Circular and Linear Magnetic Birefringences in Xenon at =1064 Nm

Total Page:16

File Type:pdf, Size:1020Kb

Circular and Linear Magnetic Birefringences in Xenon at =1064 Nm Downloaded from orbit.dtu.dk on: Oct 06, 2021 Circular and linear magnetic birefringences in xenon at =1064 nm Cadene, Agathe; Fouche, Mathilde; Rivere, Alice; Battesti, Remy; Coriani, Sonia; Rizzo, Antonio; Rizzo, Carlo Published in: Journal of Chemical Physics Link to article, DOI: 10.1063/1.4916049 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Cadene, A., Fouche, M., Rivere, A., Battesti, R., Coriani, S., Rizzo, A., & Rizzo, C. (2015). Circular and linear magnetic birefringences in xenon at =1064 nm. Journal of Chemical Physics, 142(12), [124313]. https://doi.org/10.1063/1.4916049 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Circular and linear magnetic birefringences in xenon at λ = 1064 nm Agathe Cadène, Mathilde Fouché, Alice Rivère, Rémy Battesti, Sonia Coriani, Antonio Rizzo, and Carlo Rizzo Citation: The Journal of Chemical Physics 142, 124313 (2015); doi: 10.1063/1.4916049 View online: http://dx.doi.org/10.1063/1.4916049 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/142/12?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films AIP Advances 3, 072125 (2013); 10.1063/1.4816799 Comparison of standard and damped response formulations of magnetic circular dichroism J. Chem. Phys. 135, 024112 (2011); 10.1063/1.3607991 Interpreting magnetization from Faraday rotation in birefringent magnetic media J. Appl. Phys. 101, 053912 (2007); 10.1063/1.2437586 Theoretical studies on magnetic circular dichroism by the finite perturbation method with relativistic corrections J. Chem. Phys. 123, 164113 (2005); 10.1063/1.2080027 Four-component Hartree–Fock calculations of magnetic-field induced circular birefringence—Faraday effect—in noble gases and dihalogens J. Chem. Phys. 122, 074321 (2005); 10.1063/1.1849167 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 192.38.33.16 On: Wed, 29 Apr 2015 10:19:55 THE JOURNAL OF CHEMICAL PHYSICS 142, 124313 (2015) Circular and linear magnetic birefringences in xenon at λ = 1064 nm Agathe Cadène,1 Mathilde Fouché,1 Alice Rivère,1 Rémy Battesti,1 Sonia Coriani,2,3 Antonio Rizzo,4 and Carlo Rizzo1,a) 1Laboratoire National des Champs Magnétiques Intenses (UPR 3228, CNRS-UPS-UJF-INSA), 143 Avenue de Rangueil, 31400 Toulouse, France 2Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via Giorgieri 1, 34127 Trieste, Italy 3Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark 4Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy (Received 19 January 2015; accepted 11 March 2015; published online 30 March 2015) The circular and linear magnetic birefringences corresponding to the Faraday and the Cotton-Mouton effects, respectively, have been measured in xenon at λ = 1064 nm. The experimental setup is based on time dependent magnetic fields and a high finesse Fabry-Pérot cavity. Our value of the Faradayeffect is the first measurement at this wavelength. It is compared to theoretical predictions. Our uncertainty of a few percent yields an agreement at better than 1σ with the computational estimate when relativistic effects are taken into account. Concerning the Cotton-Mouton effect, our measurement, the second ever published at λ = 1064 nm, agrees at better than 1σ with theoretical predictions. We also compare our error budget with that established for other experimental published values. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916049] I. INTRODUCTION where λ is the light wavelength. On the other hand, the Cotton- Mouton effect corresponds to a linear magnetic birefringence Magnetic birefringence corresponds to an anisotropy of induced by a transverse magnetic field B?. The field induces the (generally complex) refractive index induced in a medium a difference between the real parts of the refraction index by a magnetic field.1,2 A circular birefringence arises when the for light polarized parallel n with respect to that polarized ∥ magnetic field changes the angular velocity of the two eigen perpendicular to the magnetic field n?. The difference ∆nCM modes of polarization in which a linearly polarized beam is = n − n? is proportional to the square of the magnetic field, split, without deforming them. The net result is a rotation of ∥ 2 the plane of linear polarization, a