disease of Beta vulgaris (sugar beet) spread through the Netherlands. Attempts to identify this destructive Stemphylium sp. in sugar beet led to a phylogenetic revision of the genus. The name Stemphylium has been recommended for use over that of its sexual morph, Pleospora, which is polyphyletic. Stemphylium forms a well-defined monophyletic genus in the Pleosporaceae, Pleosporales (Dothideomycetes), but lacks an up-to-date phylogeny. To address this issue, the internal transcribed spacer 1 and 2 and intervening 5.8S nr DNA (ITS) of all available Stemphylium and Pleospora isolates from the CBS culture collection of the Westerdijk Institute (N = 418), and from 23 freshly collected isolates obtained from sugar beet and related hosts, were sequenced to construct an overview phylogeny (N = 350). Based on their phylogenetic informativeness, parts of the protein-coding genes calmodulin and glyceraldehyde-3-phosphate dehydro- genase were also sequenced for a subset of isolates (N = 149).
    [Show full text]
  • Functional Characterization of Polyketide-Derived
    FUNCTIONAL CHARACTERIZATION OF POLYKETIDE-DERIVED SECONDARY METABOLITES SOLANAPYRONES PRODUCED BY THE CHICKPEA BLIGHT PATHOGEN, ASCOCHYTA RABIEI: GENETICS AND CHEMICAL ECOLOGY By WONYONG KIM A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology AUGUST 2015 To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of WONYONG KIM find it satisfactory and recommend that it be accepted ___________________________________ Weidong Chen, Ph.D., Chair ___________________________________ Tobin L. Peever, Ph.D. ___________________________________ George J. Vandemark, Ph.D. ___________________________________ Lee A. Hadwiger, Ph.D. ___________________________________ Ming Xian, Ph.D. ii ACKNOWLEDGEMENTS I take this opportunity to thank my major advisor, Dr. Weidong Chen. I have learned a tremendous amount from him in framing hypothesis and critical thinking in science. He gave me every possible opportunity to attend conferences to present my research and interact with scientific communities. I would also like to thank my committee members Drs. Tobin L. Peever, George J. Va ndemark, Lee A. Hadwiger and Ming Xian for their open-door policy when questions arose and for giving me ideas and suggestions that helped develop this dissertation research. I am very fortunate to have such a nice group of committee members who are experts each in their own fields such as Systematics, Genetics, Molecular Biology and Chemistry. Without their expertise and helps the research presented in this dissertation could not have been carried out. I thank to Drs. Jeong-Jin Park and Chung-Min Park for long term collaboration during my doctoral study and being as good friends.
    [Show full text]