COMPASS-II Proposal
Total Page:16
File Type:pdf, Size:1020Kb
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN{SPSC{2010{014 SPSC-P-340 May 17, 2010 COMPASS-II Proposal The COMPASS Collaboration contact: A. Magnon/CEA-Saclay, G. K. Mallot/CERN Compass spokespersons [email protected], [email protected] The COMPASS Collaboration Ruhr-Universit¨atBochum, Bochum, Germany F. Gautheron, Ch. Heß, J. Koivuniemi, W. Meyer, G. Reicherz Helmholtz-Institut f¨urStrahlen- und Kernphysik, Universit¨atBonn, Bonn, Germany J. Bisplinghoff, D. Eversheim, F. Hinterberger, R. Jahn, R. Joosten, T. Negrini Physikalisches Institut, Universit¨atBonn, Bonn, Germany J. Barth, F. Klein, S. Goertz, R. Panknin, J. Pretz, R. Windmolders Institute of Scientific Instruments in Brno, Brno, Czech Republic A. Srnka Matrivani Institute of Experimental Research & Education, Calcutta, India S. Dasgupta, L. Dhara, S. Sarkara, L. Sinha JINR, Dubna, Russia V. Yu. Alexakhin, G. D. Alexeev, V. A. Anosov, A. Antonov, A. Efremov, O. P. Gavrichtchouk, A. Guskov, Yu. Ivanshin, O. Ivanov, Yu. Kisselev, O. Kouznetsov, Z. Kroumchtein, G. V. Meshcheryakov, A. Nagaytsev, A. Olshevski, D. V. Peshekhonov, G. Pontecorvo, N. Rossiyskaya, M. G. Sapozhnikov, I. A. Savin, O. Yu. Shevchenko, A. N. Sissakian,1) G. I. Smirnov, O. V. Teryaev, L. G. Tkatchev, N. V. Vlassov, E. Zemlyanichkina Universit¨atErlangen{N¨urnberg, Erlangen, Germany Ch. Adolph, Ch. Braun, W. Eyrich, A. Lehmann, A. Richter Universit¨atFreiburg, Freiburg, Germany H. Fischer, F.-H. Heinsius,2) F. Herrmann, T. Guth¨orl,L. Lauser, K. K¨onigsmann,F. Nerling, Ch. Schill, H. Wollny, K. Schmidt, S. Schopferer CERN, Gen`eve, Switzerland G. K. Mallot, W.-D. Nowak,3) K. Sch¨onning,M. Schott Technical University of Liberec, Liberec, Czech Republic M. Sulc Laboratory of Instrumentation and Experimental Particles Physics, Lisbon, Portugal P. Bordalo, C. Franco, A. S. Nunes, C. Quintans, S. Ramos, L. Silva, M. Stolarski Universit¨atMainz, Mainz, Germany J. Bernhard, D. Chaberny, N. du Fresne von Hohenesche, D. von Harrach, P. Jasinski, E. M. Kabuß, D.-H. Kang, M. Ostrick, J. Pochodzalla P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia Yu. Alexandrov, M. Zavertyaev Technische Universit¨atM¨unchen, Munich, Germany F. B¨ohmer,S. Dørheim, J. M. Friedrich, S. Gerassimov, S. Grabm¨uller,B. Grube, F. Haas, Ch. H¨oppner,B. Ketzer, I. Konorov, M. Kr¨amer,A. Mann, T. Nagel, S. Neubert, S. Paul, L. Schmitt,4) S. Uhl 1) deceased 2) also at Bochum University, Bochum, Germany 3) on leave of absence from DESY, Zeuthen, Germany 4) also at GSI, Darmstadt, Germany Ludwig Maximilian Universit¨atM¨unchen, Munich, Germany M. Bettinelli, W. D¨unnweber, M. A. Faessler, R. Geyer, J.-F. Rajotte, T. Schl¨uter,I. Uman, A. Zvyagin Charles University in Prague, Prague, Czech Republic M. Finger, M. Finger jr., M. Slunecka Czech Technical University in Prague, Prague, Czech Republic V. Jary, M. Virius IHEP, Protvino, Russia S. V. Donskov, A. Filin, G. V. Khaustov, Yu. Khokhlov, V. Kolosov, V. Konstantinov, A. A. Lednev, Yu. V. Mikhailov, V. I. Nikolaenko, V. A. Polyakov, D. Ryabchikov, V. D. Samoylenko CEA-Saclay, IRFU, Gif-sur-Yvette, France Y. Bedfer, E. Burtin, A. Ferrero, N. d'Hose, F. Kunne, A. Magnon, N. Makke, C. Marchand, A. Morreale, D. Neyret, S. Platchkov, M. Vandenbroucke Tel Aviv University, Tel Aviv, Israel J. Lichtenstadt, M. A. Moinester