phenomenon also seen in ∆nCM = kCMB?; (3) the absence of external fields in chiral samples (natural optical with k the linear magnetic birefringence per square unit rotation). When the presence of the external magnetic field CM magnetic field intensity. yields a different phase of two perpendicular components of For the Cotton-Mouton effect, k has two contributions, the linear polarization vector, the net result is the appearance CM the first one due to the distortion of the electronic structure of an ellipticity, and we are observing an example of linear while the second one corresponds to a partial orientation of birefringence. the molecules. When working in the conditions of constant Two well known examples of magnetic birefringences are volume, the orientational contribution is proportional to the the Faraday and the Cotton-Mouton effects. The former corre- inverse of the temperature T, and it usually dominates, often sponds to a circular birefringence induced by a longitudinal hiding the first temperature independent contribution. For axial magnetic field B (aligned parallel to the direction of propaga- molecules, for example, k is given by the expression3 tion of light). After∥ going through the birefringent medium, the CM real part of the index of refraction for left circularly polarized πNA ( 2 ) kCM = ∆η + ∆α∆ χ : (4) light n− is different from that for right circularly polarized light Vm4πϵ0 15kBT n+. The difference ∆nF = n− − n+ is proportional to B , ∥ Above NA is the Avogadro constant, Vm the molar volume, ∆nF = kFB ; (1) kB the Boltzmann constant, ϵ0 the electric constant, ∆η the ∥ frequency dependent hypermagnetizability anisotropy, ∆α the k being the circular magnetic birefringence per unit magnetic F optical electric dipole polarizability anisotropy, and ∆ χ the field intensity. For historical reason, the Faraday effect is usu- magnetic susceptibility anisotropy. For spherical molecules or ally given in terms of the Verdet constant, for atoms, such as xenon, however, the temperature depen- πk dent contribution vanishes. Measurements on noble gases, for V = F ; (2) λ example, allow to focus on the hypermagnetizability anisot- ropy ∆η term. On the other hand, since the Langevin-type orientational term vanishes, the magnetic birefringence is a)Electronic mail:[email protected] much lower than the one observed in nonspherical molecules. 0021-9606/2015/142(12)/124313/10/$30.00 142, 124313-1 © 2015 AIP Publishing LLC This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 192.38.33.16 On: Wed, 29 Apr 2015 10:19:55 124313-2 Cadène et al. J. Chem. Phys. 142, 124313 (2015) From an experimental point of view, measurements on such by the formula, gases require a very sensitive apparatus, with a ∆nCM of the −16 −14 order of 10 for helium and 10 for xenon at 1 atm and LB CM = π ∆nCM sin 2θP; (6) with a magnetic field of 1 T. In comparison, ∆nF is typically λ 105 bigger. The computational determination of the Verdet constant where θP is the angle between the light polarization and the and of the Cotton-Mouton effect requires the far-from-trivial magnetic field. calculation of higher-order response functions,2,3 and it has often served as a test bed for the validation of new electronic B. General setup structure methods. For atoms, in order to obtain accurate re- sults, one must properly account for the appropriate description The apparatus has already been described in detail else- of one-electron (basis set), N-electron (correlation), and rela- where.14,15 Briefly, light comes from a Nd:YAG laser at λ tivistic effects. As far as correlation is concerned, coupled clus- = 1064 nm (see Fig.1). It is linearly polarized by a first polar- ter (CC) methods are nowadays among the most accurate tools izer P,before going through either a transverse or a longitudinal in electronic structure theory.4,5 Both birefringences treated magnetic field. The polarization is then analyzed by a second here, and in particular, the Cotton-Mouton effect, require a polarizer A, crossed at maximum extinction compared to P. good description of the outer valence space of the system at The beam polarized parallel to the incident beam, reflected hand. Therefore, the presence of diffuse functions in the one- by the polarizer A as the ordinary ray, is collected by the 2,4 electron basis set is mandatory. Whereas for light atoms, photodiode Pht.
