Induction Cooktop Data Analysis from Jeffery Macklis 25 Sep 19

Total Page:16

File Type:pdf, Size:1020Kb

Induction Cooktop Data Analysis from Jeffery Macklis 25 Sep 19 Lisa Portscher Subject: FW: WA 21 Attachments: SWITZERLAND_EMF_report_2011 see page 3.pdf; EU 2015 Comm on newly emerging health risks induction cooking.pdf; faktenblatt induktionskochherd e.pdf; Is Induction Cooking Safe – Dr. Magda Havas, PhD..pdf; e303.full.pdf Begin forwarded message: From: "Macklis, Jeffrey" <[email protected]> Subject: Induction cooktop data analysis and health risk for brookline consideration Date: September 25, 2019 at 12:58:31 PM EDT To: "[email protected]" <[email protected]> Cc: "Macklis, Jeffrey" <[email protected]> Dear Carol, and Members of the relevant Brookline boards, study groups, committees, and Health Dept., I write to offer expert input into your decisions that involve in any way encouraging or partially limiting cook top options to electric induction technology. I offer several articles and web-links below that I found particularly informative as I assessed induction cooktop installation myself, leading me to decide against it on extended family health grounds. I write with no advocacy position, but, rather as a world leader regarding the molecular and circuitry development of the brain (in humans and mice), the cerebral cortex in particular, and of its developmental diseases (e.g. intellectual disabilities and autism spectrum disorders), its partially electrical circuitry organization and impacts on higher cognitive function, its neurodegenerative diseases (in particular ALS, Huntington’s disease, Parkinson’s disease), and its future regeneration (in particular for for spinal cord injury and ALS). I offer all of this information reluctantly and humbly, but realizing that you would want to be aware of my credentials. I write in particular about largely unrecognized health risks to pregnant women and small children (more below from EU and US committees and analyses) that I discovered when personally enthusiastically planning to install an induction cooktop. I was dismayed and surprised to discover that I could not proceed in good conscience, given that we are likely to have both highest risks (pregnancy and small children) in our house in the next 5-10 years. More formally, I am the Wien Professor of Life Sciences at Harvard University, in the Department of Stem Cell and Regenerative Biology (formerly Developmental and Regenerative Biology) and Center for Brain Science, physically at the University “main” campus in Cambridge within the Faculty of Arts and Sciences since 2007, but for my entire professional career and still also at Harvard Medical School (my endowed chair extends across the University, and my department is the only one to be “cross-university”, within FAS and HMS). I am also Professor of Stem Cell and Regenerative Biology, Harvard University, and Professor of Neurology [Neuroscience], Harvard Medical School. I Co-Direct the Harvard University Ph.D. Program in Developmental and Regenerative Biology, and am a faculty member within the HU Program in Neuroscience, HU Biological and Biomedical Sciences Program, and HU Molecules, Cells, and Organisms program– all of the relevant Ph.D. granting Programs. I am also a member of the faculty of the Harvard-M.I.T. M.D.-Ph.D. Program, and of the Harvard-M.I.T. Division of Health Sciences and Technology. I will not list my full curriculum vitae, of course, but I am happy to provide a short version on request, including my current NIH Pioneer Award, Allen Frontiers Group Allen Distinguished Investigator position, Brain Research Foundation Fellow position, and Cajal-Krieg Prize for discoveries regarding the development and function of the cerebral cortex. 1 I am also a board-certified academic neurologist (no longer clinically active) who trained clinically in internal medicine and neurology at BWH-CH, then practiced at BWH and CH for years, and (partially overlapping) at MGH for 15 years. I specialized in developmental and degenerative disease of the cerebral cortex and related brain circuitry at CH and BWH-MGH, respectively. My analyses and opinions always give human health and relevance high priority as a physician. As far as my own interest and experience with induction cooking, I was a personal fan. In fact, my spouse and I were all set to install induction during a recent kitchen re-do. We got to final selection and delivery options with a local seller. We were excited to optimize the bits of our cookware that were not appropriate, and I gained experience with its control and advantages. With my earlier biophysics and bioelectrical engineering background, I was impressed that it is an elegant tech solution to potentially wasted heat. That said, I am also fairly knowledgable about electromagnetic fields and neuron interactions from my earlier MIT degrees, with one of my theses directly about electromagnetic field interactions with cellular membranes (most critical in neurons / nerve cells). I started