Cellular and Molecular Analysis of Neuronal Structural Plasticity in the Mammalian Cortex

Total Page:16

File Type:pdf, Size:1020Kb

Cellular and Molecular Analysis of Neuronal Structural Plasticity in the Mammalian Cortex Cellular and Molecular Analysis of Neuronal Structural Plasticity in the Mammalian Cortex by Wei-Chung Allen Lee S.B., Chemical Engineering California Institute of Technology, 1998 A.B., Biochemistry and Government Bowdoin College, 1998 Submitted to the Department of Brain and Cognitive Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience at the Massachusetts Institute of Technology June 2006 © 2006 Massachusetts Institute of Technology. All rights reserved. Signature of Author............................................................................................................................ Department of Brain and Cognitive Sciences May 15, 2006 Certified by........................................................................................................................................ Elly Nedivi Fred and Carol Middleton Associate Professor of Neurobiology Thesis Supervisor Accepted by....................................................................................................................................... Matthew Wilson Picower Scholar & Professor of Neurobiology Chair, Committee for Graduate Students Cellular and Molecular Analysis of Neuronal Structural Plasticity in the Mammalian Cortex by Wei-Chung Allen Lee Submitted to the Department of Brain and Cognitive Sciences on May 15, 2006 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience ABSTRACT Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. cpg15 is an activity-regulated gene encoding a membrane-bound ligand that coordinately regulates growth of apposing dendritic and axonal arbors and the maturation of their synapses. Here we compare cpg15 expression during normal development of the rat visual system, with that seen in response to dark rearing, monocular retinal action potential blockade, or monocular deprivation. Our results show that: (1) cpg15 expression in visual cortex correlates with the electrophysiologically mapped critical period for development of eye-specific preference in the primary visual cortex. (2) Dark rearing elevates adult levels of expression. (3) A component of cpg15 expression is activity-dependent after the peak of the critical period. (4) At the peak of the critical period, monocular deprivation decreases cpg15 expression more than monocular TTX blockade. And (5) cpg15 expression is robust and regulated by light in the superficial layers of the adult visual cortex. This suggests that cpg15 is an excellent molecular marker for the visual system’s capacity for plasticity and predicts that neural remodeling normally occurs in the extragranular layers of the adult visual cortex. To examine the extent of neuronal remodeling that occurs in the brain on a daily basis, we used a multi-photon based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here, we show the first unambiguous evidence of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and suggest that circuit rearrangement in the adult cortex is restricted by cell type-specific rules. Thesis Supervisor: Elly Nedivi Title: Fred and Carol Middleton Associate Professor of Neurobiology 2 Acknowledgements Tremendous thanks to my advisor Elly Nedivi for teaching, nurturing, and having faith in a fledgling interested in the science of how the brain works. I would also like to thank the past and present members of the Nedivi Lab, especially Marnie Phillips, Tadahiro Fujino, Corey Harwell, Ulrich Putz and Jeff Cottrell for their colleagueship, friendship, and for the unique, invigorating research environment they helped to create. I would next like to thank my committee, Mark Bear, Martha Constantine-Paton, and Peter So, for their guidance. I would also like to thank my collaborators, Josh Sanes, Guoping Feng, Emery Brown, and particularly Peter So and Hayden Huang, whose assistance was invaluable. I would like to thank my parents, Han-San and Ming-Tzu Lee, for their life-long support and dedication to my scholarship. Finally, this would not have been possible without the unwavering support, patience, love and understanding of my wife, Jenny. 3 Contents Abstract..........................................................................................................................................2 Acknowledgements........................................................................................................................3 Table of Contents...........................................................................................................................4 Chapter 1: Introduction................................................................................................................6 Chapter 2: Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg15-like genes......................................................................14 Chapter 3: Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex......................................................................................................................44 Chapter 4: Conclusion.................................................................................................................75 Appendix.......................................................................................................................................84 References.....................................................................................................................................87 4 But the functional specialization of the brain imposed on the neurones two great lacunae; proliferative inability and irreversibility of intraprotoplasmic differentiation. It is for this reason that, once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. In adult centres the nerve paths are something fixed, ended, immutable. Everything may die, nothing may be