Program in Neuroscience

Total Page:16

File Type:pdf, Size:1020Kb

Program in Neuroscience Harvard University Program in Neuroscience Faculty Directory 2016—2017 April 1, 2017 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) Dong, Min (BCH) Lampson, Lois (BWH) Sabatini, Bernardo (HMS/Neurobio) Andermann, Mark (BIDMC) Drugowitsch, Jan (HMS/Neurobio) LaVoie, Matthew (BWH) Sahay, Amar (MGH) Anderson, Matthew (BIDMC) Dulac, Catherine (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Sahin, Mustafa (BCH/Neurobio) Anthony, Todd (BCH/Neurobio) Dymecki, Susan(HMS/Genetics) Lehtinen, Maria (BCH/Pathology) Samuel, Aravi (Harvard/ Physics) Arlotta, Paola (Harvard/SCRB) Engert, Florian (Harvard/MCB) Liberles, Steve (HMS/Cell Biology) Sanes, Joshua (Harvard/MCB) Assad, John (HMS/Neurobio) Engle, Elizabeth(BCH/Neurobio) Lichtman, Jeff (Harvard/MCB) Saper, Clifford (BIDMC) Bacskai, Brian (MGH/East) Eskandar, Emad (MGH) Lipton, Jonathan (BCH/Neurobio) Scammell, Thomas (BIDMC) Bean, Bruce (HMS/Neurobio) Fagiolini, Michela (BCH/Neurobio) Livingstone, Marge (HMS/Neurobio) Scherzer, Clemens (BWH) Benowitz, Larry (BCH/Neurobio) Feany, Mel (HMS/Pathology) Lo, Eng (MGH—East) Schier, Alexander (Harvard/MCB) Berretta, Sabina (McLean) Flanagan, John (HMS/Cell Biology) Loeken, Mary (Joslin Diabetes Center) Schwarz, Tom (BCH/HMS—Neurobio) Bilbo, Staci (MGH—East) Gaab, Nadine (BCH/Pediatrics) Lowell, Brad (BIDMC) Segal, Rosalind (DFCI/HMS—Neurobio) Bolshakov, Vadim (McLean) Gaudet, Rachelle (Harvard/MCB) Lu, Kun Ping (BIDMC) Selkoe, Dennis (BWH) Born, Richard (HMS/Neurobio) Geleoc, Gwenaelle (BCH/Neurobio) Ma, Qiufu (DFCI/HMS/Neurobio) Shah, Khalid (MGH) Breakefield, Xandra (MGH—East) Gershman, Sam (Harvard/Psych) Macklis, Jeffrey (Harvard/SCRB) Shen, Jie (HMS/Neurology) Brown, Emery (MGH) Ginty, David (HMS/Neurobio) Macosko, Evan (Broad Institute) Stevens, Beth (BCH—Neurobio) Buckholtz, Joshua (Harvard/Psych) Goodrich, Lisa (HMS/Neurobio) Majzoub, Joseph (BCH/Pediatrics) Stickgold, Robert (BIDMC) Buckner, Randy (Harvard UPsych) Gray, Jesse (HMS/Genetics) Maratos-Flier, Eleftheria (BIDMC) Strichartz, Gary (BWH) Caine, S. Barak (McLean) Greenberg, Michael (HMS/Neurobio) Masland, Richard (MEEI) Tanzi, Rudolph (MGH—East) Carlezon, William (McLean) Greka, Anna (MGH) McCarroll, Steven (HMS/Genetics) Uchida, Naoshige (Harvard/MCB) Cash, Sydney (MGH) Gu, Chenghua (HMS/Neurobio) Megason, Sean (HMS/Systems Bio) Umemori, Hisashi (BCH—Neurobio) Cepko, Constance (HMS/Genetics) Harvey, Christopher (HMS/Neurobio) Murthy, Venkatesh (Harvard/MCB) Van Vactor, David (HMS/Cell Biology) Chartoff, Elena (McLean) Harwell, Corey (HMS/Neurobio) Nelson, Charles (BCH/Pediatrics)) Wainger, Brian (MGH-East) Chen, Chinfei (BCH/Neurobio) He, Zhigang (BCH—Neurobio) Ölveczky, Bence (Harvard/OEB) Walsh, Christopher (BCH/Neurobio) Chen, Dong Feng (Schepens) Heiman, Maxwell (BCH/Genetics) Paul, David (HMS/Neurobio) Weitz, Charles (HMS—Neurobio) Chen, Zheng-Yi (MEEI) Hensch, Takao (Harvard/MCB) Pecot, Matthew (HMS/Neurobio) Williams, Ziv (MGH) Chiocca, E. Antonio (HIM) Holt, Jeffrey (BCH/Neurobio) Piao, Xianhua (BCH/Pediatrics) Wilson, Rachel (HMS/Neurobio) Chiu, Isaac (HMS/Microbiology) Hyman, Bradley (MGH—East) Pizzagalli, Diego (McLean) Woolf, Clifford (BCH—Neurobio) Cohen, Adam (Harvard/Chemistry) Isaacson, Ole (McLean) Polley, Daniel (MEEI) Yankner, Bruce (HMS/Genetics) Cohen, Jonathan(HMS/Neurobio) Kaeser, Pascal (HMS/Neurobio) Pomeroy, Scott (BCH/Neurology) Yellen, Gary (HMS/Neurobio) Commons, Kathryn (BCH) Kaplan, Joshua (MGH/HMS/Neurobio) Rabkin, Samuel (MGH) Yuan, Junying (HMS/Cell Biology) Corey, David (HMS/Neurobio) Kelleher, Raymond (MGH) Regehr, Wade (HMS/Neurobio) Zhang, Yun (Harvard/OEB) Cox, David (Harvard/MCB) Kim, Kwang-Soo (McLean) Ressler, Kerry (McLean) Crickmore, Mike (BCH/Neurobio) Kohane, Isaac (HMS/Bioinformatics) Rogulja, Dragana (HMS/Neurobio) Czeisler, Charles (BWH) Kreiman, Gabriel (BCH/Neurobio) Rosenberg, Paul (BCH/Neurology) Datta, Bob (HMS/Neurobio) Kunes, Sam (Harvard/MCB) Rudolph, Uwe (McLean) De Bivort, Benjamin (Harvard/OEB) Kunkel, Louis (BCH/Genetics) Do, Michael (BCH—Neurobio) Mark Albers, M.D./Ph.D. Joined 2012 Assistant Professor of Neurology Massachusetts General Hospital Institute for Neurodegenerative Disease 114 16th Street, No. 2003 Charlestown [email protected] The goal of the research in the Albers lab is to elucidate the pathogenic actions and physiological functions of genes implicated in neurodegenerative disease. Our principal hypothesis is that these genes confer vulnerability to neurons by disrupting the integrity of neurons and neural circuits. The questions addressed by these studies intersect with fundamental questions in neuroscience, including how are connections in the nervous system formed, how are these connections modified by experience, and how is the communication across these connections disrupted by disease mechanisms. We address these issues in the peripheral olfactory neural circuit of the mouse and human, a circuit that is evolutionarily conserved. The mouse circuit is genetically tractable, and the human circuit is vulnerable to neurodegenerative disease. We combine novel mouse models that express pathogenic and normal isoforms of the human amyloid precursor protein solely in a subset of olfactory neurons with multiphoton in vivo imaging, fluorescence activated cell sorting, deep sequencing, and other basic techniques of investigation. Examination of these lines has revealed miswiring of the olfactory neural circuit and profound changes in gene expression in neurons not expressing the disease gene, associated with accelerated neuronal turnover in vivo. A second focus of the laboratory is to elucidate the physiological function of these genes by generating and examining cell-specific knockouts of the gene family in specific classes of neurons in this circuit. We believe that some of the insights revealed in these investigations will provide clues to understanding the actions of these disease genes in other vulnerable, plastic circuits in the brain, such as the entorhinal cortex and the hippocampus. PiN thesis students: [none] PiN rotation students: [none] PiN PEC memberships: [none] PiN DAC memberships: [none] PiN defense [none] Mark Andermann, Ph.D. Joined 2012 Assistant Professor of Medicine Beth Israel Deaconess Medical Center Center for Life Sciences, room 701 3 Blackfan Circle Boston [email protected] Our laboratory seeks to understand how the needs of the body determine which sensory cues are attended to, learned, and remembered. In particular, we are investigating how natural and experimentally induced states of hunger modulate neural representations of food cues, and the consequences for obesity, binge eating, and other eating disorders. Previous studies support a simple model for hunger-dependent processing of food cues: During states of satiety, food cue information enters sensory neocortex but may not flow to cortical areas involved in selective processing of motivationally salient food cues, such as postrhinal cortex (POR). It has been suggested that during states of hunger, POR may be attentionally ‘primed’ such that food cue information spreads from visual cortex through POR to amygdala and on to lateral hypothalamic neurons involved in food-seeking