Recommended publications
  • Gammev: Fermilab Axion-Like Particle Photon Regeneration Results
    GammeV: Fermilab Axion-like Particle Photon Regeneration Results William Wester Fermilab, MS222, Batavia IL, USA presented on behalf of the GammeV Collaboration DOI: http://dx.doi.org/10.3204/DESY-PROC-2008-02/wester william GammeV is an axion-like particle photon regeneration experiment conducted at Fermilab that employs the light shining through a wall technique. We obtain limits on the cou- pling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar axion-like particles in the milli-eV mass range. We are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations. 1 Introduction The question, What are the particles that make up the dark matter of the universe?, is one of the most fundamental scientific questions today. Besides weakly interacting massive particles (WIMPs) such as neutralinos, axion-like particles or other weakly interacting sub-eV particles (WISPs) are highly motivated dark matter particle candidates since they have properties that might explain the cosmic abundance of dark matter. The milli-eV mass scale is of particular interest in modern particle physics since that mass scale may be constructed with a see-saw between the Planck and TeV mass scales, and may be related to neutrino mass differences, the dark energy density expressed in (milli-eV)4, and known dark matter candidates such as gravitinos and axion-like particles. In 2006, the PVLAS experiment reported [1] anomalous polarization effects in the presence of a magnetic field including polarization rotation and el- lipticity generation that could be interpreted as being mediated by an axion-like particle in the milli-eV mass range with a unexpectedly strong coupling to photons.
    [Show full text]
  • Strategies for the Detection of Dark Matter
    Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC) Strategies for the Detection of Dark Matter What do we know? What have we achieved so far? Strategies for the future Strategies for the Detection f Dark Matter Hanoi 10 Aug 06 1 B.Sadoulet 1. What do we know? 2. What has been achieved? 3. Strategies for the future Standard Model of Cosmology A surprising but consistent picture Non Baryonic Λ Dark Matter Ω Ωmatter Not ordinary matter (Baryons) Nucleosynthesis Ω >> Ω = 0.047 ± 0.006 from m b WMAP Mostly cold: Not light neutrinos≠ small scale structure mv < .17eV Large Scale structure+baryon oscillation + Lyman α Strategies for the Detection f Dark Matter Hanoi 10 Aug 06 2 B.Sadoulet 1. What do we know? 2. What has been achieved? 3. Strategies for the future Ongoing Systematic Mapping dark matter and energy non baryonic Λ Quintessence baryonic clumped H2? ? gas Primordial Black Holes VMO Mirror branes ? exotic particles dust Energy in bulk MACHOs thermal non-thermal SuperWIMPs Light Neutrinos WIMPs Axions Wimpzillas Most baryonic forms excluded (independently of BBN, CMB) Particles: well defined if thermal (difficult when athermal) Additional dimensions? Strategies for the Detection f Dark Matter Hanoi 10 Aug 06 3 B.Sadoulet 1. What do we know? 2. What has been achieved? 3. Strategies for the future Standard Model of Particle Physics Fantastic success but Model is unstable Why is W and Z at ≈100 Mp? Need for new physics at that scale supersymmetry additional dimensions Flat: Cheng et al.
    [Show full text]
  • Arxiv:2101.08781V1 [Hep-Ph] 21 Jan 2021
    MI-TH-2135 PASSAT at Future Neutrino Experiments: Hybrid Beam-Dump-Helioscope Facilities to Probe Light Axion-Like Particles P. S. Bhupal Dev,1, ∗ Doojin Kim,2, y Kuver Sinha,3, z and Yongchao Zhang4, 1, x 1Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA 2Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA 3Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA 4School of Physics, Southeast University, Nanjing 211189, China There are broadly three channels to probe axion-like particles (ALPs) produced in the laboratory: through their subsequent decay to Standard Model (SM) particles, their scattering with SM particles, or their subsequent conversion to photons. Decay and scattering are the most commonly explored channels in beam-dump type experiments, while conversion has typically been utilized by light- shining-through-wall (LSW) experiments. A new class of experiments, dubbed PASSAT (Particle Accelerator helioScopes for Slim Axion-like-particle deTection), has been proposed to make use of the ALP-to-photon conversion in a novel way: ALPs, after being produced in a beam-dump setup, turn into photons in a magnetic field placed near the source. It has been shown that such hybrid beam-dump-helioscope experiments can probe regions of parameter space that have not been investigated by other laboratory-based experiments, hence providing complementary information; in particular, they probe a fundamentally different region than decay or LSW experiments. We propose the implementation of PASSAT in future neutrino experiments, taking a DUNE-like experiment as an example.
