An Assessment of U.S.-Based Electron-Ion Collider Science

Total Page:16

File Type:pdf, Size:1020Kb

An Assessment of U.S.-Based Electron-Ion Collider Science THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/25171 SHARE An Assessment of U.S.-Based Electron-Ion Collider Science DETAILS 152 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-47856-4 | DOI 10.17226/25171 CONTRIBUTORS GET THIS BOOK Committee on U.S.-Based Electron-Ion Collider Science Assessment; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine FIND RELATED TITLES Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. An Assessment of U.S.-Based Electron-Ion Collider Science AN ASSESSMENT OF U.S.-BASED ELECTRON-ION COLLIDER SCIENCE Committee on U.S.-Based Electron-Ion Collider Science Assessment Board on Physics and Astronomy Division on Engineering and Physical Sciences A Consensus Study Report of Copyright National Academy of Sciences. All rights reserved. An Assessment of U.S.-Based Electron-Ion Collider Science THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by Contract No. DE-SC0016037 with the Department of Energy. This report was prepared as an account of work sponsored by an agency of the U.S. govern- ment. Neither the U.S. government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con- stitute or imply its endorsement, recommendation, or favoring by the U.S. government or any agency thereof. Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of any agency or organization that provided support for the project. International Standard Book Number-13: 978-0-309-47856-4 International Standard Book Number-10: 0-309-47856-1 Digital Object Identifier: https://doi.org/10.17226/25171 Copies of this report are available free of charge from: Board on Physics and Astronomy National Academies of Sciences, Engineering, and Medicine 500 Fifth Street, NW Washington, DC 20001 Additional copies of this publication are available from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu. Copyright 2018 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Suggested citation: National Academies of Sciences, Engineering, and Medicine. 2018. An Assessment of U.S.-Based Electron-Ion Collider Science. Washington, DC: The National Academies Press. https:// doi.org/10.17226/25171. Copyright National Academy of Sciences. All rights reserved. An Assessment of U.S.-Based Electron-Ion Collider Science The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, nongovernmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for out- standing contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the na- tion. Members are elected by their peers for extraordinary contributions to engineering. Dr. C. D. Mote, Jr., is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contribu- tions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.nationalacademies.org. Copyright National Academy of Sciences. All rights reserved. An Assessment of U.S.-Based Electron-Ion Collider Science Consensus Study Reports published by the National Academies of Sciences, Engineer- ing, and Medicine document the evidence-based consensus on the study’s statement of task by an authoring committee of experts. Reports typically include findings, conclu- sions, and recommendations based on information gathered by the committee and the committee’s deliberations. Each report has been subjected to a rigorous and indepen- dent peer-review process and it represents the position of the National Academies on the statement of task. Proceedings published by the National Academies of Sciences, Engineering, and Medicine chronicle the presentations and discussions at a workshop, symposium, or other event convened by the National Academies. The statements and opinions contained in proceedings are those of the participants and are not endorsed by other participants, the planning committee, or the National Academies. For information about other products and activities of the National Academies, please visit www.nationalacademies.org/about/whatwedo. Copyright National Academy of Sciences. All rights reserved. An Assessment of U.S.-Based Electron-Ion Collider Science COMMITTEE ON U.S.-BASED ELECTRON-ION COLLIDER SCIENCE ASSESSMENT GORDON BAYM, NAS,1 University of Illinois, Urbana-Champaign, Co-Chair ANI APRAHAMIAN, University of Notre Dame, Co-Chair CHRISTINE AIDALA, University of Michigan PETER BRAUN-MUNZINGER, GSI, Germany HAIYAN GAO, Duke University KAWTAR HAFIDI, Argonne National Laboratory WICK HAXTON, NAS, University of California, Berkeley JOHN JOWETT, CERN LARRY MCLERRAN, University of Washington LIA MERMINGA, Fermi National Accelerator Laboratory ZEIN-EDDINE MEZIANI, Temple University RICHARD MILNER, Massachusetts Institute of Technology THOMAS SCHAEFER, North Carolina State University ERNST SICHTERMANN, Lawrence Berkeley National Laboratory MICHAEL TURNER, NAS, University of Chicago Staff DAVID B. LANG, Study Director (until January 2018) JAMES C. LANCASTER, Director, Board on Physics and Astronomy CHRISTOPHER J. JONES, Study Director (from January 2018) ANDREA PETERSON, Program Officer (until August 2017) NEERAJ GORKHALY, Associate Program Officer HENRY KO, Research Associate LINDA WALKER, Program Coordinator BETH DOLAN, Financial Associate 1 Member, National Academy of Sciences. v Copyright National Academy of Sciences. All rights reserved. An Assessment of U.S.