Etude Du Rôle De Protéines Apparentées Aux Cadhérines Dans Le Développement Des Interneurones Du Cortex Auditif Baptiste Libe-Philippot

Total Page:16

File Type:pdf, Size:1020Kb

Etude Du Rôle De Protéines Apparentées Aux Cadhérines Dans Le Développement Des Interneurones Du Cortex Auditif Baptiste Libe-Philippot Etude du rôle de protéines apparentées aux cadhérines dans le développement des interneurones du cortex auditif Baptiste Libe-Philippot To cite this version: Baptiste Libe-Philippot. Etude du rôle de protéines apparentées aux cadhérines dans le développement des interneurones du cortex auditif. Biologie du développement. Université Pierre et Marie Curie - Paris VI, 2017. Français. NNT : 2017PA066112. tel-01666045 HAL Id: tel-01666045 https://tel.archives-ouvertes.fr/tel-01666045 Submitted on 18 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole doctorale « Complexité du vivant » Unité de Génétique et Physiologie de l’Audition (Institut Pasteur) Etude du rôle de protéines apparentées aux cadhérines dans le développement des interneurones du cortex auditif Le développement des interneurones du cortex auditif met en jeu les protéines apparentées aux cadhérines qui sont essentielles à la transduction mécano-électrique des cellules sensorielles auditives Par Baptiste Libé-Philippot Thèse de doctorat de neurobiologie et biologie du développement Dirigée par Christine Petit Présentée et soutenue publiquement le 16 juin 2017 devant un jury composé de : Gaspar, Patricia présidente Directrice de recherche à l’INSERM (Institut du Fer à Moulin, Paris) Jabaudon, Denis rapporteur Professeur à l’Université de Genève (Suisse) Crépel, Valérie rapporteur Directrice de recherche à l’INSERM (Institut de Neurobiologie de la Méditerranée, Marseille) Mège, René-Marc examinateur Directeur de recherche au CNRS (Institut Jacques Monod, Paris) Renier, Nicolas examinateur Chef d’équipe à l’Institut du Cerveau et de la Moelle épinière (Paris) Petit, Christine directrice de thèse Professeur au Collège de France (Institut Pasteur, Paris) II A Nathalie, III IV Remerciements Je remercie Christine Petit de m’avoir accueilli dans son unité et d’avoir dirigé ma thèse de doctorat, Nicolas Michalski d’avoir été mon co-encadrant. Je les remercie d’avoir rendu possible la publication de nos résultats ainsi que pour leur relecture de ce manuscrit de thèse. Je remercie les membres du jury et du comité de thèse d’avoir accepté d’évaluer et de suivre mon travail de thèse : Michel Cohen-Tannoudji (Institut Pasteur), Valérie Crépel (Institut de Neurobiologie de la Méditerranée), Marta Garcia (Institut du Fer à Moulin), Patricia Gaspar (Institut du Fer à moulin), Denis Jabaudon (Université de Genève, Suisse), Clément Léna (Ecole normale supérieure), René-Marc Mège (Institut Jacques Monod) et Nicolas Renier (Institut du Cerveau et de la Moelle épinière). J’adresse toute ma gratitude à Christine Métin (Institut du Fer à Moulin), pour l’aide précieuse qu’elle a apportée à la réalisation de ce projet, sa disponibilité et nos riches échanges sur les interneurones et la biologie, ainsi qu’à Paul Avan (Université d’Auvergne) pour les moments passés ensemble à mesurer les seuils auditifs de nos souris. Je tiens à exprimer ma reconnaissance à Jean-Pierre Hardelin pour ses relectures critiques du manuscrit de l’article et d’une partie de celui de thèse (ainsi que les transports à vélos de biopsies depuis l’Institut du Fer à Moulin !). Je remercie mon tuteur à l’Ecole normale supérieure, Michel Volovitch, pour ses conseils avant la thèse et pour son soutien à l’obtention de l’allocation spécifique. Je remercie chaleureusement Typhaine Dupont, Sébastien Le Gal et Céline Trébeau pour l’entretien des lignées de souris, Typhaine pour son aide apportée dans les premières expériences d’enregistrements extracellulaires in vivo, Sébastien pour des cryosections et des immuno-marquages, Céline et Typhaine pour les « missions » à l’animalerie Lwoff (!), Vincent Michel qui a pris de magnifiques images représentatives au microscope confocal et Jacques Boutet de Monvel pour son aide apportée lors de l’analyse