regenerated. It is for the science of the future to change, if possible, this harsh decree. −Santiago Ramon y Cajal 5 Chapter 1 Introduction Developmental and adult plasticity Within the astounding complexity of the brain, fundamental yet unknown mechanisms sub serve learning, memory, perception, behavior, reason, and consciousness. How the outside world influences the brain likely changes the mind. The capacity of the central nervous system (CNS) to modify connections in response to activity is termed plasticity. Plasticity is a prominent feature of CNS development (Constantine-Paton et al., 1990; Shatz, 1990; Goodman and Shatz, 1993), and in the adult, putatively underlies learning and memory (Bailey and Kandel, 1993; Bliss and Collingridge, 1993) and adaptive reorganization of primary sensory maps (Merzenich et al., 1988; Kaas et al., 1990; Allard et al., 1991; Kaas, 1991; Gilbert and Wiesel, 1992; Recanzone et al., 1993; Zarzecki et al., 1993; Armstrong-James et al., 1994; Diamond et al., 1994). Anatomical and physiological studies of developmental plasticity in the visual system have provided valuable insight into how activity drives the final patterning of neuronal connections (Constantine-Paton et al., 1990; Shatz, 1990; Katz and Shatz, 1996). The critical period for susceptibility to environmental influences is one of the most influential models to emerge from studies of visual system development. In highly binocular animals such as cats, primates, and ferrets, electrophysiological plasticity during the critical period for development of eye specific preference in the primary visual cortex is accompanied by activity-driven segregation of geniculocortical afferents into ocular dominance columns (Hubel et al., 1977; Shatz and Stryker, 1978; Issa et al., 1999). There exist, however, many instances where no apparent anatomical plasticity is detectable when physiological plasticity clearly exists. Electrophysiological studies of the rodent visual system show that cortical neurons develop well 6 defined functional properties relating to eye preference and orientation selectivity (Parnavelas et al., 1981; Maffei et al., 1992; Fagiolini et al., 1994; Gordon and Stryker, 1996; Antonini et al., 1999) and are capable of undergoing shifts in eye preference during a critical period in development (Drager, 1978; Fagiolini et al., 1994; Gordon and Stryker, 1996; Guire et al., 1999; Frenkel and Bear, 2004); however, they are not anatomically segregated according to these properties akin to the feline and primate visual system. Since there is no segregation into eye- specific zones, anatomical changes in response to monocular deprivation (MD) during the critical period can be seen only with single-cell labeling and reconstruction (Antonini et al., 1999). The capacity for change in response to manipulation of patterned visual input is normally restricted to a defined age window during postnatal development (Hubel and Wiesel, 1970; Hubel et al., 1977). However, in kittens or
Recommended publications
  • Program in Neuroscience
    Harvard University Program in Neuroscience Faculty Directory 2016—2017 April 1, 2017 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) Dong, Min (BCH) Lampson, Lois (BWH) Sabatini, Bernardo (HMS/Neurobio) Andermann, Mark (BIDMC) Drugowitsch, Jan (HMS/Neurobio) LaVoie, Matthew (BWH) Sahay, Amar (MGH) Anderson, Matthew (BIDMC) Dulac, Catherine (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Sahin, Mustafa (BCH/Neurobio) Anthony, Todd (BCH/Neurobio) Dymecki, Susan(HMS/Genetics) Lehtinen, Maria (BCH/Pathology) Samuel, Aravi (Harvard/ Physics) Arlotta, Paola (Harvard/SCRB) Engert, Florian (Harvard/MCB) Liberles, Steve (HMS/Cell Biology) Sanes, Joshua (Harvard/MCB) Assad, John (HMS/Neurobio) Engle, Elizabeth(BCH/Neurobio) Lichtman, Jeff (Harvard/MCB) Saper, Clifford (BIDMC) Bacskai, Brian (MGH/East) Eskandar, Emad (MGH) Lipton, Jonathan (BCH/Neurobio) Scammell, Thomas (BIDMC) Bean, Bruce (HMS/Neurobio) Fagiolini, Michela (BCH/Neurobio) Livingstone, Marge (HMS/Neurobio)
    [Show full text]
  • Single-Cell Transcriptomics of the Developing Lateral PNAS PLUS Geniculate Nucleus Reveals Insights Into Circuit Assembly and Refinement
    Single-cell transcriptomics of the developing lateral PNAS PLUS geniculate nucleus reveals insights into circuit assembly and refinement Brian T. Kalisha,b,1, Lucas Cheadlea,1, Sinisa Hrvatina, M. Aurel Nagya,c, Samuel Riveraa, Megan Crowd, Jesse Gillisd, Rory Kirchnere, and Michael E. Greenberga,2 aDepartment of Neurobiology, Harvard Medical School, Boston, MA 02115; bDivision of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115; cProgram in Neuroscience, Harvard Medical School, Boston, MA 02115; dCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and eBioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Contributed by Michael E. Greenberg, December 18, 2017 (sent for review October 23, 2017; reviewed by Matthew B. Dalva and Sacha B. Nelson) Coordinated changes in gene expression underlie the early pattern- the cleft to organize synaptic architecture and composition (15– ing and cell-type specification of the central nervous system. 17). The process of synaptogenesis is accompanied by myelination, However, much less is known about how such changes contribute which accrues as the circuit matures, ensuring the efficiency of to later stages of circuit assembly and refinement. In this study, we action potential propagation within both local and long-range employ single-cell RNA sequencing to develop a detailed, whole- circuits (18, 19). Finally, synapses are strengthened or eliminated transcriptome resource of gene expression across four time points in based upon a process of activity-dependent synaptic refinement the developing dorsal lateral geniculate nucleus (LGN), a visual that is in part mediated through the tagging of synapses with structure in the brain that undergoes a well-characterized program complement proteins such as C1q and C3 (20–22).