looking into what is known, just to be safe. I expected to just get confirmation that my “theoretical” reservation was one of these 100-fold too low issues we all read about. Unfortunately, I found out enough to stop our plan entirely. I found multiple-several reputable studies and mostly European national regulatory agencies that made me very concerned at our stage of life with children in their mid-late 20s, so likely predicting pregnancy(ies) and small grandchildren within the next 5-10 years. In brief, I found that the EU regulations and analyses show that a single burner on is reasonably safe for an adult user if the pan is of “appropriate”-correct size (completely covering the burner) and is perfectly centered with precision, but that this safety disappears for a pregnant abdomen with fetal head (developing brain) closer than 1 foot away, or a small child whose head (developing brain) would get closer than 1 foot away from the front of a burner. The EU agencies all point out that pregnancy and small children position developing brains directly at the least safe position– adjacent to the cooktop and at its level. That is because the main risk is within a foot or so (30 cm) of a burner, and electromagnetic field strength from the induction cooktop is limited by EU/Swiss/now US recommendation to approximately 6 uT (microTesla). While essentially all modern residential cooktops meet this standard for a single burner on with an optimally sized pot/pan that is perfectly centered, they fail under “real world” scenarios. Unfortunately exposure with a differently sized pot/pan or one that is not optimally centered is often found to be ~5X higher (>30 uT!) than the regulatory agencies use as their acceptable limit! This even exceeds adult “occupational limits” set by the agencies. If more than one burner is on (e.g. for a normal meal or worst at a Thanksgiving dinner), the leakage around centered or uncentered pans is additive, though some will be further away than others. I list below a non-inclusive set of my source material, some as links, others as downloaded pdfs. I include no “crack-pot” articles speaking of general danger of electromagnetic fields, only reputable and balanced assessments, in my very data-driven approach to brain development, circuitry, and function. My spouse and I decided that we could move forward (and I am quite straightforward and non-alarmist, totally data-driven) only if we would not allow our daughter to cook on the range-top during any point of considering pregnancy, while pregnant, etc., since her abdomen would be inches from the front burners, and that no small grandchild could ever stand next to one of us to “help” cook, melt cocoa, whatever– because their developing brain would be right there also. That defeated the point for us, and the real risk in my considered, non-alarmist view would never be outweighed by “desire for induction” issues. While finding all of this (and much more) took some time and literature searching, it is all publicly available through multi-word search strategies. 2 I understand that the warrant under discussion does not mandate induction, but it does two related things: 1) it reduces the choice to only induction or the far inferior (culinary and thermal) alternative of electric resistance (in a real sense a false sense of choice); 2) it promotes induction as the “healthy” alternative to the “unhealthy” alternative of gas (in a real sense a misleading comparative analysis in my no-longer-uneducated view). If I were building a home or kitchen now, in our life stage, or at the life stage when we moved to Brookline in 1990 (starting a family), I would be forced in the absence of the gas option to choose electric resistance by my critical reading of the literature. By eliminating the gas option by suggesting that a “high-end" induction alternative is just as good cooking-wise but far healthier does the equivalent of mandating induction for "high-end” / “cook’s” kitchens– based on omission of quality EU and US data. I respectfully submit that deeper analysis of data and international assessments change the pro-con equation. New/additional data are almost always valuable to me (weighted as appropriate), and– while I was disappointed to discover this because we were excited to go the induction route– it is concerning enough to me as a father, potential grandfather, and neighbor lapsed-neurologist that I would not install induction without “eyes wide open”. We discussed it and decided not to go that way. Others have it, and that’s fine, but I respectfully submit that others should not need to follow that route to have “better" than electric resistance. I have environmentalist roots and leanings, while at the same time think prioritization and data-driven analysis are important to be most effective in laudable goals. I am all for encouraging/even mandating great thermal insulation, sustainable energy growth in use, as possible, etc.., but we should be able to separate desire from “inconvenient truths”, e.g.