d’image et la mise en place des stimulations sonores. Je remercie Victor Bénichoux et Amel El-Bahloul qui ont relu des parties de ce manuscrit de thèse. Je remercie les personnes qui ont généreusement accepté de discuter de ce travail à différentes étapes de sa maturation, et qui ont donc influencé sa mise en œuvre : Silvia Arber (Université de Bâle, Suisse), Batiste Boeda (Institut Pasteur), Mario de Bono (Laboratory of Molecular Biology, Cambridge, Royaume-Uni) qui m’a appris qu’il faut d’abord identifier la key question d’un travail de recherche, Sandrine Etienne-Manneville (Institut Pasteur), Sonia Garel (Ecole normale supérieure), Israel Nelken (The Hebrew University of Jerusalem, Israël), Dan Sanes (Université de New York, Etats-Unis). Je remercie Gabriel Lepousez (Institut Pasteur) pour sa relecture du manuscrit de l’article et ses conseils en électrophysiologie extracellulaire in vivo. Je salue mes camarades doctorants dans le laboratoire : Sophie Boucher, Charlotte Calvet, Matteo Cortese, Ménélik Labbé, Pranav Patni ; je remercie plus particulièrement Alice Emptoz de m’avoir montré ses injections de vecteurs lentiviraux ainsi qu’Elise Pepermans de m’avoir rapporté l’excitabilité accrue de ses souris hétérozygotes mutantes pour protocadhérine-15 et cadhérine-23. Je salue des camarades doctorants de l’Institut Pasteur : Marie Denizet, Allain-Thibeault Ferhat, Ophélie Foubet, Lauriane Harrington et Olivier Schiettekatte. Je salue Ambre Le Guirriec, stagiaire l’été 2014, avec qui j’ai réalisé mes premiers enregistrements extracellulaires in vivo et avec qui j’ai commencé à étudier le développement embryonnaire du cortex auditif, ainsi que Mathilde Gagliardini, stagiaire au premier semestre 2017 qui continuera l’étude du rôle des gènes dits de surdité périphérique dans le système nerveux central (je lui souhaite bon courage !). V Je tiens à remercier les autres membres du laboratoire pour leur générosité, leurs aides ponctuelles, leurs conseils et nos échanges : Chantal Archambeau, Estelle Atse, Yosra Bouyacoub, Danica Ciric, Jean Defourny, Sedigheh Delmaghani, Aziz El- Amraoui, Marie Renée Gillard, Boris Gourévitch, Ghizlene Lahlou, Gaelle Lefèvre, Jacqueline Levilliers, Andréa Lelli, Célia Loriette, Birame Mane, Alexandre Parrin, Isabelle Perfettini, Michèle Roa, Saaid Safieddine, Marie Strigalev, Fabienne Wong Jun Tai, Mei Xin ; et plus particulièrement, Michèle Barillot pour son travail de secrétariat, Montserrat Bosch Grau pour son enthousiasme et ses conseils, Sébastien Chardenoux et Sylvie Nouaille pour leur bonne humeur et le génotypages de quelques portées, Raphaël Etournay pour ses conseils concernant l’après thèse, Danuta Oficjalska pour son important investissement administratif et son intérêt pour les expériences menées et Elisabeth Verpy pour son soutien et ses conseils quant aux immuno-marquages pour la stéréociline et l’otogeline. Je remercie de même à l’Institut du Fer à Moulin Valentina Grampa, Claire Leclech et Maria Pedraza Boti pour leur aide apportée aux expériences de culture in vitro. Je remercie chaleureusement dans le département de neurosciences Elodie Ey pour avoir partagé avec nous sa pièce à l’animalerie Metchnikoff et salue Julie Catteau avec qui j’ai réalisé une expérience comparative de l’anesthésie de souriceaux. Je remercie l’animalerie centrale, le service vétérinaire de l’Institut Pasteur, le personnel des animaleries Monod, Metchnikoff et Lwoff, et la plateforme d’imagerie de l’Institut Pasteur, sans qui nous n’aurions pas pu travailler dans d’aussi bonnes conditions. Je salue Elise Caliot aux Ressources humaines pour son écoute et son aide à la construction d’un projet professionnel. Je remercie Colette Dehay (Institut Cellules souches et Cerveau), Makoto Sato (University of Fukui, Japon), Nicoletta Kessaris (University College London, Royaume-Uni) et Anna-Katerina Hadjantonakis (Memorial Sloan Kettering Cancer Center, New York, Etats-Unis) que je n’ai jamais vus mais qui nous ont généreusement donné, respectivement, des tranches d’embryons de macaque et les lignées de souris Adgrv1tm1Msat et Adgrv1YFP, Nkx2-1-cre