behavior. We are investigating the mechanisms by which genetically, anatomically and chemically defined classes of cortical neurons facilitate cue-induced feeding in a hunger-dependent manner. Such motivation-specific priming of cortical sensory representations may arise from amygdalar and hypothalamic synaptic inputs to cortex, as well as from local hormonal and neuromodulatory actions on specific cortical neurons. To monitor motivation-related changes in neural activity in the same large populations of neurons across hours, days and weeks, our lab uses two-photon calcium imaging and multi-electrode recordings in behaving mice. The identity of each visualized neuron can be deduced from genetic, anatomical, chemical and immunohistochemical markers. The importance of these cell classes in guiding behavior is then assessed by cell-type and area-specific activation or silencing of neurons using optogenetic and pharmacogenetic approaches. We are also developing tools for imaging activity of cell bodies and axon terminals from identified projection neurons and from deeper brain structures, and to make sense of these high-dimensional datasets within a broader theoretical and computational framework. PiN thesis students: Kelly McGuire; Rohan Ramesh; Nick Jikomes (‘11—’16) PiN rotation students: Michelle Frank; Chong Guo; Stephen Holtz; Minsuk Hyun; Nick Jikomes; Robert Johnson; Angela Kim; Kelly McGuire; Matthias Minderer; Alexandra Moore; Julia Nguyen; Rohan Ramesh; Hugo Vega-Ramirez PiN PEC memberships: Cesar Echavarria; Michelle Frank; Allison Hamilos; Vivian Hemmelder; Stephen Holtz; Lingfeng Hou; Kee Wui Huang; Jay Lee; ES Milner; Nicole Neubarth; Noah Pettit; Tara Raam; Christina Welsh; Stephen Zhang PiN DAC Cesar Echavarria; Allison Hamilos; Stephen
Recommended publications
  • Neurosurgery Residency Training Program Massachusetts General Hospital Harvard Medical School Boston, Massachusetts OVERVIEW
    Neurosurgery Residency Training Program Massachusetts General Hospital Harvard Medical School Boston, Massachusetts OVERVIEW The goal of the residency training program at the Massachusetts General Hospital (MGH) is to train neurosurgeons who will become leaders in academic neurosurgery. The program has a long and proud tradi- tion of training surgeons who have made major clinical and scientific contributions to the field of neurosurgery. More recently, the program has undergone a significant expansion with appointment of new faculty members and the planned move into new operative suites and patient units in the Building for the Third Century (B3C), with a doubling of the department’s laboratory space. The program is dynamic, growing, and strongly positioned to continue this tradition of leadership into the 21st century. The philosophy of the program is to expose residents to a large number of high-quality cases spanning the entire range of neurosurgery. The Massachusetts Robert L. Martuza, M.D. General Hospital is a tertiary referral center for the entire New England area as well as for many parts of the United States and the world. Accordingly, the program benefits from access to an excellent variety and quantity of cases. As train- ing progresses, residents gain more responsibility in perform- ing surgery and in managing cases. This process reaches its ‘We aim to culmination when the trainee becomes a full attending of the produce excellent North service at the MGH for a six-month period at the end of the program. During this period the North attending has full ad- clinical surgeons mitting and operating privileges and runs his or her own service with a passion for with the support of the faculty.
