COMPASS Points to Nucleon Spin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gammev: Fermilab Axion-Like Particle Photon Regeneration Results
GammeV: Fermilab Axion-like Particle Photon Regeneration Results William Wester Fermilab, MS222, Batavia IL, USA presented on behalf of the GammeV Collaboration DOI: http://dx.doi.org/10.3204/DESY-PROC-2008-02/wester william GammeV is an axion-like particle photon regeneration experiment conducted at Fermilab that employs the light shining through a wall technique. We obtain limits on the cou- pling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar axion-like particles in the milli-eV mass range. We are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations. 1 Introduction The question, What are the particles that make up the dark matter of the universe?, is one of the most fundamental scientific questions today. Besides weakly interacting massive particles (WIMPs) such as neutralinos, axion-like particles or other weakly interacting sub-eV particles (WISPs) are highly motivated dark matter particle candidates since they have properties that might explain the cosmic abundance of dark matter. The milli-eV mass scale is of particular interest in modern particle physics since that mass scale may be constructed with a see-saw between the Planck and TeV mass scales, and may be related to neutrino mass differences, the dark energy density expressed in (milli-eV)4, and known dark matter candidates such as gravitinos and axion-like particles. In 2006, the PVLAS experiment reported [1] anomalous polarization effects in the presence of a magnetic field including polarization rotation and el- lipticity generation that could be interpreted as being mediated by an axion-like particle in the milli-eV mass range with a unexpectedly strong coupling to photons. -
Circular and Linear Magnetic Birefringences in Xenon at =1064 Nm
Downloaded from orbit.dtu.dk on: Oct 06, 2021 Circular and linear magnetic birefringences in xenon at =1064 nm Cadene, Agathe; Fouche, Mathilde; Rivere, Alice; Battesti, Remy; Coriani, Sonia; Rizzo, Antonio; Rizzo, Carlo Published in: Journal of Chemical Physics Link to article, DOI: 10.1063/1.4916049 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Cadene, A., Fouche, M., Rivere, A., Battesti, R., Coriani, S., Rizzo, A., & Rizzo, C. (2015). Circular and linear magnetic birefringences in xenon at =1064 nm. Journal of Chemical Physics, 142(12), [124313]. https://doi.org/10.1063/1.4916049 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Circular and linear magnetic birefringences in xenon at λ = 1064 nm Agathe Cadène, Mathilde Fouché, Alice Rivère, -
Strategies for the Detection of Dark Matter
Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC) Strategies for the Detection of Dark Matter What do we know? What have we achieved so far? Strategies for the future Strategies for the Detection f Dark Matter Hanoi 10 Aug 06 1 B.Sadoulet 1. What do we know? 2. What has been achieved? 3. Strategies for the future Standard Model of Cosmology A surprising but consistent picture Non Baryonic Λ Dark Matter Ω Ωmatter Not ordinary matter (Baryons) Nucleosynthesis Ω >> Ω = 0.047 ± 0.006 from m b WMAP Mostly cold: Not light neutrinos≠ small scale structure mv < .17eV Large Scale structure+baryon oscillation + Lyman α Strategies for the Detection f Dark Matter Hanoi 10 Aug 06 2 B.Sadoulet 1. What do we know? 2. What has been achieved? 3. Strategies for the future Ongoing Systematic Mapping dark matter and energy non baryonic Λ Quintessence baryonic clumped H2? ? gas Primordial Black Holes VMO Mirror branes ? exotic particles dust Energy in bulk MACHOs thermal non-thermal SuperWIMPs Light Neutrinos WIMPs Axions Wimpzillas Most baryonic forms excluded (independently of BBN, CMB) Particles: well defined if thermal (difficult when athermal) Additional dimensions? Strategies for the Detection f Dark Matter Hanoi 10 Aug 06 3 B.Sadoulet 1. What do we know? 2. What has been achieved? 3. Strategies for the future Standard Model of Particle Physics Fantastic success but Model is unstable Why is W and Z at ≈100 Mp? Need for new physics at that scale supersymmetry additional dimensions Flat: Cheng et al. -