Recommended publications
  • Neurosurgery Residency Training Program Massachusetts General Hospital Harvard Medical School Boston, Massachusetts OVERVIEW
    Neurosurgery Residency Training Program Massachusetts General Hospital Harvard Medical School Boston, Massachusetts OVERVIEW The goal of the residency training program at the Massachusetts General Hospital (MGH) is to train neurosurgeons who will become leaders in academic neurosurgery. The program has a long and proud tradi- tion of training surgeons who have made major clinical and scientific contributions to the field of neurosurgery. More recently, the program has undergone a significant expansion with appointment of new faculty members and the planned move into new operative suites and patient units in the Building for the Third Century (B3C), with a doubling of the department’s laboratory space. The program is dynamic, growing, and strongly positioned to continue this tradition of leadership into the 21st century. The philosophy of the program is to expose residents to a large number of high-quality cases spanning the entire range of neurosurgery. The Massachusetts Robert L. Martuza, M.D. General Hospital is a tertiary referral center for the entire New England area as well as for many parts of the United States and the world. Accordingly, the program benefits from access to an excellent variety and quantity of cases. As train- ing progresses, residents gain more responsibility in perform- ing surgery and in managing cases. This process reaches its ‘We aim to culmination when the trainee becomes a full attending of the produce excellent North service at the MGH for a six-month period at the end of the program. During this period the North attending has full ad- clinical surgeons mitting and operating privileges and runs his or her own service with a passion for with the support of the faculty.
    [Show full text]
  • Synapse – Autumn 2005 Page 1
    Synapse – Autumn 2005 Page 1 Table of Contents pages Event Reports 2 SP Foundation 2-8 Caregiving 12 Living with PLS/HSP 13-19 Medical Updates 8-12 Event Photos 20 TeamWalks - 2005 National - Ohio October 2 Northeast September 11 Northwest October 8 Oklahoma September 17 Autumn 2005 Serving the Primary Lateral Sclerosis Community since 1997 Welcoming the SP Foundation since 2003 and Carrol Doolen at the Red Lobster. We when a cure is found, I will be roller blading had a great meal and visit. Marlene was one right along side of her, holding her hand. of the founding board members of the SPF Norman Regional Hospital brought out lunch and it was indeed a pleasure to meet her. for us to enjoy after the walk. They also sent On Saturday, it was very nice to be able to Chaplin, Mike Bumgarner to lead us in a place faces with e-mail contacts and also to very informative discussion about visit with old friends at the same time. After depression. His discussion was based on visiting a while, we walked and rolled along our comments to him about depression the beautiful Legacy Trail. My daughter led related to a variety of situations including the walk wearing her roller blades because, loss of jobs due to disability, losing the ability to do things we used to do and being annual Austin Patient Connection was held dependent on someone else. His main pointtoday. "We are the Experts" was the theme. was to find a sounding board, an impartial After a tasty lunch, we held a round table person you can talk with about how you feel discussion about a variety of subjects and what you are going through.