    [Show full text]
  • Synapse – Autumn 2005 Page 1
    Synapse – Autumn 2005 Page 1 Table of Contents pages Event Reports 2 SP Foundation 2-8 Caregiving 12 Living with PLS/HSP 13-19 Medical Updates 8-12 Event Photos 20 TeamWalks - 2005 National - Ohio October 2 Northeast September 11 Northwest October 8 Oklahoma September 17 Autumn 2005 Serving the Primary Lateral Sclerosis Community since 1997 Welcoming the SP Foundation since 2003 and Carrol Doolen at the Red Lobster. We when a cure is found, I will be roller blading had a great meal and visit. Marlene was one right along side of her, holding her hand. of the founding board members of the SPF Norman Regional Hospital brought out lunch and it was indeed a pleasure to meet her. for us to enjoy after the walk. They also sent On Saturday, it was very nice to be able to Chaplin, Mike Bumgarner to lead us in a place faces with e-mail contacts and also to very informative discussion about visit with old friends at the same time. After depression. His discussion was based on visiting a while, we walked and rolled along our comments to him about depression the beautiful Legacy Trail. My daughter led related to a variety of situations including the walk wearing her roller blades because, loss of jobs due to disability, losing the ability to do things we used to do and being annual Austin Patient Connection was held dependent on someone else. His main pointtoday. "We are the Experts" was the theme. was to find a sounding board, an impartial After a tasty lunch, we held a round table person you can talk with about how you feel discussion about a variety of subjects and what you are going through.
    [Show full text]
  • Pin Faculty Directory
    Harvard University Program in Neuroscience Faculty Directory 2019—2020 April 22, 2020 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) De Bivort, Benjamin (Harvard/OEB) Kaplan, Joshua (MGH/HMS/Neurobio) Rosenberg, Paul (BCH/Neurology) Andermann, Mark (BIDMC) Dettmer, Ulf (BWH) Karmacharya, Rakesh (MGH) Rotenberg, Alex (BCH/Neurology) Anderson, Matthew (BIDMC) Do, Michael (BCH—Neurobio) Khurana, Vikram (BWH) Sabatini, Bernardo (HMS/Neurobio) Anthony, Todd (BCH/Neurobio) Dong, Min (BCH) Kim, Kwang-Soo (McLean) Sahay, Amar (MGH) Arlotta, Paola (Harvard/SCRB) Drugowitsch, Jan (HMS/Neurobio) Kocsis, Bernat (BIDMC) Sahin, Mustafa (BCH/Neurobio) Assad, John (HMS/Neurobio) Dulac, Catherine (Harvard/MCB) Kreiman, Gabriel (BCH/Neurobio) Samuel, Aravi (Harvard/ Physics) Bacskai, Brian (MGH/East) Dymecki, Susan(HMS/Genetics) LaVoie, Matthew (BWH) Sanes, Joshua (Harvard/MCB) Baker, Justin (McLean) Engert, Florian (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Saper, Clifford
    [Show full text]
  • Late-Stage Immature Neocortical Neurons Reconstruct
    The Journal of Neuroscience, May 15, 2002, 22(10):4045–4056 Late-Stage Immature Neocortical Neurons Reconstruct Interhemispheric Connections and Form Synaptic Contacts with Increased Efficiency in Adult Mouse Cortex Undergoing Targeted Neurodegeneration Rosemary A. Fricker-Gates, Jennifer J. Shin, Cindy C. Tai, Lisa A. Catapano, and Jeffrey D. Macklis Division of Neuroscience, Children’s Hospital, and Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115 In the neocortex, the effectiveness of potential cellular repopu- greater percentage of E19-derived neurons received synapses lation therapies for diseases involving neuronal loss may de- (77 Ϯ 1%) compared with E17-derived neurons (67 Ϯ 2%). pend critically on whether newly incorporated cells can differ- Similar percentages of both E17 and E19 donor-derived neu- entiate appropriately into precisely the right kind of neuron, rons expressed neurotransmitters and receptors [glutamate, re-establish precise long-distance connections, and recon- aspartate, GABA, GABA receptor (GABA-R), NMDA-R, struct complex functional circuitry. Here, we test the hypothesis AMPA-R, and kainate-R] appropriate for endogenous adult that increased efficiency of connectivity could be achieved if CPNs progressively over a period of 2–12 weeks after trans- precursors could be more fully differentiated toward desired plantation. Although P3 fluorescence-activated cell sorting- phenotypes. We compared embryonic neuroblasts and imma- purified neurons also expressed these