-Based Electron-Ion Collider Science BOARD ON PHYSICS AND ASTRONOMY BARBARA V. JACAK, NAS,1 Lawrence Berkeley National Laboratory, Chair ABRAHAM LOEB, Harvard University, Vice Chair LOUIS DIMAURO, The Ohio State University FRANCIS J. DISALVO, NAS, Cornell University NATHANIEL J. FISCH, Princeton University DANIEL FISHER, NAS, Stanford University WENDY FREEDMAN, NAS, University of Chicago TIM HECKMAN, NAS, Johns Hopkins University WENDELL T. HILL III, University of Maryland ALAN J. HURD, Los Alamos National Laboratory BARBARA JONES, IBM Almaden Research Center ANDREW LANKFORD, University of California at Irvine LYMAN A. PAGE, JR., NAS, Princeton University STEVEN M. RITZ, University of California, Santa Cruz Staff JAMES C. LANCASTER, Director DONALD C. SHAPERO, Senior Scholar DAVID B. LANG, Senior Program Officer (until May 2018) CHRISTOPHER J. JONES, Program Officer (from November 2017) NEERAJ GORKHALY, Associate Program Officer LINDA WALKER, Program Coordinator HENRY KO, Research Assistant BETH DOLAN, Financial Associate 1 Member, National Academy of Sciences. vi Copyright National Academy of Sciences. All rights reserved. An Assessment of U.S.-Based Electron-Ion Collider Science Preface The National Academies of Sciences, Engineering, and Medicine convened the Committee on U.S.-Based Electron-Ion Collider Science Assessment to assess the merits and significance of the science that could be addressed by an electron- ion collider (EIC), and its importance to nuclear physics in particular and to the physical sciences in general. The principal goals of the study were to evaluate the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC. The science assessment included the special role of the structure of the nucleon in the broader context of nuclear science and the study of nuclei as the “heart” of matter. The complete statement of task
Recommended publications
  • CERN Courier–Digital Edition
    CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www.
    [Show full text]
  • Old Soldiers by Michael Riordan
    Old soldiers by Michael Riordan Twenty years ago this month, an this deep inelastic region in excru­ experiment began at the Stanford ciating detail, the new quark-parton Linear Accelerator Center in Cali­ picture of a nucleon's innards fornia that would eventually redraw gradually took a firmer and firmer the map of high energy physics. hold upon the particle physics com­ In October 1967, MIT and SLAC munity. These two massive spec­ physicists started shaking down trometers were our principal 'eyes' their new 20 GeV spectrometer; into the new realm, by far the best by mid-December they were log­ ones we had until more powerful ging electron-proton scattering in muon and neutrino beams became the so-called deep inelastic region available at Fermilab and CERN. where the electrons probed deep They were our Geiger and Marsd- inside the protons. The huge ex­ en, reporting back to Rutherford cess of scattered electrons they the detailed patterns of ricocheting encountered there-about ten times projectiles. Through their magnetic the expected rate-was later inter­ lenses we 'observed' quarks for preted as evidence for pointlike, the very first time, hard 'pits' inside fractionally charged objects inside hadrons. the proton. These two goliaths stood reso­ Michael Riordan (above) did The quarks we take for granted lutely at the front as a scientific research using the 8 GeV today were at best 'mathematical' revolution erupted all about them spectrometer at SLAC as an entities in 1967 - if one allowed during the late 1960s and early MIT graduate student during them any true existence at all.
    [Show full text]
  • Observation of Structure in the J/Ψ-Pair Mass Spectrum
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-115 LHCb-PAPER-2020-011 November 10, 2020 Observation of structure in the J= -pair mass spectrum LHCb collaboration† Abstract p Using proton-proton collision data at centre-of-mass energies of s = 7, 8 and 13 TeV recorded by the LHCb experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 9 fb−1, the invariant mass spectrum of J= pairs is studied. A narrow structure around 6:9 GeV/c2 matching the lineshape of a resonance and a broad structure just above twice the J= mass are observed. The deviation of the data from nonresonant J= -pair production is above five standard deviations in the mass region between 6:2 and 7:4 GeV/c2, covering predicted masses of states composed of four charm quarks. The mass and natural width of the narrow X(6900) structure are measured assuming a Breit{Wigner lineshape. arXiv:2006.16957v2 [hep-ex] 10 Nov 2020 Keywords: QCD; exotics; tetraquark; spectroscopy; quarkonium; particle and resonance production Published in Science Bulletin 2020 65(23)1983-1993 © 2020 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence. †Authors are listed at the end of this paper. ii 1 Introduction The strong interaction is one of the fundamental forces of nature and it governs the dynamics of quarks and gluons. According to quantum chromodynamics (QCD), the theory describing the strong interaction, quarks are confined into hadrons, in agreement with experimental observations. The quark model [1,2] classifies hadrons into conventional mesons (qq) and baryons (qqq or qqq), and also allows for the existence of exotic hadrons such as tetraquarks (qqqq) and pentaquarks (qqqqq).