    [Show full text]
  • Signal Processing in the PVLAS Experiment
    Signal Processing in the PVLAS Experiment E. ZAVATTINI1, G. ZAVATTINI4, G. RUOSO2, E. POLACCO3, E. MILOTTI,1, M. KARUZA1, U. GASTALDI 2, G. DI DOMENICO4, F. DELLA VALLE1, R. CIMINO5, S. CARUSOTTO3, G. CANTATORE1, M. BREGANT1 1 - Università e I.N.F.N. Trieste, Via Valerio 2, 34127 Trieste, ITALY 2 - Lab. Naz.di Legnaro dell’I.N.F.N., Viale dell’Università 2, 35020 Legnaro, ITALY 3 - Università e I.N.F.N. Pisa, Via F. Buonarroti 2, 56100 Pisa, ITALY 4 - Università e I.N.F.N. Ferrara, Via del Paradiso 12, 44100 Ferrara, ITALY 5 - Lab. Naz.di Frascati dell’I.N.F.N., Via E. Fermi 40, 00044 Frascati, ITALY [email protected] http://www.ts.infn.it/experiments/pvlas/ Abstract: - Nonlinear interactions of light with light are well known in quantum electronics, and it is quite common to generate harmonic or subharmonic beams from a primary laser with photonic crystals. One suprising result of quantum electrodynamics is that because of the quantum fluctuations of charged fields, the same can happen in vacuum. The virtual charged particle pairs can be polarized by an external field and vacuum can thus become birefringent: the PVLAS experiment was originally meant to explore this strange quantum regime with optical methods. Since its inception PVLAS has found a new, additional goal: in fact vacuum can become a dichroic medium if we assume that it is filled with light neutral particles that couple to two photons, and thus PVLAS can search for exotic particles as well. PVLAS implements a complex signal processing scheme: here we describe the double data acquisition chain and the data analysis methods used to process the experimental data.
    [Show full text]
  • Axions (A0) and Other Very Light Bosons, Searches for See the Related Review(S): Axions and Other Similar Particles
    Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) Axions (A0) and Other Very Light Bosons, Searches for See the related review(s): Axions and Other Similar Particles A0 (Axion) MASS LIMITS from Astrophysics and Cosmology These bounds depend on model-dependent assumptions (i.e. — on a combination of axion parameters). VALUE (MeV) DOCUMENT ID TECN COMMENT We do not use the following data for averages, fits, limits, etc. ••• ••• >0.2 BARROSO 82 ASTR Standard Axion >0.25 1 RAFFELT 82 ASTR Standard Axion >0.2 2 DICUS 78C ASTR Standard Axion MIKAELIAN 78 ASTR Stellar emission >0.3 2 SATO 78 ASTR Standard Axion >0.2 VYSOTSKII 78 ASTR Standard Axion 1 Lower bound from 5.5 MeV γ-ray line from the sun. 2 Lower bound from requiring the red giants’ stellar evolution not be disrupted by axion emission. A0 (Axion) and Other Light Boson (X 0) Searches in Hadron Decays Limits are for branching ratios. VALUE CL% DOCUMENT ID TECN COMMENT We do not use the following data for averages, fits, limits, etc. ••• ••• <2 10 10 95 1 AAIJ 17AQ LHCB B+ K+ X 0 (X 0 µ+ µ ) × − → → − <3.7 10 8 90 2 AHN 17 KOTO K0 π0 X 0, m = 135 MeV × − L → X 0 11 3 0 0 + <6 10− 90 BATLEY 17 NA48 K± π± X (X µ µ−) × 4 → 0 0 →+ WON 16 BELL η γ X (X π π−) 9 5 0→ 0 0 → 0 + <1 10− 95 AAIJ 15AZ LHCB B K∗ X (X µ µ−) × 6 6 0 → 0 0 →+ <1.5 10− 90 ADLARSON 13 WASA π γ X (X e e−), × m→ = 100 MeV→ X 0 <2 10 8 90 7 BABUSCI 13B KLOE φ η X0 (X 0 e+ e ) × − → → − 8 ARCHILLI 12 KLOE φ η X0, X 0 e+ e → → − <2 10 15 90 9 GNINENKO 12A BDMP π0 γ X 0 (X 0 e+ e ) × − → → −