    [Show full text]
  • Single-Cell Transcriptomics of the Developing Lateral PNAS PLUS Geniculate Nucleus Reveals Insights Into Circuit Assembly and Refinement
    Single-cell transcriptomics of the developing lateral PNAS PLUS geniculate nucleus reveals insights into circuit assembly and refinement Brian T. Kalisha,b,1, Lucas Cheadlea,1, Sinisa Hrvatina, M. Aurel Nagya,c, Samuel Riveraa, Megan Crowd, Jesse Gillisd, Rory Kirchnere, and Michael E. Greenberga,2 aDepartment of Neurobiology, Harvard Medical School, Boston, MA 02115; bDivision of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115; cProgram in Neuroscience, Harvard Medical School, Boston, MA 02115; dCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and eBioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Contributed by Michael E. Greenberg, December 18, 2017 (sent for review October 23, 2017; reviewed by Matthew B. Dalva and Sacha B. Nelson) Coordinated changes in gene expression underlie the early pattern- the cleft to organize synaptic architecture and composition (15– ing and cell-type specification of the central nervous system. 17). The process of synaptogenesis is accompanied by myelination, However, much less is known about how such changes contribute which accrues as the circuit matures, ensuring the efficiency of to later stages of circuit assembly and refinement. In this study, we action potential propagation within both local and long-range employ single-cell RNA sequencing to develop a detailed, whole- circuits (18, 19). Finally, synapses are strengthened or eliminated transcriptome resource of gene expression across four time points in based upon a process of activity-dependent synaptic refinement the developing dorsal lateral geniculate nucleus (LGN), a visual that is in part mediated through the tagging of synapses with structure in the brain that undergoes a well-characterized program complement proteins such as C1q and C3 (20–22).
    [Show full text]
  • Sep 1 3 2006
    Characterization of CPG15 During Cortical Development and Activity Dependent Plasticity By Corey Harwell B.S., Chemistry Tennessee State University, 2000 Submitted to the Department of Brain and Cognitive Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience at the Massachusetts Institute of Technology September 2006 © 2006 Massachusetts Institute of Technology. All rights reserved. '0) , Signature of Author: Department of Brain and Cognitive Sciences September 1, 2006 Certified by: _ _ _ · I, - SElly Nedivi Associate Professor of Neurobiology J-1ý P Thesis Supervisor Accepted by: --- -- "Matthew Wilson C~- Picower Professor of Neuroscience Chairman, Department Graduate Committee MASSACHUSETTS INSETTWJTj OF TECHNOLOGY SEP 13 2006 LIBRARIES Characterization of CPG15 During Cortical Development and Activity Dependent Plasticity by Corey C. Harwell Submitted to the Department of Brain and Cognitive Sciences On September 1, 2006 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Neuroscience ABSTRACT Regulation of gene transcription by neuronal activity is thought to be key to the translation of sensory experience into long-term changes in synaptic structure and function. Here we show that cpgl5, a gene encoding an extracellular signaling molecule that promotes dendritic and axonal growth and synaptic maturation, is regulated in the somatosensory cortex by sensory experience capable of inducing cortical plasticity. Using in situ hybridization, we monitored cpgl5 expression in 4-week-old mouse barrel cortex after trimming all whiskers except D1. We found that cpgl5 expression is depressed in the deprived barrels and enhanced in the barrel column corresponding to the spared D1 whisker.