Arxiv:2101.08781V1 [Hep-Ph] 21 Jan 2021
MI-TH-2135 PASSAT at Future Neutrino Experiments: Hybrid Beam-Dump-Helioscope Facilities to Probe Light Axion-Like Particles P. S. Bhupal Dev,1, ∗ Doojin Kim,2, y Kuver Sinha,3, z and Yongchao Zhang4, 1, x 1Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA 2Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA 3Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA 4School of Physics, Southeast University, Nanjing 211189, China There are broadly three channels to probe axion-like particles (ALPs) produced in the laboratory: through their subsequent decay to Standard Model (SM) particles, their scattering with SM particles, or their subsequent conversion to photons. Decay and scattering are the most commonly explored channels in beam-dump type experiments, while conversion has typically been utilized by light- shining-through-wall (LSW) experiments. A new class of experiments, dubbed PASSAT (Particle Accelerator helioScopes for Slim Axion-like-particle deTection), has been proposed to make use of the ALP-to-photon conversion in a novel way: ALPs, after being produced in a beam-dump setup, turn into photons in a magnetic field placed near the source. It has been shown that such hybrid beam-dump-helioscope experiments can probe regions of parameter space that have not been investigated by other laboratory-based experiments, hence providing complementary information; in particular, they probe a fundamentally different region than decay or LSW experiments. We propose the implementation of PASSAT in future neutrino experiments, taking a DUNE-like experiment as an example. -
Signal Processing in the PVLAS Experiment
Signal Processing in the PVLAS Experiment E. ZAVATTINI1, G. ZAVATTINI4, G. RUOSO2, E. POLACCO3, E. MILOTTI,1, M. KARUZA1, U. GASTALDI 2, G. DI DOMENICO4, F. DELLA VALLE1, R. CIMINO5, S. CARUSOTTO3, G. CANTATORE1, M. BREGANT1 1 - Università e I.N.F.N. Trieste, Via Valerio 2, 34127 Trieste, ITALY 2 - Lab. Naz.di Legnaro dell’I.N.F.N., Viale dell’Università 2, 35020 Legnaro, ITALY 3 - Università e I.N.F.N. Pisa, Via F. Buonarroti 2, 56100 Pisa, ITALY 4 - Università e I.N.F.N. Ferrara, Via del Paradiso 12, 44100 Ferrara, ITALY 5 - Lab. Naz.di Frascati dell’I.N.F.N., Via E. Fermi 40, 00044 Frascati, ITALY [email protected] http://www.ts.infn.it/experiments/pvlas/ Abstract: - Nonlinear interactions of light with light are well known in quantum electronics, and it is quite common to generate harmonic or subharmonic beams from a primary laser with photonic crystals. One suprising result of quantum electrodynamics is that because of the quantum fluctuations of charged fields, the same can happen in vacuum. The virtual charged particle pairs can be polarized by an external field and vacuum can thus become birefringent: the PVLAS experiment was originally meant to explore this strange quantum regime with optical methods. Since its inception PVLAS has found a new, additional goal: in fact vacuum can become a dichroic medium if we assume that it is filled with light neutral particles that couple to two photons, and thus PVLAS can search for exotic particles as well. PVLAS implements a complex signal processing scheme: here we describe the double data acquisition chain and the data analysis methods used to process the experimental data. -
Axions (A0) and Other Very Light Bosons, Searches for See the Related Review(S): Axions and Other Similar Particles
Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) Axions (A0) and Other Very Light Bosons, Searches for See the related review(s): Axions and Other Similar Particles A0 (Axion) MASS LIMITS from Astrophysics and Cosmology These bounds depend on model-dependent assumptions (i.e. — on a combination of axion parameters). VALUE (MeV) DOCUMENT ID TECN COMMENT We do not use the following data for averages, fits, limits, etc. ••• ••• >0.2 BARROSO 82 ASTR Standard Axion >0.25 1 RAFFELT 82 ASTR Standard Axion >0.2 2 DICUS 78C ASTR Standard Axion MIKAELIAN 78 ASTR Stellar emission >0.3 2 SATO 78 ASTR Standard Axion >0.2 VYSOTSKII 78 ASTR Standard Axion 1 Lower bound from 5.5 MeV γ-ray line from the sun. 2 Lower bound from requiring the red giants’ stellar evolution not be disrupted by axion emission. A0 (Axion) and Other Light Boson (X 0) Searches in Hadron Decays Limits are for branching ratios. VALUE CL% DOCUMENT ID TECN COMMENT We do not use the following data for averages, fits, limits, etc. ••• ••• <2 10 10 95 1 AAIJ 17AQ LHCB B+ K+ X 0 (X 0 µ+ µ ) × − → → − <3.7 10 8 90 2 AHN 17 KOTO K0 π0 X 0, m = 135 MeV × − L → X 0 11 3 0 0 + <6 10− 90 BATLEY 17 NA48 K± π± X (X µ µ−) × 4 → 0 0 →+ WON 16 BELL η γ X (X π π−) 9 5 0→ 0 0 → 0 + <1 10− 95 AAIJ 15AZ LHCB B K∗ X (X µ µ−) × 6 6 0 → 0 0 →+ <1.5 10− 90 ADLARSON 13 WASA π γ X (X e e−), × m→ = 100 MeV→ X 0 <2 10 8 90 7 BABUSCI 13B KLOE φ η X0 (X 0 e+ e ) × − → → − 8 ARCHILLI 12 KLOE φ η X0, X 0 e+ e → → − <2 10 15 90 9 GNINENKO 12A BDMP π0 γ X 0 (X 0 e+ e ) × − → → − -
Dark Matter Vienna University of Technology V2.1
Dark Matter Vienna University of Technology V2.1 Jochen Schieck and Holger Kluck Institut f¨urHochenergiephysik Nikolsdorfer Gasse 18 1050 Wien Atominstitut derTechnischen Universit¨atWien Stadionallee 2 1020 Wien Wintersemester 2017/18 18.12.2017 2 Contents 1 Introduction 7 1.1 What is "Dark Matter" . .7 1.1.1 Dark . .7 1.1.2 Matter . .7 1.1.3 Cosmology . .7 1.1.4 Massive particles as origin of "Dark Matter" . .7 1.1.5 "Dark Matter" as contribution to the energy density of the universe in Cosmology . .7 1.2 First Indication of observing "Dark Matter" . 13 1.3 Brief Introduction to Cosmology . 15 1.3.1 Special Relativity . 16 1.3.2 Differential geometry . 16 1.3.3 General Relativity . 16 1.3.4 Cosmology . 17 1.3.5 Decoupling of matter and radiation . 18 1.4 The Standard Model of Particle Physics . 19 1.4.1 The matter content of the Standard Model . 19 1.4.2 Forces within the Standard Model . 19 1.4.3 Shortcoming of the Standard Model . 20 1.4.4 Microscopic Behaviour of Gravity . 21 2 Evidence 23 2.1 Dynamics of Galaxies . 23 2.2 Gravitational Lensing . 24 2.2.1 Bullet Cluster . 31 2.3 Cosmic Microwave Background . 33 2.4 Primordial Nucleosynthesis (Big Bang Nucleosynthesis - BBN) . 35 3 Structure Evolution 39 3.1 Structure Formation . 39 3.1.1 The Classic Picture . 39 3.1.2 Structure Formation and Cosmology . 41 3.2 Model of the Dark Matter Halo in our Galaxy . 45 3 4 Unsolved Questions and Open Issues 49 4.1 Core-Cusp Problem . -
Dark Matter in Nuclear Physics
Dark Matter in Nuclear Physics George Fuller (UCSD), Andrew Hime (LANL), Reyco Henning (UNC), Darin Kinion (LLNL), Spencer Klein (LBNL), Stefano Profumo (Caltech) Michael Ramsey-Musolf (Caltech/UW Madison), Robert Stokstad (LBNL) Introduction A transcendent accomplishment of nuclear physics and observational cosmology has been the definitive measurement of the baryon content of the universe. Big Bang Nucleosynthesis calculations, combined with measurements made with the largest new telescopes of the primordial deuterium abundance, have inferred the baryon density of the universe. This result has been confirmed by observations of the anisotropies in the Cosmic Microwave Background. The surprising upshot is that baryons account for only a small fraction of the observed mass and energy in the universe. It is now firmly established that most of the mass-energy in the Universe is comprised of non-luminous and unknown forms. One component of this is the so- called “dark energy”, believed to be responsible for the observed acceleration of the expansion rate of the universe. Another