et RFP+. La thèse n’aurait pas été aussi agréable sans les moments passés au Palais de la découverte, en particulier la formation à la médiation et le contact avec le public, la rédaction d’articles de vulgarisation dans Découverte et les Semaines du cerveau 2015-2017. Je tiens pour cela à remercier Jean-Philippe Bricka, Marie Canard, Gaëlle Courty, Elodie Ducasse, Stéphanie Kapler, Philippe Lavaivre, Yann Lefranc, Noëmie Lozac’h-Vilain, Aurélie Massaux et Tanguy Schindler. Je ne remercierai jamais assez ma famille, ma belle-famille et mes amis pour leur soutien et tout ce qu’ils ont pu m’apporter, en particulier Nathalie, mes parents, mes grands- mères, mon frère et ma sœur. -- Ce travail de thèse a été rendu possible grâce à une allocation spécifique du Ministère de l’Enseignement supérieur et de la Recherche, attribuée par l’Ecole normale supérieure, ainsi qu’aux financements propres au laboratoire, provenant de l’Agence Nationale pour la Recherche (ANR) dans le cadre du second programme d’Investissements d’Avenir, du Labex LIFESENSES, du Conseil européen de la recherche (ERC), de la fondation BNP
Recommended publications
  • Program in Neuroscience
    Harvard University Program in Neuroscience Faculty Directory 2016—2017 April 1, 2017 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) Dong, Min (BCH) Lampson, Lois (BWH) Sabatini, Bernardo (HMS/Neurobio) Andermann, Mark (BIDMC) Drugowitsch, Jan (HMS/Neurobio) LaVoie, Matthew (BWH) Sahay, Amar (MGH) Anderson, Matthew (BIDMC) Dulac, Catherine (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Sahin, Mustafa (BCH/Neurobio) Anthony, Todd (BCH/Neurobio) Dymecki, Susan(HMS/Genetics) Lehtinen, Maria (BCH/Pathology) Samuel, Aravi (Harvard/ Physics) Arlotta, Paola (Harvard/SCRB) Engert, Florian (Harvard/MCB) Liberles, Steve (HMS/Cell Biology) Sanes, Joshua (Harvard/MCB) Assad, John (HMS/Neurobio) Engle, Elizabeth(BCH/Neurobio) Lichtman, Jeff (Harvard/MCB) Saper, Clifford (BIDMC) Bacskai, Brian (MGH/East) Eskandar, Emad (MGH) Lipton, Jonathan (BCH/Neurobio) Scammell, Thomas (BIDMC) Bean, Bruce (HMS/Neurobio) Fagiolini, Michela (BCH/Neurobio) Livingstone, Marge (HMS/Neurobio)
    [Show full text]
  • Single-Cell Transcriptomics of the Developing Lateral PNAS PLUS Geniculate Nucleus Reveals Insights Into Circuit Assembly and Refinement
    Single-cell transcriptomics of the developing lateral PNAS PLUS geniculate nucleus reveals insights into circuit assembly and refinement Brian T. Kalisha,b,1, Lucas Cheadlea,1, Sinisa Hrvatina, M. Aurel Nagya,c, Samuel Riveraa, Megan Crowd, Jesse Gillisd, Rory Kirchnere, and Michael E. Greenberga,2 aDepartment of Neurobiology, Harvard Medical School, Boston, MA 02115; bDivision of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115; cProgram in Neuroscience, Harvard Medical School, Boston, MA 02115; dCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and eBioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Contributed by Michael E. Greenberg, December 18, 2017 (sent for review October 23, 2017; reviewed by Matthew B. Dalva and Sacha B. Nelson) Coordinated changes in gene expression underlie the early pattern- the cleft to organize synaptic architecture and composition (15– ing and cell-type specification of the central nervous system. 17). The process of synaptogenesis is accompanied by myelination, However, much less is known about how such changes contribute which accrues as the circuit matures, ensuring the efficiency of to later stages of circuit assembly and refinement. In this study, we action potential propagation within both local and long-range employ single-cell RNA sequencing to develop a detailed, whole- circuits (18, 19). Finally, synapses are strengthened or eliminated transcriptome resource of gene expression across four time points in based upon a process of activity-dependent synaptic refinement the developing dorsal lateral geniculate nucleus (LGN), a visual that is in part mediated through the tagging of synapses with structure in the brain that undergoes a well-characterized program complement proteins such as C1q and C3 (20–22).