    [Show full text]
  • Induction Cooktop Data Analysis from Jeffery Macklis 25 Sep 19
    Lisa Portscher Subject: FW: WA 21 Attachments: SWITZERLAND_EMF_report_2011 see page 3.pdf; EU 2015 Comm on newly emerging health risks induction cooking.pdf; faktenblatt induktionskochherd e.pdf; Is Induction Cooking Safe – Dr. Magda Havas, PhD..pdf; e303.full.pdf Begin forwarded message: From: "Macklis, Jeffrey" <[email protected]> Subject: Induction cooktop data analysis and health risk for brookline consideration Date: September 25, 2019 at 12:58:31 PM EDT To: "[email protected]" <[email protected]> Cc: "Macklis, Jeffrey" <[email protected]> Dear Carol, and Members of the relevant Brookline boards, study groups, committees, and Health Dept., I write to offer expert input into your decisions that involve in any way encouraging or partially limiting cook top options to electric induction technology. I offer several articles and web-links below that I found particularly informative as I assessed induction cooktop installation myself, leading me to decide against it on extended family health grounds. I write with no advocacy position, but, rather as a world leader regarding the molecular and circuitry development of the brain (in humans and mice), the cerebral cortex in particular, and of its developmental diseases (e.g. intellectual disabilities and autism spectrum disorders), its partially electrical circuitry organization and impacts on higher cognitive function, its neurodegenerative diseases (in particular ALS, Huntington’s disease, Parkinson’s disease), and its future regeneration (in particular for for spinal cord injury and ALS). I offer all of this information reluctantly and humbly, but realizing that you would want to be aware of my credentials. I write in particular about largely unrecognized health risks to pregnant women and small children (more below from EU and US committees and analyses) that I discovered when personally enthusiastically planning to install an induction cooktop.
    [Show full text]
  • Spring 2020 First Meeting of Quarter Courses
    PhD Programs at Harvard Medical School Quarter Courses Spring 2020 Enrollment deadlines GSAS Academic Check-in Jan 6-27 Calendar 2019-20 Open enrollment Jan 27-31 Add/drop no fee Feb 10 16 credits for full- Last day to add Mar 9 time student status Last day to drop, no WD Mar 23 Contact 617-432-0605 [email protected] SPRING 2020 BCMP 305QC Seminars in Molecular and Mechanistic Biology Madhvi Venkatesh CELLBIO 304QC Introduction to Human Gross Anatomy Gerald Greenhouse, Everett Anderson, Mohini Lutchman, Giorgio Giatsidis CELLBIO 307QC Molecular Aspects of Chromatin Dynamics Raul Mostoslavsky, Lee Zou, Johnathan Whetstine, Christopher Ott, Danesh Moazed CELLBIO 309QC The Basics of