    [Show full text]
  • Dark Matter Vienna University of Technology V2.1
    Dark Matter Vienna University of Technology V2.1 Jochen Schieck and Holger Kluck Institut f¨urHochenergiephysik Nikolsdorfer Gasse 18 1050 Wien Atominstitut derTechnischen Universit¨atWien Stadionallee 2 1020 Wien Wintersemester 2017/18 18.12.2017 2 Contents 1 Introduction 7 1.1 What is "Dark Matter" . .7 1.1.1 Dark . .7 1.1.2 Matter . .7 1.1.3 Cosmology . .7 1.1.4 Massive particles as origin of "Dark Matter" . .7 1.1.5 "Dark Matter" as contribution to the energy density of the universe in Cosmology . .7 1.2 First Indication of observing "Dark Matter" . 13 1.3 Brief Introduction to Cosmology . 15 1.3.1 Special Relativity . 16 1.3.2 Differential geometry . 16 1.3.3 General Relativity . 16 1.3.4 Cosmology . 17 1.3.5 Decoupling of matter and radiation . 18 1.4 The Standard Model of Particle Physics . 19 1.4.1 The matter content of the Standard Model . 19 1.4.2 Forces within the Standard Model . 19 1.4.3 Shortcoming of the Standard Model . 20 1.4.4 Microscopic Behaviour of Gravity . 21 2 Evidence 23 2.1 Dynamics of Galaxies . 23 2.2 Gravitational Lensing . 24 2.2.1 Bullet Cluster . 31 2.3 Cosmic Microwave Background . 33 2.4 Primordial Nucleosynthesis (Big Bang Nucleosynthesis - BBN) . 35 3 Structure Evolution 39 3.1 Structure Formation . 39 3.1.1 The Classic Picture . 39 3.1.2 Structure Formation and Cosmology . 41 3.2 Model of the Dark Matter Halo in our Galaxy . 45 3 4 Unsolved Questions and Open Issues 49 4.1 Core-Cusp Problem .
    [Show full text]
  • Dark Matter in Nuclear Physics
    Dark Matter in Nuclear Physics George Fuller (UCSD), Andrew Hime (LANL), Reyco Henning (UNC), Darin Kinion (LLNL), Spencer Klein (LBNL), Stefano Profumo (Caltech) Michael Ramsey-Musolf (Caltech/UW Madison), Robert Stokstad (LBNL) Introduction A transcendent accomplishment of nuclear physics and observational cosmology has been the definitive measurement of the baryon content of the universe. Big Bang Nucleosynthesis calculations, combined with measurements made with the largest new telescopes of the primordial deuterium abundance, have inferred the baryon density of the universe. This result has been confirmed by observations of the anisotropies in the Cosmic Microwave Background. The surprising upshot is that baryons account for only a small fraction of the observed mass and energy in the universe. It is now firmly established that most of the mass-energy in the Universe is comprised of non-luminous and unknown forms. One component of this is the so- called “dark energy”, believed to be responsible for the observed acceleration of the expansion rate of the universe. Another component appears to be composed of non-luminous material with non-relativistic kinematics at the current epoch. The relationship between the dark matter and the dark energy is unknown. Several national studies and task-force reports have found that the identification of the mysterious “dark matter” is one of the most important pursuits in modern science. It is now clear that an explanation for this phenomenon will require some sort of new physics, likely involving a new particle or particles, and in any case involving physics beyond the Standard Model. A large number of dark matter studies, from theory to direct dark matter particle detection, involve nuclear physics and nuclear physicists.