INFN, Sezione di Trieste, e Universit`adi Trieste, Trieste, Italy R. Birsa, F. Bradamante, A. Bressan, S. Dalla Torre, V. Duic, C. Elia, M. Giorgi, B. Gobbo, S. Levorato, A. Martin, G. Pesaro, E. Rocco, G. Sbrizzai, P. Schiavon, F. Sozzi, S. Tessaro, F. Tessarotto INFN, Sezione di Torino, e Universit`adi Torino, Turin, Italy M. G. Alexeev, A. Amoroso, F. Balestra, R. Bertini, M. Chiosso, O. Denisov, R. Garfagnini, I. Gnesi, A. Grasso, A. Kotzinian, A. Maggiora, S. Melis,5) D. Panzieri,5) B. Parsamyan, G. Piragino, S. Sosio, S. Takekawa So ltanInstitute for Nuclear Studies and University of Warsaw, Warsaw, Poland B. Bade lek,G. Brona, R. Gazda, K. Klimaszewski, K. Kurek, E. Rondio, A. Sandacz, P. Sznajder, W. Wislicki Warsaw University of Technology, Warsaw, Poland J. Marzec, M. Dziewiecki, R. Sulej, K. Zaremba, M. Ziembicki Yamagata University, Yamagata, Japan N. Doshita, T. Iwata, S. Ishimoto,6) N. Horikawa,7) K. Kondo, T. Matsuda,8) Y. Miyachi 5) also at Universit`adel Piemonte Orientale, Alessandria, Italy 6) also at KEK, Tsukuba, Japan 7) also at Chubu University, Kasugai City, Japan 8) also at University of Miyazaki, Miyazaki, Japan Contents Executive Summary 3 PHYSICS CASE 7 1 Hard exclusive photon and meson production 8 1.1 Generalised parton distributions and hard exclusive reactions . 8 1.2 Kinematics and observables .......................... 12 1.2.1 Kinematic domains . 12 1.2.2 Deeply virtual Compton scattering . 12 1.2.3 Deeply virtual meson production . 18 1.3 Simulations and projections .......................... 19 1.3.1 The t-slope of the DVCS cross section . 20 1.3.2 Beam charge & spin asymmetry and difference . 22 1.3.3 The t-slope of the ρ0 cross section . 25 1.3.4 Transverse target spin asymmetries . 29 1.4 A first look at exclusive photon production in 2008 ............. 30 1.4.1 Overall efficiency and performances to select BH and DVCS events 31 1.4.2 Improved analysis using ECAL timing information . 34 1.5 A first hint of \pure" DVCS events from the 2009 test run . 34 2 Measurements of unpolarised PDFs and TMD effects in SIDIS 37 2.1 Strange quark distribution function and quark fragmentation functions . 37 2.1.1 Strange quark distribution function . 38 2.1.2 Quark fragmentation functions . 39 2.1.3 Expected statistical precision . 40 2.2 Transverse-momentum-dependent effects in SIDIS . 41 3 Pion-induced Drell{Yan muon pair production 44 3.1 Transverse spin-dependent structure of the nucleon ............. 44 3.2 SIDIS contributions to transversity and TMDs . 45 3.3 Drell{Yan formalism and observables ..................... 46 3.3.1 Kinematics of the Drell{Yan process . 46 3.3.2 General expression for the Drell{Yan cross section . 48 3.3.3 Asymmetries in the LO QCD parton model . 48 3.3.4 Observables . 50 3.3.5 Study of the J= production mechanism and J= {DY duality . 51 3.4 Kinematic domain and spectrometer acceptance . 52 3.5 Event rate and projected statistical precision . 55 3.5.1 Expected rate of Drell{Yan events . 55 3.5.2 Expected statistical precision and theory predictions for asymmetries 58 3.6 Feasibility of Drell{Yan measurements at Compass ............. 63 3.6.1 Results of 2007{2008 beam tests . 63 3.6.2 Preliminary results of 2009 beam test . 65 3.6.3 Background studies . 68 3.6.4 Systematic errors in the asymmetries . 69 3.7 Competition and complementarity ....................... 