    [Show full text]
  • Pin Faculty Directory
    Harvard University Program in Neuroscience Faculty Directory 2019—2020 April 22, 2020 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) De Bivort, Benjamin (Harvard/OEB) Kaplan, Joshua (MGH/HMS/Neurobio) Rosenberg, Paul (BCH/Neurology) Andermann, Mark (BIDMC) Dettmer, Ulf (BWH) Karmacharya, Rakesh (MGH) Rotenberg, Alex (BCH/Neurology) Anderson, Matthew (BIDMC) Do, Michael (BCH—Neurobio) Khurana, Vikram (BWH) Sabatini, Bernardo (HMS/Neurobio) Anthony, Todd (BCH/Neurobio) Dong, Min (BCH) Kim, Kwang-Soo (McLean) Sahay, Amar (MGH) Arlotta, Paola (Harvard/SCRB) Drugowitsch, Jan (HMS/Neurobio) Kocsis, Bernat (BIDMC) Sahin, Mustafa (BCH/Neurobio) Assad, John (HMS/Neurobio) Dulac, Catherine (Harvard/MCB) Kreiman, Gabriel (BCH/Neurobio) Samuel, Aravi (Harvard/ Physics) Bacskai, Brian (MGH/East) Dymecki, Susan(HMS/Genetics) LaVoie, Matthew (BWH) Sanes, Joshua (Harvard/MCB) Baker, Justin (McLean) Engert, Florian (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Saper, Clifford
    [Show full text]
  • Program in Neuroscience
    Harvard University Program in Neuroscience Faculty Directory 2016—2017 April 1, 2017 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) Dong, Min (BCH) Lampson, Lois (BWH) Sabatini, Bernardo (HMS/Neurobio) Andermann, Mark (BIDMC) Drugowitsch, Jan (HMS/Neurobio) LaVoie, Matthew (BWH) Sahay, Amar (MGH) Anderson, Matthew (BIDMC) Dulac, Catherine (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Sahin, Mustafa (BCH/Neurobio) Anthony, Todd (BCH/Neurobio) Dymecki, Susan(HMS/Genetics) Lehtinen, Maria (BCH/Pathology) Samuel, Aravi (Harvard/ Physics) Arlotta, Paola (Harvard/SCRB) Engert, Florian (Harvard/MCB) Liberles, Steve (HMS/Cell Biology) Sanes, Joshua (Harvard/MCB) Assad, John (HMS/Neurobio) Engle, Elizabeth(BCH/Neurobio) Lichtman, Jeff (Harvard/MCB) Saper, Clifford (BIDMC) Bacskai, Brian (MGH/East) Eskandar, Emad (MGH) Lipton, Jonathan (BCH/Neurobio) Scammell, Thomas (BIDMC) Bean, Bruce (HMS/Neurobio) Fagiolini, Michela (BCH/Neurobio) Livingstone, Marge (HMS/Neurobio)
    [Show full text]
  • Late-Stage Immature Neocortical Neurons Reconstruct
    The Journal of Neuroscience, May 15, 2002, 22(10):4045–4056 Late-Stage Immature Neocortical Neurons Reconstruct Interhemispheric Connections and Form Synaptic Contacts with Increased Efficiency in Adult Mouse Cortex Undergoing Targeted Neurodegeneration Rosemary A. Fricker-Gates, Jennifer J. Shin, Cindy C. Tai, Lisa A. Catapano, and Jeffrey D. Macklis Division of Neuroscience, Children’s Hospital, and Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115 In the neocortex, the effectiveness of potential cellular repopu- greater percentage of E19-derived neurons received synapses lation therapies for diseases involving neuronal loss may de- (77 Ϯ 1%) compared with E17-derived neurons (67 Ϯ 2%). pend critically on whether newly incorporated cells can differ- Similar percentages of both E17 and E19 donor-derived neu- entiate appropriately into precisely the right kind of neuron, rons expressed neurotransmitters and receptors [glutamate, re-establish precise long-distance connections, and recon- aspartate, GABA, GABA receptor (GABA-R), NMDA-R, struct complex functional circuitry. Here, we test the hypothesis AMPA-R, and kainate-R] appropriate for endogenous adult that increased efficiency of connectivity could be achieved if CPNs progressively over a period of 2–12 weeks after trans- precursors could be more fully differentiated toward desired plantation. Although P3 fluorescence-activated cell sorting- phenotypes. We compared embryonic neuroblasts and imma- purified neurons also expressed these
    [Show full text]
  • Celebrating 40 Years of Rita Allen Foundation Scholars 1 PEOPLE Rita Allen Foundation Scholars: 1976–2016