    [Show full text]
  • Sep 1 3 2006
    Characterization of CPG15 During Cortical Development and Activity Dependent Plasticity By Corey Harwell B.S., Chemistry Tennessee State University, 2000 Submitted to the Department of Brain and Cognitive Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience at the Massachusetts Institute of Technology September 2006 © 2006 Massachusetts Institute of Technology. All rights reserved. '0) , Signature of Author: Department of Brain and Cognitive Sciences September 1, 2006 Certified by: _ _ _ · I, - SElly Nedivi Associate Professor of Neurobiology J-1ý P Thesis Supervisor Accepted by: --- -- "Matthew Wilson C~- Picower Professor of Neuroscience Chairman, Department Graduate Committee MASSACHUSETTS INSETTWJTj OF TECHNOLOGY SEP 13 2006 LIBRARIES Characterization of CPG15 During Cortical Development and Activity Dependent Plasticity by Corey C. Harwell Submitted to the Department of Brain and Cognitive Sciences On September 1, 2006 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience ABSTRACT Regulation of gene transcription by neuronal activity is thought to be key to the translation of sensory experience into long-term changes in synaptic structure and function. Here we show that cpgl5, a gene encoding an extracellular signaling molecule that promotes dendritic and axonal growth and synaptic maturation, is regulated in the somatosensory cortex by sensory experience capable of inducing cortical plasticity. Using in situ hybridization, we monitored cpgl5 expression in 4-week-old mouse barrel cortex after trimming all whiskers except D1. We found that cpgl5 expression is depressed in the deprived barrels and enhanced in the barrel column corresponding to the spared D1 whisker.
    [Show full text]
  • Spring 2020 First Meeting of Quarter Courses
    PhD Programs at Harvard Medical School Quarter Courses Spring 2020 Enrollment deadlines GSAS Academic Check-in Jan 6-27 Calendar 2019-20 Open enrollment Jan 27-31 Add/drop no fee Feb 10 16 credits for full- Last day to add Mar 9 time student status Last day to drop, no WD Mar 23 Contact 617-432-0605 [email protected] SPRING 2020 BCMP 305QC Seminars in Molecular and Mechanistic Biology Madhvi Venkatesh CELLBIO 304QC Introduction to Human Gross Anatomy Gerald Greenhouse, Everett Anderson, Mohini Lutchman, Giorgio Giatsidis CELLBIO 307QC Molecular Aspects of Chromatin Dynamics Raul Mostoslavsky, Lee Zou, Johnathan Whetstine, Christopher Ott, Danesh Moazed CELLBIO 309QC The Basics of Translation Spyros Artavanis-Tsakonas, David Van Vactor GENETIC 302QC Teaching 101: Bringing Effective Teaching Practices to your Classroom Gavin Porter, Deepali Ravel HBTM 305QC Molecular Bases of Eye Disease Darlene Dartt, Magali Saint-Geniez HBTM 308QC Experimental Design & Analysis of Eye & Vision Studies Russell Woods, Lotfi Merabet, Eric YinShan Ng, Christopher Bennett, Magali Saint-Genez, Matthew Bronstad, Daniel Sun, Corinna Bauer, Alex Bowers, Tobias Elze IMMUN 301QC Autoimmunity Francisco Quintana IMMUN 302QC Clinical Sessions tbc Rachael Clark IMMUN 305QC Neuro-Immunology Development, Regeneration & Disease Isaac Chiu, Beth Stevens, Michael Carroll IMMUN 312QC Applied Statistics & High Throughput Data Analysis for Immunologists Meromit Singer, Alos Diallo IMMUN 317QC Strategies to Achieve Durable Anti-Microbial Host Defense Wayne Marasco,
    [Show full text]
  • A Brief History, Current Status Report and Options for Next Steps
    A Brief History, Current Status Report And Options for Next steps Prepared for CIRM outside reviewers prior to October 13-15, 2010 on-site review 1 Index — Introduction, p.3 Getting Started, p. 4 Scientific Strategic Plan, p. 5 The Grant Review Process, p. 7 Business Systems, p. 9 Intellectual Property, p. 9 Medical and Ethical Standards, p. 10 The Science Program, p. 11 Intellectual Resources, p.11 Facilities Infrastructure, p. 13 Pipeline Strategy, p. 14 Foundational Biology, p. 14 Creating a Development Portfolio, p. 16 Assessing the Research Portfolio, p. 20 Outcomes, p. 22 Impact of Grants that Have Been Completed, p. 23 Collaborative Funding Leverages RFA Potential, p. 24 Managing the Portfolio, p. 26 The Business side of Grant Management, p. 26 Medical and Ethical Standards and Compliance, p. 27 Operations and Administration, p. 29 Outreach, p. 31 Partnering in the Stem