Translation Spyros Artavanis-Tsakonas, David Van Vactor GENETIC 302QC Teaching 101: Bringing Effective Teaching Practices to your Classroom Gavin Porter, Deepali Ravel HBTM 305QC Molecular Bases of Eye Disease Darlene Dartt, Magali Saint-Geniez HBTM 308QC Experimental Design & Analysis of Eye & Vision Studies Russell Woods, Lotfi Merabet, Eric YinShan Ng, Christopher Bennett, Magali Saint-Genez, Matthew Bronstad, Daniel Sun, Corinna Bauer, Alex Bowers, Tobias Elze IMMUN 301QC Autoimmunity Francisco Quintana IMMUN 302QC Clinical Sessions tbc Rachael Clark IMMUN 305QC Neuro-Immunology Development, Regeneration & Disease Isaac Chiu, Beth Stevens, Michael Carroll IMMUN 312QC Applied Statistics & High Throughput Data Analysis for Immunologists Meromit Singer, Alos Diallo IMMUN 317QC Strategies to Achieve Durable Anti-Microbial Host Defense Wayne Marasco,
    [Show full text]
  • Celebrating 40 Years of Rita Allen Foundation Scholars 1 PEOPLE Rita Allen Foundation Scholars: 1976–2016
    TABLE OF CONTENTS ORIGINS From the President . 4 Exploration and Discovery: 40 Years of the Rita Allen Foundation Scholars Program . .5 Unexpected Connections: A Conversation with Arnold Levine . .6 SCIENTIFIC ADVISORY COMMITTEE Pioneering Pain Researcher Invests in Next Generation of Scholars: A Conversation with Kathleen Foley (1978) . .10 Douglas Fearon: Attacking Disease with Insights . .12 Jeffrey Macklis (1991): Making and Mending the Brain’s Machinery . .15 Gregory Hannon (2000): Tools for Tough Questions . .18 Joan Steitz, Carl Nathan (1984) and Charles Gilbert (1986) . 21 KEYNOTE SPEAKERS Robert Weinberg (1976): The Genesis of Cancer Genetics . .26 Thomas Jessell (1984): Linking Molecules to Perception and Motion . 29 Titia de Lange (1995): The Complex Puzzle of Chromosome Ends . .32 Andrew Fire (1989): The Resonance of Gene Silencing . 35 Yigong Shi (1999): Illuminating the Cell’s Critical Systems . .37 SCHOLAR PROFILES Tom Maniatis (1978): Mastering Methods and Exploring Molecular Mechanisms . 40 Bruce Stillman (1983): The Foundations of DNA Replication . .43 Luis Villarreal (1983): A Life in Viruses . .46 Gilbert Chu (1988): DNA Dreamer . .49 Jon Levine (1988): A Passion for Deciphering Pain . 52 Susan Dymecki (1999): Serotonin Circuit Master . 55 Hao Wu (2002): The Cellular Dimensions of Immunity . .58 Ajay Chawla (2003): Beyond Immunity . 61 Christopher Lima (2003): Structure Meets Function . 64 Laura Johnston (2004): How Life Shapes Up . .67 Senthil Muthuswamy (2004): Tackling Cancer in Three Dimensions . .70 David Sabatini (2004): Fueling Cell Growth . .73 David Tuveson (2004): Decoding a Cryptic Cancer . 76 Hilary Coller (2005): When Cells Sleep . .79 Diana Bautista (2010): An Itch for Knowledge . .82 David Prober (2010): Sleeping Like the Fishes .