    [Show full text]
  • Slides Lecture 1
    Advanced Topics in Particle Physics Probing the High Energy Frontier at the LHC Ulrich Husemann, Klaus Reygers, Ulrich Uwer University of Heidelberg Winter Semester 2009/2010 CERN = European Laboratory for Partice Physics the world’s largest particle physics laboratory, founded 1954 Historic name: “Conseil Européen pour la Recherche Nucléaire” Lake Geneva Proton-proton2500 employees, collider almost 10000 guest scientists from 85 nations Jura Mountains 8.5 km Accelerator complex Prévessin site (approx. 100 m underground) (France) Meyrin site (Switzerland) Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 2 Large Hadron Collider: CMS Experiment: Proton-Proton and Multi Purpose Detector Lead-Lead Collisions LHCb Experiment: B Physics and CP Violation ALICE-Experiment: ATLAS Experiment: Heavy Ion Physics Multi Purpose Detector Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 3 The Lecture “Probing the High Energy Frontier at the LHC” Large Hadron Collider (LHC) at CERN: premier address in experimental particle physics for the next 10+ years LHC restart this fall: first beam scheduled for mid-November LHC and Heidelberg Experimental groups from Heidelberg participate in three out of four large LHC experiments (ALICE, ATLAS, LHCb) Theory groups working on LHC physics → Cornerstone of physics research in Heidelberg → Lots of exciting opportunities for young people Probing the High Energy Frontier at the LHC, U Heidelberg, Winter Semester 09/10, Lecture 1 4 Scope
    [Show full text]
  • Swapan Chattopadhyay Course Syllabus
    NIU PHYSICS 659: Special Problems in Physics, Winter 2016 Instructor: Swapan Chattopadhyay Course Syllabus This is an independent study course involving personalized study, research, problem searching and problem solving in the field of Physics of Beams and Accelerator Science. The enrolled student will perform literature search via the web, available libraries, and references provided by the instructor and identify relevant publications and current up-to-date status of the fields/topics mentioned below, search for potential areas for further exploratory research and list and quantify a limited set of graduate dissertation areas/topics that are mature for getting engaged in. The areas/topics suggested for study/research in this semester are: 1. Theoretical, computational and experimental aspects of nonlinear dynamics of high intensity space-charge dominated proton beams as relevant for future proton accelerators for exploring neutrino physics and possibilities of scaled experiments at the Integrated Optics Test Accelerator (IOTA), under construction at Fermilab. The topics could address theoretical modelling or computer simulation or experimental measurements of nonlinear dynamics, dynamical diffusion, beam halo formation and resonance dynamics in general. 2. Explore and investigate possible research into the design and development of the 100 TeV- class proton collider as envisioned in the Future Circular Collider (FCC) design study at CERN and identify beam dynamics issues relevant for further research e.g. coherent beam instabilities; beam injection dynamics; beam-environment interaction via electromagnetic impedance, beam luminosity, beam lifetime and ring lattice. 3. Explore and investigate possible research into the proton-driven plasma wakefield experiment, AWAKE, under development at CERN. The possible research areas could be around beam-plasma high fidelity simulations, beam injection dynamics, beam and plasma diagnostics and scaling from present experiments to a proper collider.