Cell Community, p. 32 Industry Engagement, p. 33 Going Forward, p. 34 Our Loan Program, p. 35 Other Approaches to Attract Additional Funding, p. 36 Next Steps in Intellectual Property, p. 37 Our Science Program, p. 38 Core Programs and New Initiatives, p. 39 Refinancing CIRM, 41 Appendices, p. 42 2 Introduction The California Institute for Regenerative Medicine has matured into a deliberative, targeted funding agency in the nearly six years since 59 percent of California voters approved the initiative, Proposition 71, that created the agency in November 2004 http://www.cirm.ca.gov/AboutCIRM_Prop71 The agency has awarded 364 grants and loans for research and facilities to 54 institutions totaling $1.07 billion. About half of those commitments have been disbursed.
    [Show full text]
  • 8Th Annual ENDURE Program Booklet 2018
    8th Annual Enhancing Neuroscience Diversity through Undergraduate Research Education Experiences (ENDURE) Meeting November 3, 2018 San Diego, CA The NIH Office of the Director and these NIH Institutes and Centers participate in the NIH Blueprint for Neuroscience Research: • NCATS • NIAAA • NIDCR • NINR • NCCIH • NIBIB • NIEHS • OBSSR • NEI • NICHD • NIMH • NIA • NIDA • NINDS TABLE OF CONTENTS ENDURE PROGRAM AND MEETING GOALS ...............................................................................................3 ENDURE MEETING AGENDA ..................................................................................................................4 NIH BLUEPRINT WELCOME AND BIOGRAPHICAL SKETCHES .........................................................................5 T32 RECRUITMENT FAIR PARTICIPANTS ....................................................................................................9 MENTORING RESOURCES AND PROFESSIONAL CONFERENCES ......................................................................25 ENDURE TRAINEE INFORMATION AND RESEARCH ABSTRACTS • BUILDING RESEARCH ACHIEVEMENT IN NEUROSCIENCE (BRAIN) ..........................................26 • BRIDGE TO THE PH.D. IN NEUROSCIENCE ................................................................................35 • BP-ENDURE ST. LOUIS: A NEUROSCIENCE PIPELINE ...............................................................48 • BP-HUNTER COLLEGE .................................................................................................................62
    [Show full text]
  • Single-Cell Transcriptomics of the Developing Lateral PNAS PLUS Geniculate Nucleus Reveals Insights Into Circuit Assembly and Refinement
    Single-cell transcriptomics of the developing lateral PNAS PLUS geniculate nucleus reveals insights into circuit assembly and refinement Brian T. Kalisha,b,1, Lucas Cheadlea,1, Sinisa Hrvatina, M. Aurel Nagya,c, Samuel Riveraa, Megan Crowd, Jesse Gillisd, Rory Kirchnere, and Michael E. Greenberga,2 aDepartment of Neurobiology, Harvard Medical School, Boston, MA 02115; bDivision of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115; cProgram in Neuroscience, Harvard Medical School, Boston, MA 02115; dCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and eBioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Contributed by Michael E. Greenberg, December 18, 2017 (sent for review October 23, 2017; reviewed by Matthew B. Dalva and Sacha B. Nelson) Coordinated changes in gene expression underlie the early pattern- the cleft to organize synaptic architecture and composition (15– ing and cell-type specification of the central nervous system. 17). The process of synaptogenesis is accompanied by myelination, However, much less is known about how such changes contribute which accrues as the circuit matures, ensuring the efficiency of to later stages of circuit assembly and refinement. In this study, we action potential propagation within both local and long-range employ single-cell RNA sequencing to develop a detailed, whole- circuits (18, 19). Finally, synapses are strengthened or eliminated transcriptome resource of gene expression across four time points in based upon a process of activity-dependent synaptic refinement the developing dorsal lateral geniculate nucleus (LGN), a visual that is in part mediated through the tagging of synapses with structure in the brain that undergoes a well-characterized program complement proteins such as C1q and C3 (20–22).