component appears to be composed of non-luminous material with non-relativistic kinematics at the current epoch. The relationship between the dark matter and the dark energy is unknown. Several national studies and task-force reports have found that the identification of the mysterious “dark matter” is one of the most important pursuits in modern science. It is now clear that an explanation for this phenomenon will require some sort of new physics, likely involving a new particle or particles, and in any case involving physics beyond the Standard Model. A large number of dark matter studies, from theory to direct dark matter particle detection, involve nuclear physics and nuclear physicists. -
Montecarlo Simulations Using GRID
UNIVERSITADEGLISTUDIDITORINO` Facolt`a di Scienze Matematiche, Fisiche e Naturali Dottorato di ricerca in Fisica XVII Ciclo Spin asymmetries for the reaction µD → µΛXat COMPASS: MonteCarlo simulations using GRID Candidato Antonio Amoroso Relatore Prof.ssa Maria Pia Bussa Coordinatore del ciclo Prof. Ezio Menichetti 2002-2004 0.1. Introduction i 0.1 Introduction COMPASS (COmmon Muon and Proton Apparatus for Structure and Spec- troscopy) [1] is a complex experimental apparatus assembled by an interna- tional collaboration of more than 20 Institutions. Two research physics pro- grams have been planned. One centered on muon physics and the other one on hadron physics. COMPASS is a fixed target experiment in the North Area site at CERN. It uses beams produced by the SPS accelerator. The experiment is placed in the EHN2 hall (Bldg. 888) in the Prevessin (F) site of CERN. The purpose of the experiment is the study of the structure and the spectroscopy of hadrons using different high intensity beams of lepton and hadrons with energies ranging from 100 to 200 GeV. The experiment aims to collect large samples of charmed particles. From the measurement of the cross section asymmetry for open charm production in deep inelastic scattering of polarized muons on polarized nucleons, the gluon polarization ∆G will be determined and compared with the available theoretical predictions. Hadron beams are used to study the semi-leptonic decays of charmed doubly charmed baryons. Both measurements will allow to study fundamental prob- lems regarding the hadron structure and to test Heavy Quark Effective Theory (HQET) calculations. Moreover the production of exotic states, which are fore- seen by the QCD but have not yet been established, will investigated. -
Gammev: Fermilab Axion-Like Particle Photon Regeneration Results
GammeV: Fermilab Axion-like Particle Photon Regeneration Results William Wester Fermilab, MS222, Batavia IL, USA presented on behalf of the GammeV Collaboration DOI: http://dx.doi.org/10.3204/DESY-PROC-2008-02/wester william GammeV is an axion-like particle photon regeneration experiment conducted at Fermilab that employs the light shining through a wall technique. We obtain limits on the cou- pling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar axion-like particles in the milli-eV mass range. We are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations. 1 Introduction The question, What are the particles that make up the dark matter of the universe?, is one of the most fundamental scientific questions today. Besides weakly interacting massive particles (WIMPs) such as neutralinos, axion-like particles or other weakly interacting sub-eV particles (WISPs) are highly motivated dark matter particle candidates since they have properties that might explain the cosmic abundance of dark matter. The milli-eV mass scale is of particular interest in modern particle physics since that mass scale may be constructed with a see-saw between the Planck and TeV mass scales, and may be related to neutrino mass differences, the dark energy density expressed in (milli-eV)4, and known dark matter candidates such as gravitinos and axion-like particles. In 2006, the PVLAS experiment reported [1] anomalous polarization effects in the presence of a magnetic field including polarization rotation and el- lipticity generation that could be interpreted as being mediated by an axion-like particle in the milli-eV mass range with a unexpectedly strong coupling to photons. -