    [Show full text]
  • Gammev: Fermilab Axion-Like Particle Photon Regeneration Results
    GammeV: Fermilab Axion-like Particle Photon Regeneration Results William Wester Fermilab, MS222, Batavia IL, USA presented on behalf of the GammeV Collaboration DOI: http://dx.doi.org/10.3204/DESY-PROC-2008-02/wester william GammeV is an axion-like particle photon regeneration experiment conducted at Fermilab that employs the light shining through a wall technique. We obtain limits on the cou- pling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar axion-like particles in the milli-eV mass range. We are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations. 1 Introduction The question, What are the particles that make up the dark matter of the universe?, is one of the most fundamental scientific questions today. Besides weakly interacting massive particles (WIMPs) such as neutralinos, axion-like particles or other weakly interacting sub-eV particles (WISPs) are highly motivated dark matter particle candidates since they have properties that might explain the cosmic abundance of dark matter. The milli-eV mass scale is of particular interest in modern particle physics since that mass scale may be constructed with a see-saw between the Planck and TeV mass scales, and may be related to neutrino mass differences, the dark energy density expressed in (milli-eV)4, and known dark matter candidates such as gravitinos and axion-like particles. In 2006, the PVLAS experiment reported [1] anomalous polarization effects in the presence of a magnetic field including polarization rotation and el- lipticity generation that could be interpreted as being mediated by an axion-like particle in the milli-eV mass range with a unexpectedly strong coupling to photons.
    [Show full text]
  • Where the Complications Start
    4 P. Grang´eet al.: The fine-tuning problem revisited in the light of the Taylor-Lagrange renormalization scheme the necessary (ultra-soft) cut-o in the calculation of the integral. After an evident change of variable, we get 3M 4 X M 2 ⇥ = H dX f H X (16) 1b,H 32⌅2v2 X +1 Λ2 ↵0 ⌃ ⌥ 3M 4 1 M 2 = H dX 1 f H X . 32⌅2v2 − X +1 Λ2 ↵0 ⌃ ⌥ ⌃ ⌥ The first term under the integral can be reduced to a pseudo-function, using (11). Indeed, with Z =1/X,we have dZ M 2 1 dXf(X)= f H (17) Z2 Λ2 Z ↵0 ↵0 ⌃ ⌥ 1 = dZ Pf Z2 ↵0 ⌃ ⌥ 1 = =0. −Z ⇧ where the complications start ⇧ a ⇧ one explicit mass scale of the Standard Model is a mass-squared parameter The notation f(u) simply indicates⇧ that f(u) should be taken at the value |u = a, the lower limit of integration be- defining the leading orderFig. shape 1. Radiativeof the Mexican corrections Hat to the Higgs mass in the Stan- dard Model in second order of perturbation theory. For simplic- ing taken care of by the definition of the pseudo-function. V()ϕ D 2 n mass. The “cancellation” of massless bosons to give ity, we have not shown contributions from ghosts or Goldstone This result is reminiscent of the property d p(p ) = 0, a massive boson, as anticipated by Anderson and • to get the correct shape for electroweak developed in the 1964 papers, is the famous Higgs for any n, in DR [15].
    [Show full text]
  • REAPR Resonantly Enhanced Axion Photon Regeneration
    REAPR Resonantly Enhanced Axion Photon Regeneration William Wester Fermilab 4/24/12 W. Wester, Fermilab, Vistas in Axions 1 Axions • Postulated in the late 1970s as a consequence of not observing CP violation in the strong interaction. Raffelt • The measurement of the electric dipole of the neutron implies Θ < ~10-10. => Strong CP Problem of QCD – This is very much on the same order of an issue with the Standard Model as the hierarchy problem that motivates supersymmetry. – Axions originate from a new symmetry that explains small Θ Bjorken “Axions are just as viable a candidate for dark matter as sparticles” Wilczek “If not axions, please tell me how to solve the Strong-CP problem” Witten “Axions may be intrinsic to the structure of string theory” WW+K van Bibber 4/24/12 W. Wester, Fermilab, Vistas in Axions 2 Axions • Axion mass related to the pion mass: ma ~ mπ fπ/fa • Axions couple to two photons Raffelt • An axion-like-particle (ALP) is a more general particle that can arise from either a pseudoscalar or scalar field, φ, and no longer has the connection to the pion. pseudoscalar scalar 4/24/12 W. Wester, Fermilab, Vistas in Axions 3 PVLAS Experiment (2006) • Designed to study the vacuum by optical means: birefringence (generated ellipticity) and dichroism (rotated polarization) 4/24/12 W. Wester, Fermilab, Vistas in Axions PVLAS 4 PVLAS Rotation Results PRL 96, 110406, (2006) 4/24/12 W. Wester, Fermilab, Vistas in Axions 5 PVLAS ALP Interpretation A new axion-like particle with mass at 1.2 meV and g~2x10-6 is consistent with rotation and ellipticity measurements.