    [Show full text]
  • The Elegance of Sonic Hedgehog: Emerging Novel Functions for a Classic Morphogen
    9338 • The Journal of Neuroscience, October 31, 2018 • 38(44):9338–9345 Mini-Symposium The Elegance of Sonic Hedgehog: Emerging Novel Functions for a Classic Morphogen X A. Denise R. Garcia,1 XYoung-Goo Han,2 Jason W. Triplett,3 W. Todd Farmer,4 XCorey C. Harwell,6* and X Rebecca A. Ihrie5* 1Departments of Biology and Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania, Philadelphia, PA 19146, 2Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, Memphis, TN 38105, 3Center for Neuroscience Research, Children’s National Medical Center, Departments of Pediatrics and Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, Washington, District of Columbia, 20010, 4Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Quebec, Canada, H3G 1A4, 5Departments of Cell and Developmental Biology and Neurological Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, TN, 37232-6840, and 6Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, MA 02115 Sonic Hedgehog (SHH) signaling has been most widely known for its role in specifying region and cell-type identity during embryonic morphogenesis. This mini-review accompanies a 2018 SFN mini-symposium that addresses an emerging body of research focused on understanding the diverse roles for Shh signaling in a wide range of contexts in neurodevelopment and, more recently, in the mature CNS. Such research shows that Shh affects the function of brain circuits, including the production and maintenance of diverse cell types and the establishment of wiring specificity.
    [Show full text]
  • Cellular and Molecular Analysis of Neuronal Structural Plasticity in the Mammalian Cortex
    Cellular and Molecular Analysis of Neuronal Structural Plasticity in the Mammalian Cortex by Wei-Chung Allen Lee S.B., Chemical Engineering California Institute of Technology, 1998 A.B., Biochemistry and Government Bowdoin College, 1998 Submitted to the Department of Brain and Cognitive Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience at the Massachusetts Institute of Technology June 2006 © 2006 Massachusetts Institute of Technology. All rights reserved. Signature of Author............................................................................................................................ Department of Brain and Cognitive Sciences May 15, 2006 Certified by........................................................................................................................................ Elly Nedivi Fred and Carol Middleton Associate Professor of Neurobiology Thesis Supervisor Accepted by....................................................................................................................................... Matthew Wilson Picower Scholar & Professor of Neurobiology Chair, Committee for Graduate Students Cellular and Molecular Analysis of Neuronal Structural Plasticity in the Mammalian Cortex by Wei-Chung Allen Lee Submitted to the Department of Brain and Cognitive Sciences on May 15, 2006 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience ABSTRACT Despite decades of evidence for functional plasticity in the adult
    [Show full text]
  • A Subpopulation of Astrocyte Progenitors Defined by Sonic Hedgehog Signaling
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157065; this version posted June 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A SUBPOPULATION OF ASTROCYTE PROGENITORS DEFINED BY SONIC HEDGEHOG SIGNALING AUTHORS: Ellen Gingrich1, Kendra Case2, A. Denise R. Garcia2,3* 1Department of Biology, Stanford University, Stanford, CA 94305 2Drexel University, Philadelphia, PA 19104, USA 3Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA * Corresponding author Author contributions Conceptualization, E.G. and A.D.R.G., Investigation, E.G., K.C., A.D.R.G., Writing, E.G., A.D.R.G., Funding Acquisition, A.D.R.G. Correspondence: A. Denise R. Garcia Department of Biology Department Neurobiology and Anatomy Drexel University 3245 Chestnut St. PISB 422 Philadelphia, PA 19104 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157065; this version posted June 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ABSTRACT 2 The molecular signaling pathway, Sonic hedgehog (Shh), is critical for the proper development 3 of the central nervous system. The requirement for Shh signaling in neuronal and 4 oligodendrocyte development in the developing embryo are well established.