    [Show full text]
  • The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland
    34th SLAC Summer Institute On Particle Physics (SSI 2006), July 17-28, 2006 The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland 1. INTRODUCTION The Large Hadron Collider (LHC) at CERN is now in its final installation and commissioning phase. It is a two-ring superconducting proton-proton collider housed in the 27 km tunnel previously constructed for the Large Electron Positron collider (LEP). It is designed to provide proton-proton collisions with unprecedented luminosity (1034cm-2.s-1) and a centre-of-mass energy of 14 TeV for the study of rare events such as the production of the Higgs particle if it exists. In order to reach the required energy in the existing tunnel, the dipoles must operate at 1.9 K in superfluid helium. In addition to p-p operation, the LHC will be able to collide heavy nuclei (Pb-Pb) with a centre-of-mass energy of 1150 TeV (2.76 TeV/u and 7 TeV per charge). By modifying the existing obsolete antiproton ring (LEAR) into an ion accumulator (LEIR) in which electron cooling is applied, the luminosity can reach 1027cm-2.s-1. The LHC presents many innovative features and a number of challenges which push the art of safely manipulating intense proton beams to extreme limits. The beams are injected into the LHC from the existing Super Proton Synchrotron (SPS) at an energy of 450 GeV. After the two rings are filled, the machine is ramped to its nominal energy of 7 TeV over about 28 minutes. In order to reach this energy, the dipole field must reach the unprecedented level for accelerator magnets of 8.3 T.
    [Show full text]
  • A Summer with the Large Hadron Collider: the Search for Fundamental Physics
    University of New Hampshire University of New Hampshire Scholars' Repository Inquiry Journal 2009 Inquiry Journal Spring 2009 A Summer with the Large Hadron Collider: The Search for Fundamental Physics Austin Purves University of New Hampshire Follow this and additional works at: https://scholars.unh.edu/inquiry_2009 Part of the Physics Commons Recommended Citation Purves, Austin, "A Summer with the Large Hadron Collider: The Search for Fundamental Physics" (2009). Inquiry Journal. 14. https://scholars.unh.edu/inquiry_2009/14 This Article is brought to you for free and open access by the Inquiry Journal at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Inquiry Journal 2009 by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. UNH UNDERGRADUATE RESEARCH JOURNAL SPRING 2009 research article A Summer with the Large Hadron Collider: the Search for Fundamental Physics —Austin Purves (Edited by Aniela Pietrasz and Matthew Kingston) For centuries people have pushed the boundaries of observational science on multiple fronts. Our ability to peer ever more deeply into the world around us has helped us to understand it: telescopes and accurate measurement of planetary motion helped us to break free from the earth–centered model of the solar system; increasingly powerful microscopes allowed us to see how our bodies work as a collection of tiny cells; particle colliders allowed us to better understand the structure of atoms and the interactions of subatomic particles. Construction of the latest and most powerful particle collider, the Large Hadron Collider (LHC), was completed in fall 2008 at Conseil Européen pour la Recherche Nucléaire (CERN), the world’s largest particle physics research center, located near Geneva, Switzerland.
    [Show full text]
  • Quantum Mechanics Quantum Chromodynamics (QCD)
    Quantum Mechanics_quantum chromodynamics (QCD) In theoretical physics, quantum chromodynamics (QCD) is a theory ofstrong interactions, a fundamental forcedescribing the interactions between quarksand gluons which make up hadrons such as the proton, neutron and pion. QCD is a type of Quantum field theory called a non- abelian gauge theory with symmetry group SU(3). The QCD analog of electric charge is a property called 'color'. Gluons are the force carrier of the theory, like photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of Particle physics. A huge body of experimental evidence for QCD has been gathered over the years. QCD enjoys two peculiar properties: Confinement, which means that the force between quarks does not diminish as they are separated. Because of this, when you do split the quark the energy is enough to create another quark thus creating another quark pair; they are forever bound into hadrons such as theproton and the neutron or the pion and kaon. Although analytically unproven, confinement is widely believed to be true because it explains the consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons interact very weakly creating a quark–gluon plasma. This prediction of QCD was first discovered in the early 1970s by David Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 Nobel Prize in Physics. There is no known phase-transition line separating these two properties; confinement is dominant in low-energy scales but, as energy increases, asymptotic freedom becomes dominant.