    [Show full text]
  • Sep 1 3 2006
    Characterization of CPG15 During Cortical Development and Activity Dependent Plasticity By Corey Harwell B.S., Chemistry Tennessee State University, 2000 Submitted to the Department of Brain and Cognitive Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience at the Massachusetts Institute of Technology September 2006 © 2006 Massachusetts Institute of Technology. All rights reserved. '0) , Signature of Author: Department of Brain and Cognitive Sciences September 1, 2006 Certified by: _ _ _ · I, - SElly Nedivi Associate Professor of Neurobiology J-1ý P Thesis Supervisor Accepted by: --- -- "Matthew Wilson C~- Picower Professor of Neuroscience Chairman, Department Graduate Committee MASSACHUSETTS INSETTWJTj OF TECHNOLOGY SEP 13 2006 LIBRARIES Characterization of CPG15 During Cortical Development and Activity Dependent Plasticity by Corey C. Harwell Submitted to the Department of Brain and Cognitive Sciences On September 1, 2006 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience ABSTRACT Regulation of gene transcription by neuronal activity is thought to be key to the translation of sensory experience into long-term changes in synaptic structure and function. Here we show that cpgl5, a gene encoding an extracellular signaling molecule that promotes dendritic and axonal growth and synaptic maturation, is regulated in the somatosensory cortex by sensory experience capable of inducing cortical plasticity. Using in situ hybridization, we monitored cpgl5 expression in 4-week-old mouse barrel cortex after trimming all whiskers except D1. We found that cpgl5 expression is depressed in the deprived barrels and enhanced in the barrel column corresponding to the spared D1 whisker.
    [Show full text]
  • Spring 2020 First Meeting of Quarter Courses
    PhD Programs at Harvard Medical School Quarter Courses Spring 2020 Enrollment deadlines GSAS Academic Check-in Jan 6-27 Calendar 2019-20 Open enrollment Jan 27-31 Add/drop no fee Feb 10 16 credits for full- Last day to add Mar 9 time student status Last day to drop, no WD Mar 23 Contact 617-432-0605 [email protected] SPRING 2020 BCMP 305QC Seminars in Molecular and Mechanistic Biology Madhvi Venkatesh CELLBIO 304QC Introduction to Human Gross Anatomy Gerald Greenhouse, Everett Anderson, Mohini Lutchman, Giorgio Giatsidis CELLBIO 307QC Molecular Aspects of Chromatin Dynamics Raul Mostoslavsky, Lee Zou, Johnathan Whetstine, Christopher Ott, Danesh Moazed CELLBIO 309QC The Basics of Translation Spyros Artavanis-Tsakonas, David Van Vactor GENETIC 302QC Teaching 101: Bringing Effective Teaching Practices to your Classroom Gavin Porter, Deepali Ravel HBTM 305QC Molecular Bases of Eye Disease Darlene Dartt, Magali Saint-Geniez HBTM 308QC Experimental Design & Analysis of Eye & Vision Studies Russell Woods, Lotfi Merabet, Eric YinShan Ng, Christopher Bennett, Magali Saint-Genez, Matthew Bronstad, Daniel Sun, Corinna Bauer, Alex Bowers, Tobias Elze IMMUN 301QC Autoimmunity Francisco Quintana IMMUN 302QC Clinical Sessions tbc Rachael Clark IMMUN 305QC Neuro-Immunology Development, Regeneration & Disease Isaac Chiu, Beth Stevens, Michael Carroll IMMUN 312QC Applied Statistics & High Throughput Data Analysis for Immunologists Meromit Singer, Alos Diallo IMMUN 317QC Strategies to Achieve Durable Anti-Microbial Host Defense Wayne Marasco,
    [Show full text]
  • A Brief History, Current Status Report and Options for Next Steps
    A Brief History, Current Status Report And Options for Next steps Prepared for CIRM outside reviewers prior to October 13-15, 2010 on-site review 1 Index — Introduction, p.3 Getting Started, p. 4 Scientific Strategic Plan, p. 5 The Grant Review Process, p. 7 Business Systems, p. 9 Intellectual Property, p. 9 Medical and Ethical Standards, p. 10 The Science Program, p. 11 Intellectual Resources, p.11 Facilities Infrastructure, p. 13 Pipeline Strategy, p. 14 Foundational Biology, p. 14 Creating a Development Portfolio, p. 16 Assessing the Research Portfolio, p. 20 Outcomes, p. 22 Impact of Grants that Have Been Completed, p. 23 Collaborative Funding Leverages RFA Potential, p. 24 Managing the Portfolio, p. 26 The Business side of Grant Management, p. 26 Medical and Ethical Standards and Compliance, p. 27 Operations and Administration, p. 29 Outreach, p. 31 Partnering in the Stem