    [Show full text]
  • Harvard University Program in Neuroscience
    Harvard University Program in Neuroscience Faculty Directory 2016—2017 November 1, 2016 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark Cohen, Jonathan Gu, Chenghua Lu, Kun Ping Sanes, Joshua (MGH-East)) (HMS—Neurobiology) (HMS—Neurobiology) (BIDMC) (Harvard University—MCB) Andermann, Mark Commons, Kathryn Harvey, Christopher Ma, Qiufu Saper, Clifford (BIDMC) (BCH—Anaesthesia) (HMS – Neurobiology) (DFCI/HMS—Neurobiology) (BIDMC) Anderson, Matthew Corey, David Harwell, Corey Macklis, Jeffrey Scammel, Thomas (BIDMC) (HMS—Neurobiology) (HMS – Neurobiology) (Harvard University—SCRB) (BIDMC) Anthony, Todd Cox, David He, Zhigang Majzoub, Joseph Scherzer, Clemens (BCH—Neurobiology) (Harvard University—MCB) (BCH—Neurobiology) (BCH—Pediatrics) (BWH—Neurogenomics)) Arlotta, Paola Crickmore, Michael Heiman, Maxwell Maratos-Flier, Eleftheria Schier, Alexander (Harvard University—SCRB) (BCH—Neurobiology) (BCH—Genetics) (BIDMC) (Harvard University—MCB) Assad, John Czeisler, Charles
    [Show full text]
  • Cover Page.Pub
    Harvard University Program in Neuroscience Faculty Directory 2018 - 2019 January 1, 2019 Program in Neuroscience Faculty Albers, Mark (MGH-East)) Datta, Bob (HMS/Neurobio) Kaeser, Pascal (HMS/Neurobio) Regehr, Wade (HMS/Neurobio) Andermann, Mark (BIDMC) De Bivort, Benjamin (Harvard/OEB) Kaplan, Joshua (MGH/HMS/Neurobio) Ressler, Kerry (McLean) Anderson, Matthew (BIDMC) Dettmer, Ulf (BWH) Karmacharya, Rakesh (MGH) Rogulja, Dragana (HMS/Neurobio) Anthony, Todd (BCH/Neurobio) Do, Michael (BCH—Neurobio) Khurana, Vikram (BWH) Rosenberg, Paul (BCH/Neurology) Arlotta, Paola (Harvard/SCRB) Dong, Min (BCH) Kim, Kwang-Soo (McLean) Sabatini, Bernardo (HMS/Neurobio) Assad, John (HMS/Neurobio) Drugowitsch, Jan (HMS/Neurobio) Kocsis, Bernat (BIDMC) Sahay, Amar (MGH) Bacskai, Brian (MGH/East) Dulac, Catherine (Harvard/MCB) Kreiman, Gabriel (BCH/Neurobio) Sahin, Mustafa (BCH/Neurobio) Baker, Justin (McLean) Dymecki, Susan(HMS/Genetics) LaVoie, Matthew (BWH) Samuel, Aravi (Harvard/ Physics) Bean, Bruce (HMS/Neurobio) Engert, Florian (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Sanes, Joshua (Harvard/MCB) Bellono, Nicholas (Harvard/MCB) Engle, Elizabeth(BCH/Neurobio) Lehtinen, Maria (BCH/Pathology) Saper, Clifford (BIDMC) Benowitz, Larry (BCH/Neurobio) Fagiolini, Michela (BCH/Neurobio) Liberles, Steve (HMS/Cell Biology) Scammell, Thomas (BIDMC) Berretta, Sabina (McLean) Feany, Mel (HMS/Pathology) Lichtman, Jeff (Harvard/MCB) Scherzer, Clemens (BWH) Bolshakov, Vadim (McLean) Fishell, Gord (HMS/Neurobio & Broad) Lipton, Jonathan (BCH/Neurobio) Schwarz, Tom
    [Show full text]