    TABLE OF CONTENTS ORIGINS From the President . 4 Exploration and Discovery: 40 Years of the Rita Allen Foundation Scholars Program . .5 Unexpected Connections: A Conversation with Arnold Levine . .6 SCIENTIFIC ADVISORY COMMITTEE Pioneering Pain Researcher Invests in Next Generation of Scholars: A Conversation with Kathleen Foley (1978) . .10 Douglas Fearon: Attacking Disease with Insights . .12 Jeffrey Macklis (1991): Making and Mending the Brain’s Machinery . .15 Gregory Hannon (2000): Tools for Tough Questions . .18 Joan Steitz, Carl Nathan (1984) and Charles Gilbert (1986) . 21 KEYNOTE SPEAKERS Robert Weinberg (1976): The Genesis of Cancer Genetics . .26 Thomas Jessell (1984): Linking Molecules to Perception and Motion . 29 Titia de Lange (1995): The Complex Puzzle of Chromosome Ends . .32 Andrew Fire (1989): The Resonance of Gene Silencing . 35 Yigong Shi (1999): Illuminating the Cell’s Critical Systems . .37 SCHOLAR PROFILES Tom Maniatis (1978): Mastering Methods and Exploring Molecular Mechanisms . 40 Bruce Stillman (1983): The Foundations of DNA Replication . .43 Luis Villarreal (1983): A Life in Viruses . .46 Gilbert Chu (1988): DNA Dreamer . .49 Jon Levine (1988): A Passion for Deciphering Pain . 52 Susan Dymecki (1999): Serotonin Circuit Master . 55 Hao Wu (2002): The Cellular Dimensions of Immunity . .58 Ajay Chawla (2003): Beyond Immunity . 61 Christopher Lima (2003): Structure Meets Function . 64 Laura Johnston (2004): How Life Shapes Up . .67 Senthil Muthuswamy (2004): Tackling Cancer in Three Dimensions . .70 David Sabatini (2004): Fueling Cell Growth . .73 David Tuveson (2004): Decoding a Cryptic Cancer . 76 Hilary Coller (2005): When Cells Sleep . .79 Diana Bautista (2010): An Itch for Knowledge . .82 David Prober (2010): Sleeping Like the Fishes .
    [Show full text]
  • Awards by Year
    RETT SYNDROME RESEARCH TRUST AWARDS BY YEAR TOTAL AWARDS $62 MILLION (2008-2021 YTD) 2021 (to date) TOTAL AWARDS $1,469,143 Antonio Bedalov / Kyle Fink Jackson Laboratories Fred Hutchinson Cancer Research Institute / Testing of siRNA compounds from Khvorova University of California Davis lab for MECP2 Duplication Syndrome Reactivation of MECP2 $362,930 $1,090,919 Bryce Reeve, PhD Duke University School of Medicine Development of the Observer-Reported Communication Ability (ORCA) for Rett Syndrome $15,294 2020 TOTAL AWARDS $1,299,972 DSG Bryce Reeve, PhD Development of the Rett Syndrome Global Registry Duke University School of Medicine $693,000 Development of the Observer-Reported Communication Ability (ORCA) for Rett Syndrome James Wilson, MD, PhD $72,225 University of Pennsylania MECP2 gene therapy for Rett Syndrome Ciitizen $380,686 Pilot Study for Digital Natural History Study $34,885 Clinical Trial Consortium David Lieberman, MD, PhD Sasha Djukic, MD, PhD Boston Children’s Hospital Albert Einstein College of Medicine $94,176 Support for continuing work at the Rett Syndrome Center $25,000 Due to the global pandemic and the ensuing fundraising uncertainties we were cautious in taking on additional commitments. Furthermore we undertook a detailed analysis of our portfolio and were able to reduce our commitments by $6 million. This reduction allows us to focus our resources on curative projects with the greatest likelihood of success in the nearer term. 2019 TOTAL AWARDS $8,570,181 Adrian Bird, PhD / Michael Greenberg, PhD / James Wilson,
    [Show full text]
  • Summer 2008 Caregiving
    Letter from the President e just completed the SPF National Conference in Valley Forge, PA. There were 150 people Wfrom 24 states and 2 countries that attended. That makes the largest SPF Conference to date. The conference started off with a welcome reception and dinner on Friday night with guest speaker, Patricia Leisner Clements. She shared the latest on “Medicare and Disability Benefits”. It was very informative. Jim Sheorn Saturday we were joined by Peter Baas, PhD, Mary Kay Floeter, MD, PhD and John Fink, MD President who gave overviews of HSP and PLS and then updated us on the latest research. Dr. Fink may start some human trials soon. He said that it may be hard to design trials that will be of help, but he and his staff are dedicated to find a way. Look forward to upcomingSPF E-News and Synapse for updates. Later that afternoon, Rosette Biester, PhD gave an interesting presentation on “Living with a Chronic Disorder”. During the Patient Forum we heard about the Baclofen pump from Susan Johnson with Medtronic and about WalkAide from Gregg Beideman, DTP with Innovative Neurotronics. Craig Gentner led the Caregiver Forum. We had some very interesting presentations, which inspired a lot of questions. I apologize to those that attended about limiting the number of questions. I was trying to keep us on schedule so that all the speakers could present before our time was up. We will do our best to allow more time for questions and answers in the future. We heard lots of compliments and are looking forward to reading the evaluations so that we can see where we can improve for next year.