Cern: a European Laboratory for the World
CERN: A EUROPEAN LABORATORY FOR THE WORLD G.K. Mallot CERN THE BEGINNINGS 1949: Proposal by de Broglie to the Eur. Cult. Conf. "the creation of a laboratory or institution where it would be possible to do scientific work, but somehow beyond the framework of the different participating states” “undertake tasks, which, by virtue of their size and cost, were beyond the scope of individual countries" 1952: Interim council: Conseil Européen pour la Recherche Nucléaire left council members : Pierre Auger, Edoardo Amaldi and Lew Kowarski 1953: Geneva chosen as location G. K. Mallot Yamagata/ 24 September 2008 2 THE BEGINNINGS 1954: European Organization for Nuclear Research 12 founding European Member States Belgium, Denmark, France, the Federal Republic of Germany, Greece, Italy, the Netherlands, Norway, Sweden, Switzerland, the United Kingdom, and Yugoslavia foundation stone laying 10 June 1955 by DG Felix Mission: Bloch • provide for collaboration among European States in nuclear research of a pure scientific and fundamental character • have no concern with work for military requirements • the results of its experimental and theoretical work shall be published or otherwise made generally available . G. K. Mallot Yamagata/ 24 September 2008 3 A GOBAL ENDEAVOUR > half of world’s particle physicists G. K. Mallot Yamagata/ 24 September 2008 4 CERN IN NUMBERS 2500 staff 9000 users (192 from Japan) 800 fellows and associates 580 universities, 85 nations Budget 987MCHF (93 GJPY) 20 Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, 7 Observers: the Slovak Republic, Spain, India, Israel, Japan, Sweden, Switzerland and the Russian Federation, Turkey, the United Kingdom. -
Simulation of Hydrodynamic Tunneling Induced by High-Energy Proton Beam in Copper by Coupling Computer Codes
PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 014501 (2019) Editors' Suggestion Simulation of hydrodynamic tunneling induced by high-energy proton beam in copper by coupling computer codes † ‡ Y. Nie,1,* C. Fichera,1 L. Mettler,1, F. Carra,1 R. Schmidt,1, N. A. Tahir,2 A. Bertarelli,1 and D. Wollmann1 1CERN, CH-1211 Geneva 23, Switzerland 2GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Received 18 October 2018; published 11 January 2019; corrected 31 January 2019) The design of machine protection systems for high-energy accelerators with high-intensity beams requires analyzing a large number of failures leading to beam loss. One of the most serious failures is an accidental impact of a large number of bunches at one location, for example, due to a deflection of the particle beams by the extraction kicker magnets with the wrong strength. The numerical assessment of such an event requires an iterative execution of an energy-deposition code and a hydrodynamic code, in case the hydrodynamic tunneling effect plays an important role in the beam-matter interactions. Such calculations have been performed for the CERN Large Hadron Collider (LHC), since the energy stored in the LHC beams exceeds previous accelerators by 2 orders of magnitude. This was done using the particle shower code FLUKA and the hydrodynamic code BIG2 [Tahir et al., Phys. Rev. STAccel. Beams 15, 051003 (2012)]. Later, simulations for a number of cases for other accelerators at CERN and the Future Circular Collider (FCC) were performed [Tahir et al., Phys. Rev. Accel. Beams 19, 081002 (2016)]. These simulations showed that the penetration depth of the beam in copper or graphite could be an order of magnitude deeper when considering the hydrodynamic tunneling, compared to a static approximation.