    [Show full text]
  • Tevatron Accelerator Physics and Operation Highlights A
    FERMILAB-CONF-11-129-APC TEVATRON ACCELERATOR PHYSICS AND OPERATION HIGHLIGHTS A. Valishev for the Tevatron group, FNAL, Batavia, IL 60510, U.S.A. Abstract Table 1: Integrated luminosity performance by fiscal year. The performance of the Tevatron collider demonstrated FY07 FY08 FY09 FY10 continuous growth over the course of Run II, with the peak luminosity reaching 4×1032 cm-2 s-1, and the weekly Total integral (fb-1) 1.3 1.8 1.9 2.47 -1 integration rate exceeding 70 pb . This report presents a review of the most important advances that contributed to Until the middle of calendar year 2009, the luminosity this performance improvement, including beam dynamics growth was dominated by improvements of the antiproton modeling, precision optics measurements and stability production rate [2], which remains stable since. control, implementation of collimation during low-beta Performance improvements over the last two years squeeze. Algorithms employed for optimization of the became possible because of implementation of a few luminosity integration are presented and the lessons operational changes, described in the following section. learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects. COLLIDER RUN II PERFORMANCE Tevatron collider Run II with proton-antiproton collisions at the center of mass energy of 1.96 TeV started in March 2001. Since then, 10.5 fb-1 of integrated luminosity has been delivered to CDF and D0 experiments (Fig. 1). All major technical upgrades of the accelerator complex were completed by 2007 [1].
    [Show full text]
  • MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
    Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.
    [Show full text]
  • The Nucleus As a Qcd Laboratory: Hadronization, 3D Tomography, and More
    EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE erhtjhtyhy KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. OUTLINE § The nucleus from a QCD perspective – Important questions to be addressed by current and future facilities § Hadronization: How do quarks hadronize into hadrons? – What did we learn from previous measurements? – Anticipated measurement at JLab and the future EIC § 3D tomography of nuclei – First attempt – Ambitious program at JLab and great potential for the EIC § Summary and outlook STUDYING NUCLEI FROM QCD PERSPECTIVE § How do an energetic quark interact with the nuclear medium and subsequently neutralize its color and become confined inside a hadron? § How are quarks and gluons distributed in space and momentum inside the nucleus? § How are quarks and gluons distributions affected when they are embedded in nuclei compared to free nucleons? § How these fundamental degrees of freedom of the strong interaction group themselves together to form nuclei and ultimately matter? THE NUCLEUS AS A QCD LABORATORY electron electron Probe Medium Medium "QCD medium" "QCD vacuum" Probe Ø Studying the structure of the nucleus Ø Using the nucleus as a femtometer itself: EMC, SRC, 3D tomography detector to study hadronization, CT,.. HOW DO ENERGETIC QUARKS BECOME HADRONS? Hadronization is a direct manifestation of confinement SPACE TIME DYNAMICS OF HADRONIZATION Nuclei are used as detectors providing multiple
    [Show full text]
  • CHRISTINE A. AIDALA Curriculum Vitae As of August 2019
    CHRISTINE A. AIDALA Curriculum vitae as of August 2019 Physics Department, University of Michigan (734) 764-7611 [email protected] High-energy experimental nuclear physics; nucleon structure; parton dynamics in QCD. EDUCATION: Columbia University Ph.D. program, Physics, 2002-05. M.A. 2004. M.Phil. 2005. Ph.D. 2005. University of Chicago Ph.D. program, Physics, 1999-2000. Medical leave starting March 2000. Yale University 1995-99. B.S. in Physics, B.S. in Music 1999. RESEARCH POSITIONS HELD: March 2020. Visiting Professor, Short-Term, University of Milan, Italy. September-November 2019. Fulbright U.S. Scholar, University of Pavia, Italy. September 2016-present. Associate Professor of Physics, University of Michigan. PHENIX and sPHENIX Experiments at the Relativistic Heavy Ion Collider (RHIC), Brookhaven National Lab, and E906/SeaQuest, Fermilab. Joined LHCb Experiment at CERN, Sep 2017. September 2012-August 2016. Assistant Professor of Physics, University of Michigan. January-July 2012. Scientist 2, Los Alamos National Laboratory. January 2009-December 2011. Frederick Reines Distinguished Postdoctoral Fellow, Los Alamos National Laboratory, PHENIX and E906/SeaQuest. January 2006-December 2008. Postdoctoral Research Associate, UMass Amherst, PHENIX. September 2002-December 2005. Graduate Research Assistant, Columbia University, PHENIX. Thesis advisor: B.A. Cole. September 2001-August 2002. Physics Associate, Brookhaven National Laboratory, PHENIX. June 1999-January 2000. Graduate researcher, U. of Chicago, OPAL Experiment at CERN. J. Pilcher. 1998-99. Senior thesis, Yale U., polarized proton studies for the HERA e+p collider. V.W. Hughes. Summer 1998. CERN Summer Student Program, data acquisition for silicon. P. Weilhammer. 1 Summer 1997. BNL Summer Student Program, STAR Experiment at RHIC.
    [Show full text]