    [Show full text]
  • Stimulating Science in a Unique Setting
    ANNUAL REPORT Stimulating Science in a Unique Setting ReseaRch Update in neURoscience foR neURosURgeons (RUnn) OctOber 30—NOvember 6, 2011 sponsoRed by co-diiRectoRs The Society of Bruce Andersen Robert J. Dempsey Neurological Surgeons IssamIssam A.A. AwadAwad Charles Hodge, Jr. Henry Brem Edward Oldfield coURse diiRectoRs Allan H. Friedman, M.D. coURse cooRdinatoR Robert M. Friedlander, M.D. Karen Koenig Mission Statement The Mission of the course, Research Update in Neuroscience for Neurosurgeons (RUNN), is to provide an introduction to and update of the latest concepts, hypotheses and methods of neurobiology and neuroscience relevant to neurological surgery. These are presented by accomplished neuroscientists in an atmosphere emphasizing scientific rigor, highlighting models of career development for neurosurgeon-scientists, and illustrating potential future neurosurgical applications. A milieu of total immersion in scientific discourse is designed to foster creative discussions among neurosurgical trainees and faculty. Participants are instructed on selecting a research topic, identifying a mentor, designing hypothesis driven experiments and writing grants. The course is designed to stimulate neurosurgical trainees to participate in basic, translational, and clinical research relevant to the practice of neurological surgery. Historical Background and Setting The RUNN course was the brainchild of Henry Schmidek, formerly of Harvard University and the University of Vermont. The course was conceived in response to the anticipated expansion of neurosciences, which he predicted in the early 1980’s. The course was to combat what he perceived as potential illiteracy in basic neurobiology that he feared would weaken the specialty of neurosurgery. Dr. Schmidek’s RUNN Course has been instrumental in setting the course of academic neurosurgeons.
    [Show full text]
  • New Drug Target for Rett Syndrome 2 February 2016
    New drug target for Rett syndrome 2 February 2016 Rett syndrome is a relatively common neurodevelopmental disorder, the second most common cause of intellectual disability in girls after Down's syndrome; it is associated with a dysfunctional gene on the X chromosome. Boys with Rett syndrome are rare, because male fetuses who carry the mutations on their one X chromosome usually have prenatally lethal forms of the disease. Girls with Rett syndrome appear to develop relatively normally for the first six to eighteen months of life, but then regress; they tend to lose their ability for speech and the purposeful use of their hands, withdraw from social situations, and wring their hands. Austrian physician Andreas Rett first described the disorder in 1966, but it wasn't until 1999 that Huda Zoghbi and her lab at Baylor College of Medicine identified mutations in the gene MECP2 as the root cause of Rett syndrome. MECP2, however, turns a very large number of genes on and off throughout Callosal projection neurons (green) are shown in the the entire body, so it has been a longstanding cerebral cortex. Credit: Jessica MacDonald and Jeffrey puzzle why girls and rare boys with Rett syndrome Macklis have this very specific and reproducible developmental cognitive brain disorder. "My view was that MECP2 mutation in Rett Harvard Stem Cell Institute (HSCI) researchers syndrome disrupts so many genes and their protein have identified a faulty signaling pathway that, products that we weren't going to find a single gene when corrected, in mice ameliorates the symptoms that we could fix to help girls with Rett," said of Rett syndrome, a devastating neurological Macklis, a member of HSCI's Executive Committee, condition.