72 1 4 Experimental studies of chiral perturbation theory 73 4.1 Pion and kaon polarisability measurement . 73 4.2 Primakoff reactions with neutral pions in the final state . 79 HARDWARE UPGRADES 83 5 Muon trigger 84 5.1 Trigger hodoscopes ............................... 84 5.2 Veto system ................................... 86 5.3 Inclusive trigger ................................. 87 5.4 Trigger for Drell{Yan measurements ...................... 88 6 Target and proton recoil detector for the GPD programme 89 6.1 Liquid hydrogen target ............................. 90 6.2 Recoil Proton Detector ............................. 91 7 Upgrades of the electromagnetic calorimetry 97 7.1 ECAL1 and ECAL2 upgrades ......................... 98 7.2 Large-angle electromagnetic calorimeter ECAL0 . 99 7.3 Test of the new ECAL0 prototypes . 101 8 Radiation Protection issues for Drell{Yan measurements 104 9 Transversely polarised target for Drell{Yan measurements 105 10 Absorber for Drell{Yan measurements 106 10.1 Concept and design ...............................106 10.2 Results from the beam test in 2009 . 108 11 Pixelised Micromegas detectors 111 12 Upgrade of the RICH-1 gaseous photon detectors 112 13 Cost estimate 116 Acknowledgements 120 2 Executive Summary The research fields of hadron spectroscopy and hadron structure are closely connected since their very beginnings. In 1964, spin-1/2 quarks were conjectured to be the build- ing blocks of baryons and mesons in order to explain their quantum numbers observed in hadron spectroscopy. In 1969, when interpreting data from first direct studies of the structure of the proton, partons were hypothesised as its internal constituents and soon after identified with quarks. In the early 1970's, Quantum Chromodynamics (QCD) be- came accepted as the theory of strong interactions, explaining the observed weakening of the interquark forces at short distances or large momentum transfers. QCD not only describes hard processes through perturbative expansions, but also the non-perturbative dynamics of the strong interaction, down to soft and extremely soft processes which are involved in meson spectroscopy and linked to chiral perturbation theory. Parton Distribution Functions (PDFs) describe the structure of the nucleon as a function of the nucleon momentum fraction carried by a parton of a certain species. They are studied primarily in Deeply Inelastic Scattering (DIS) where the longitudinal momentum structure of the nucleon is explored in the collinear approximation, i.e. ne- glecting transverse degrees of freedom. Up to now, PDFs were investigated independently from nucleon electromagnetic form factors that are related to ratios of the observed elas- tic electron{nucleon scattering cross section to that predicted for a structureless nucleon. The recently developed theoretical framework of Generalised Parton Distributions (GPDs) embodies both form factors and PDFs, such that GPDs can be considered as momentum- dissected form factors which provide information on the transverse localisation of a parton as a function of the fraction it carries of the nucleon's longitudinal momentum. Obtain- ing such a \3-dimensional picture" of the nucleon is sometimes referred to as \nucleon tomography". In a complementary approach, the subtle effects of intrinsic transverse par- ton momenta are described by Transverse-Momentum-Dependent PDFs (TMDs).