Cell Community, p. 32 Industry Engagement, p. 33 Going Forward, p. 34 Our Loan Program, p. 35 Other Approaches to Attract Additional Funding, p. 36 Next Steps in Intellectual Property, p. 37 Our Science Program, p. 38 Core Programs and New Initiatives, p. 39 Refinancing CIRM, 41 Appendices, p. 42 2 Introduction The California Institute for Regenerative Medicine has matured into a deliberative, targeted funding agency in the nearly six years since 59 percent of California voters approved the initiative, Proposition 71, that created the agency in November 2004 http://www.cirm.ca.gov/AboutCIRM_Prop71 The agency has awarded 364 grants and loans for research and facilities to 54 institutions totaling $1.07 billion. About half of those commitments have been disbursed.
    [Show full text]
  • 8Th Annual ENDURE Program Booklet 2018
    8th Annual Enhancing Neuroscience Diversity through Undergraduate Research Education Experiences (ENDURE) Meeting November 3, 2018 San Diego, CA The NIH Office of the Director and these NIH Institutes and Centers participate in the NIH Blueprint for Neuroscience Research: • NCATS • NIAAA • NIDCR • NINR • NCCIH • NIBIB • NIEHS • OBSSR • NEI • NICHD • NIMH • NIA • NIDA • NINDS TABLE OF CONTENTS ENDURE PROGRAM AND MEETING GOALS ...............................................................................................3 ENDURE MEETING AGENDA ..................................................................................................................4 NIH BLUEPRINT WELCOME AND BIOGRAPHICAL SKETCHES .........................................................................5 T32 RECRUITMENT FAIR PARTICIPANTS ....................................................................................................9 MENTORING RESOURCES AND PROFESSIONAL CONFERENCES ......................................................................25 ENDURE TRAINEE INFORMATION AND RESEARCH ABSTRACTS • BUILDING RESEARCH ACHIEVEMENT IN NEUROSCIENCE (BRAIN) ..........................................26 • BRIDGE TO THE PH.D. IN NEUROSCIENCE ................................................................................35 • BP-ENDURE ST. LOUIS: A NEUROSCIENCE PIPELINE ...............................................................48 • BP-HUNTER COLLEGE .................................................................................................................62
    [Show full text]
  • Single-Cell Transcriptomics of the Developing Lateral PNAS PLUS Geniculate Nucleus Reveals Insights Into Circuit Assembly and Refinement
    Single-cell transcriptomics of the developing lateral PNAS PLUS geniculate nucleus reveals insights into circuit assembly and refinement Brian T. Kalisha,b,1, Lucas Cheadlea,1, Sinisa Hrvatina, M. Aurel Nagya,c, Samuel Riveraa, Megan Crowd, Jesse Gillisd, Rory Kirchnere, and Michael E. Greenberga,2 aDepartment of Neurobiology, Harvard Medical School, Boston, MA 02115; bDivision of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115; cProgram in Neuroscience, Harvard Medical School, Boston, MA 02115; dCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and eBioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Contributed by Michael E. Greenberg, December 18, 2017 (sent for review October 23, 2017; reviewed by Matthew B. Dalva and Sacha B. Nelson) Coordinated changes in gene expression underlie the early pattern- the cleft to organize synaptic architecture and composition (15– ing and cell-type specification of the central nervous system. 17). The process of synaptogenesis is accompanied by myelination, However, much less is known about how such changes contribute which accrues as the circuit matures, ensuring the efficiency of to later stages of circuit assembly and refinement. In this study, we action potential propagation within both local and long-range employ single-cell RNA sequencing to develop a detailed, whole- circuits (18, 19). Finally, synapses are strengthened or eliminated transcriptome resource of gene expression across four time points in based upon a process of activity-dependent synaptic refinement the developing dorsal lateral geniculate nucleus (LGN), a visual that is in part mediated through the tagging of synapses with structure in the brain that undergoes a well-characterized program complement proteins such as C1q and C3 (20–22).