    [Show full text]
  • Awards by Year
    RETT SYNDROME RESEARCH TRUST AWARDS BY YEAR TOTAL AWARDS $62 MILLION (2008-2021 YTD) 2021 (to date) TOTAL AWARDS $1,469,143 Antonio Bedalov / Kyle Fink Jackson Laboratories Fred Hutchinson Cancer Research Institute / Testing of siRNA compounds from Khvorova University of California Davis lab for MECP2 Duplication Syndrome Reactivation of MECP2 $362,930 $1,090,919 Bryce Reeve, PhD Duke University School of Medicine Development of the Observer-Reported Communication Ability (ORCA) for Rett Syndrome $15,294 2020 TOTAL AWARDS $1,299,972 DSG Bryce Reeve, PhD Development of the Rett Syndrome Global Registry Duke University School of Medicine $693,000 Development of the Observer-Reported Communication Ability (ORCA) for Rett Syndrome James Wilson, MD, PhD $72,225 University of Pennsylania MECP2 gene therapy for Rett Syndrome Ciitizen $380,686 Pilot Study for Digital Natural History Study $34,885 Clinical Trial Consortium David Lieberman, MD, PhD Sasha Djukic, MD, PhD Boston Children’s Hospital Albert Einstein College of Medicine $94,176 Support for continuing work at the Rett Syndrome Center $25,000 Due to the global pandemic and the ensuing fundraising uncertainties we were cautious in taking on additional commitments. Furthermore we undertook a detailed analysis of our portfolio and were able to reduce our commitments by $6 million. This reduction allows us to focus our resources on curative projects with the greatest likelihood of success in the nearer term. 2019 TOTAL AWARDS $8,570,181 Adrian Bird, PhD / Michael Greenberg, PhD / James Wilson,
    [Show full text]
  • Summer 2008 Caregiving
    Letter from the President e just completed the SPF National Conference in Valley Forge, PA. There were 150 people Wfrom 24 states and 2 countries that attended. That makes the largest SPF Conference to date. The conference started off with a welcome reception and dinner on Friday night with guest speaker, Patricia Leisner Clements. She shared the latest on “Medicare and Disability Benefits”. It was very informative. Jim Sheorn Saturday we were joined by Peter Baas, PhD, Mary Kay Floeter, MD, PhD and John Fink, MD President who gave overviews of HSP and PLS and then updated us on the latest research. Dr. Fink may start some human trials soon. He said that it may be hard to design trials that will be of help, but he and his staff are dedicated to find a way. Look forward to upcomingSPF E-News and Synapse for updates. Later that afternoon, Rosette Biester, PhD gave an interesting presentation on “Living with a Chronic Disorder”. During the Patient Forum we heard about the Baclofen pump from Susan Johnson with Medtronic and about WalkAide from Gregg Beideman, DTP with Innovative Neurotronics. Craig Gentner led the Caregiver Forum. We had some very interesting presentations, which inspired a lot of questions. I apologize to those that attended about limiting the number of questions. I was trying to keep us on schedule so that all the speakers could present before our time was up. We will do our best to allow more time for questions and answers in the future. We heard lots of compliments and are looking forward to reading the evaluations so that we can see where we can improve for next year.
    [Show full text]
  • Stimulating Science in a Unique Setting
    ANNUAL REPORT Stimulating Science in a Unique Setting ReseaRch Update in neURoscience foR neURosURgeons (RUnn) OctOber 30—NOvember 6, 2011 sponsoRed by co-diiRectoRs The Society of Bruce Andersen Robert J. Dempsey Neurological Surgeons IssamIssam A.A. AwadAwad Charles Hodge, Jr. Henry Brem Edward Oldfield coURse diiRectoRs Allan H. Friedman, M.D. coURse cooRdinatoR Robert M. Friedlander, M.D. Karen Koenig Mission Statement The Mission of the course, Research Update in Neuroscience for Neurosurgeons (RUNN), is to provide an introduction to and update of the latest concepts, hypotheses and methods of neurobiology and neuroscience relevant to neurological surgery. These are presented by accomplished neuroscientists in an atmosphere emphasizing scientific rigor, highlighting models of career development for neurosurgeon-scientists, and illustrating potential future neurosurgical applications. A milieu of total immersion in scientific discourse is designed to foster creative discussions among neurosurgical trainees and faculty. Participants are instructed on selecting a research topic, identifying a mentor, designing hypothesis driven experiments and writing grants. The course is designed to stimulate neurosurgical trainees to participate in basic, translational, and clinical research relevant to the practice of neurological surgery. Historical Background and Setting The RUNN course was the brainchild of Henry Schmidek, formerly of Harvard University and the University of Vermont. The course was conceived in response to the anticipated expansion of neurosciences, which he predicted in the early 1980’s. The course was to combat what he perceived as potential illiteracy in basic neurobiology that he feared would weaken the specialty of neurosurgery. Dr. Schmidek’s RUNN Course has been instrumental in setting the course of academic neurosurgeons.
    [Show full text]