    [Show full text]
  • PVLAS : Probing Vacuum with Polarized Light
    1 PVLAS : probing vacuum with polarized light E. Zavattini1, G. Zavattini2, G. Ruoso3, E. Polacco4, E. Milotti5, M. Karuza1, U.Gastaldi3*, G. Di Domenico2, F. Della Valle1, R. Cimino6, S. Carusotto4, G.Cantatore1 and M. Bregant1 1-INFN Sezione di Trieste and University of Trieste,Italy, 2-INFN Sezione di Ferrara and University of Ferrara, Italy, 3-INFN Laboratori Nazionali di Legnaro, Legnaro (Pd), Italy, 4-INFN Sezione di Pisa and University of Pisa, Italy, 5-INFN Sezione di Trieste and University of Udine, Italy, 6-INFN Laboratori Nazionali di Frascati, Frascati, Italy Abstract The PVLAS experiment operates an ellipsometer which embraces a superconducting dipole magnet and can measure ellipticity and rotation induced by the magnetic field onto linearly polarized laser light. The sensitivity of the instrument is about 10-7rad Hz-1/2. With a residual pressure less than 10-7 mbar the apparatus gives both ellipticity and rotation signals at the 10-7rad level with more than 8 sigma sob ratio in runs that last about 1000 sec. These signals can be interpreted as being generated largely by vacuum ellipticity and dichroism induced by the transverse magnetic field. If this interpretation is correct, a tool has become available to characterize physical properties of vacuum as if it were an ordinary transparent medium. A microscopic effect responsible for this induced dichroism could be the existence of ultralight spin zero bosons with mass of the order of 10-3 eV, that would couple to two photons and would be created in the experiment by interactions of photons of the laser beam with virtual photons of the magnetic field.
    [Show full text]
  • DEUTSCHES ELEKTRONEN-SYNCHROTRON ( £ * ^ Production and Detection of Axion-Like Particles at the VUV-FEL: Letter of Intent
    DE06FA427 DEUTSCHES ELEKTRONEN-SYNCHROTRON (£*^ in der HELMHOLTZ-GEMEINSCHAFT \X| DESY 06-098 hep-ex/0606058 June 2006 Production and Detection of Axion-Like Particles at the VUV-FEL: Letter of Intent U. Kötz, A. Ringwald, T. Tschentscher Deutsches Elektronen-Synchrotron DESY, Hamburg ISSN 0418-9833 NOTKESTRASSE 85 - 22607 HAMBURG DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor. DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents. To be sure that your reports and preprints are promptly included in the HEP literature database send them to (if possible by air mail): DESY DESY Zentralbibliothek Bibliothek Notkestraße 85 Platanenallee 6 22607 Hamburg 15738Zeuthen Germany Germany DESY 06-098 Production and Detection of Axion-Like Particles at the VUV-FEL: Letter of Intent Ulrich K¨otz,∗ Andreas Ringwald†,‡ and Thomas Tschentscher§ Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany Recently, the PVLAS collaboration has reported evidence for an anomalously large rotation of the polarization of light generated in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero particle coupled to two photons. In this Letter of Intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of the Vacuum-UltraViolet Free-Electron Laser VUV-FEL, sent along the transverse magnetic field of a linear arrangement of dipole magnets of size B L ≈ 30 Tm.
    [Show full text]