    [Show full text]
  • The Elegance of Sonic Hedgehog: Emerging Novel Functions for a Classic Morphogen
    9338 • The Journal of Neuroscience, October 31, 2018 • 38(44):9338–9345 Mini-Symposium The Elegance of Sonic Hedgehog: Emerging Novel Functions for a Classic Morphogen X A. Denise R. Garcia,1 XYoung-Goo Han,2 Jason W. Triplett,3 W. Todd Farmer,4 XCorey C. Harwell,6* and X Rebecca A. Ihrie5* 1Departments of Biology and Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania, Philadelphia, PA 19146, 2Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, Memphis, TN 38105, 3Center for Neuroscience Research, Children’s National Medical Center, Departments of Pediatrics and Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, Washington, District of Columbia, 20010, 4Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Quebec, Canada, H3G 1A4, 5Departments of Cell and Developmental Biology and Neurological Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, TN, 37232-6840, and 6Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, MA 02115 Sonic Hedgehog (SHH) signaling has been most widely known for its role in specifying region and cell-type identity during embryonic morphogenesis. This mini-review accompanies a 2018 SFN mini-symposium that addresses an emerging body of research focused on understanding the diverse roles for Shh signaling in a wide range of contexts in neurodevelopment and, more recently, in the mature CNS. Such research shows that Shh affects the function of brain circuits, including the production and maintenance of diverse cell types and the establishment of wiring specificity.
    [Show full text]
  • A Subpopulation of Astrocyte Progenitors Defined by Sonic Hedgehog Signaling
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157065; this version posted June 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A SUBPOPULATION OF ASTROCYTE PROGENITORS DEFINED BY SONIC HEDGEHOG SIGNALING AUTHORS: Ellen Gingrich1, Kendra Case2, A. Denise R. Garcia2,3* 1Department of Biology, Stanford University, Stanford, CA 94305 2Drexel University, Philadelphia, PA 19104, USA 3Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA * Corresponding author Author contributions Conceptualization, E.G. and A.D.R.G., Investigation, E.G., K.C., A.D.R.G., Writing, E.G., A.D.R.G., Funding Acquisition, A.D.R.G. Correspondence: A. Denise R. Garcia Department of Biology Department Neurobiology and Anatomy Drexel University 3245 Chestnut St. PISB 422 Philadelphia, PA 19104 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157065; this version posted June 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ABSTRACT 2 The molecular signaling pathway, Sonic hedgehog (Shh), is critical for the proper development 3 of the central nervous system. The requirement for Shh signaling in neuronal and 4 oligodendrocyte development in the developing embryo are well established.