    [Show full text]
  • Cortical Development: Genes and Genetic Abnormalities
    Novartis Foundation Symposium 288 CORTICAL DEVELOPMENT: GENES AND GENETIC ABNORMALITIES CORTICAL DEVELOPMENT: GENES AND GENETIC ABNORMALITIES The Novartis Foundation is an international scientifi c and educational charity (UK Registered Charity No. 313574). Known until September 1997 as the Ciba Foundation, it was established in 1947 by the CIBA company of Basle, which merged with Sandoz in 1996, to form Novartis. The Foundation operates independently in London under English trust law. It was formally opened on 22 June 1949. The Foundation promotes the study and general knowledge of science and in particular encourages international co-operation in scientifi c research. To this end, it organizes internationally acclaimed meetings (typically eight symposia and allied open meetings and 15–20 discussion meetings each year) and publishes eight books per year featuring the presented papers and discussions from the symposia. Although primarily an operational rather than a grant-making foundation, it awards bursaries to young scientists to attend the symposia and afterwards work with one of the other participants. The Foundation’s headquarters at 41 Portland Place, London W1B 1BN, provide library facilities, open to graduates in science and allied disciplines. Media relations are fostered by regular press conferences and by articles prepared by the Foundation’s Science Writer in Residence. The Foundation offers accommodation and meeting facilities to visiting scientists and their societies. Information on all Foundation activities can be found at http://www.novartisfound.org.uk Novartis Foundation Symposium 288 CORTICAL DEVELOPMENT: GENES AND GENETIC ABNORMALITIES Copyright © Novartis Foundation 2007 Published in 2007 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester PO19 8SQ, UK National 01243 779777 International (+44) 1243 779777 e-mail (for orders and customer service enquiries): [email protected] Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com All Rights Reserved.
    [Show full text]
  • Deciphering Amyotrophic Lateral Sclerosis: What Phenotype, Neuropathology and Genetics Are Telling Us About Pathogenesis
    Deciphering Amyotrophic Lateral Sclerosis: What Phenotype, Neuropathology and Genetics Are Telling Us about Pathogenesis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ravits, John, Stanley Appel, Robert H. Baloh, Richard Barohn, Benjamin Rix Brooks, Lauren Elman, Mary Kay Floeter, et al. 2013. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 14(Suppl 1): 5-18. Published Version doi:10.3109/21678421.2013.778548 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11022234 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Deciphering ALS: What Phenotype, Neuropathology and Genetics Are Telling Us about Pathogenesis *John Ravits MD1*, Stanley Appel MD2, Robert Baloh MD, PhD3, Richard Barohn MD4, Benjamin Rix Brooks MD5, Don Cleveland PhD6, Lauren Elman MD7, Mary Kay Floeter MD, PhD8, Christopher Henderson PhD9, Catherine Lomen-Hoerth MD, PhD10, Jeffrey Macklis MD11, Leo McCluskey MD12, Hiroshi Mitsumoto MD13, Serge Przedborski MD, PhD14, Jeffrey Rothstein MD, PhD15, John Trojanowski MD, PhD16, Leonard van den Berg MD, PhD17, and Steven Ringel MD18 1Department of Neurosciences, University of California,
    [Show full text]