    [Show full text]
  • Harvard University Program in Neuroscience
    Harvard University Program in Neuroscience Faculty Directory 2016—2017 November 1, 2016 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark Cohen, Jonathan Gu, Chenghua Lu, Kun Ping Sanes, Joshua (MGH-East)) (HMS—Neurobiology) (HMS—Neurobiology) (BIDMC) (Harvard University—MCB) Andermann, Mark Commons, Kathryn Harvey, Christopher Ma, Qiufu Saper, Clifford (BIDMC) (BCH—Anaesthesia) (HMS – Neurobiology) (DFCI/HMS—Neurobiology) (BIDMC) Anderson, Matthew Corey, David Harwell, Corey Macklis, Jeffrey Scammel, Thomas (BIDMC) (HMS—Neurobiology) (HMS – Neurobiology) (Harvard University—SCRB) (BIDMC) Anthony, Todd Cox, David He, Zhigang Majzoub, Joseph Scherzer, Clemens (BCH—Neurobiology) (Harvard University—MCB) (BCH—Neurobiology) (BCH—Pediatrics) (BWH—Neurogenomics)) Arlotta, Paola Crickmore, Michael Heiman, Maxwell Maratos-Flier, Eleftheria Schier, Alexander (Harvard University—SCRB) (BCH—Neurobiology) (BCH—Genetics) (BIDMC) (Harvard University—MCB) Assad, John Czeisler, Charles
    [Show full text]
  • Cover Page.Pub
    Harvard University Program in Neuroscience Faculty Directory 2018 - 2019 January 1, 2019 Program in Neuroscience Faculty Albers, Mark (MGH-East)) Datta, Bob (HMS/Neurobio) Kaeser, Pascal (HMS/Neurobio) Regehr, Wade (HMS/Neurobio) Andermann, Mark (BIDMC) De Bivort, Benjamin (Harvard/OEB) Kaplan, Joshua (MGH/HMS/Neurobio) Ressler, Kerry (McLean) Anderson, Matthew (BIDMC) Dettmer, Ulf (BWH) Karmacharya, Rakesh (MGH) Rogulja, Dragana (HMS/Neurobio) Anthony, Todd (BCH/Neurobio) Do, Michael (BCH—Neurobio) Khurana, Vikram (BWH) Rosenberg, Paul (BCH/Neurology) Arlotta, Paola (Harvard/SCRB) Dong, Min (BCH) Kim, Kwang-Soo (McLean) Sabatini, Bernardo (HMS/Neurobio) Assad, John (HMS/Neurobio) Drugowitsch, Jan (HMS/Neurobio) Kocsis, Bernat (BIDMC) Sahay, Amar (MGH) Bacskai, Brian (MGH/East) Dulac, Catherine (Harvard/MCB) Kreiman, Gabriel (BCH/Neurobio) Sahin, Mustafa (BCH/Neurobio) Baker, Justin (McLean) Dymecki, Susan(HMS/Genetics) LaVoie, Matthew (BWH) Samuel, Aravi (Harvard/ Physics) Bean, Bruce (HMS/Neurobio) Engert, Florian (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Sanes, Joshua (Harvard/MCB) Bellono, Nicholas (Harvard/MCB) Engle, Elizabeth(BCH/Neurobio) Lehtinen, Maria (BCH/Pathology) Saper, Clifford (BIDMC) Benowitz, Larry (BCH/Neurobio) Fagiolini, Michela (BCH/Neurobio) Liberles, Steve (HMS/Cell Biology) Scammell, Thomas (BIDMC) Berretta, Sabina (McLean) Feany, Mel (HMS/Pathology) Lichtman, Jeff (Harvard/MCB) Scherzer, Clemens (BWH) Bolshakov, Vadim (McLean) Fishell, Gord (HMS/Neurobio & Broad) Lipton, Jonathan (BCH/Neurobio) Schwarz, Tom
    [Show full text]
  • Elucidating the Morphological and Synaptic Organization of Mammalian Touch Circuits
    ELUCIDATING THE MORPHOLOGICAL AND SYNAPTIC ORGANIZATION OF MAMMALIAN TOUCH CIRCUITS by Emily Kuehn A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October, 2016 ABSTRACT The somatosensory system is tasked with translating and processing a myriad of complex stimuli from the periphery to the central nervous system to generate our tactile experience of the world. This process begins in the periphery, where low-threshold mechanoreceptors (LTMRs), neurons that are exquisitely tuned and organized for conveying innocuous touch information, are stimulated. LTMRs subsequently project to the deep dorsal horn, a poorly characterized spinal cord region implicated in processing LTMR information. We observed a previously unappreciated organization of LTMR peripheral projections to the skin, in which the majority of LTMR peripheral projections of a single subtype are largely non-overlapping in their innervation of hair follicles. We further noted differences in these overlap patterns as a function of body region or hair follicle type. This organization is subsequently maintained and translated in LTMR central projections, with central organization influenced by the body region and orientation of their peripheral receptive fields and notable differences in organization across different LTMR subtypes. Further, we report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. Within the LTMR-RZ, we found an unexpectedly high degree of neuronal diversity – seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties.
    [Show full text]