Content Supplement 1:…………………………………………………………………………….Page 2 the Detailed Information of Establishment and Assessment of Chronic Stress Model

Total Page:16

File Type:pdf, Size:1020Kb

Content Supplement 1:…………………………………………………………………………….Page 2 the Detailed Information of Establishment and Assessment of Chronic Stress Model Content Supplement 1:…………………………………………………………………………….Page 2 The Detailed information of establishment and assessment of chronic stress model. Supplement 2:…………………………………………………………………………….Page 7 General data of the animals about body weight, food intake, biochemistry, inflammation and blood morphology. Supplement 3:…………………………………………………………………………….Page 12 Sample size calculation. Supplement 4:…………………………………………………………………………….Page 14 Limma of full length of DEPs with probe ID, logFC, pValue, adj.P.Val, t value and Gene Name. Supplement 5: ……………………………………………………………………………Page 122 Protein ID_Gene Name of DEPs. Supplement 6: ……………………………………………………………………………Page 164 Figure S2: Weighted Co-expression Network Construction. (A) Sample dendrogram and trait heatmap. (B) The eigengene dendrogram could cluster the 17 modules. (C) The scatter diagrams show the membership of the other nine modules vs. gene significance. Figure S3: Module Preservation Analysis. (A) The scatter diagrams show the membership of the other seven modules vs. gene significance. (B) Interactions of the 17 co-expression modules were analyzed with the selected genes; light colors represent high overlap and progressively darker red color indicates lower overlap. Blocks of lighter colors along the diagonal represent the co- expression modules. Figure S4: Enrichment analysis for the DEPs using Metascape. (A) Heatmap of enriched terms across input gene lists, colored by p-values. (B) The network of enriched terms represented as pie charts, where the charts are color-coded based on the identities of the gene lists. (C) The network of enriched terms colored by cluster ID, where nodes that share the same cluster ID are typically close to each other. (D) The network of enriched terms colored by p-values, where terms containing more genes tend to have a more significant p-value. (E) Summary of enrichment analysis using DisGeNET. (F) Summary of enrichment analysis using PaGenBase. 1 Supplement 1 2 Supplement 1: The Detailed information of establishment and assessment of chronic stress model. Methods: Detailed information of establishment of chronic stress model[1] Stress is defined as a threatened state provoked by physiologic, psychological, or environmental stressors [2]. As there is no standard stress procedure for rabbits, we adopted both social stress (referred to as unstable social environment model) and physiologic stress (referred to as rat chronic unpredicted mild stress model, CUMS) methods (Table S1). These two stress groups (CS group and AS+CS group) were assigned in a separate room to avoid interfering the non-stress groups (Normal group and AS group). To reduce gastrointestinal injuries, stress manipulation was conducted after feeding, at least half an hour later. Social stress procedures: animals were paired together in one cage for 4 hours per day and the pairings were exchanged within the own groups every week, forcing rabbits to continually reestablish social relationships [3]. The time that rabbits in other cage (as intruder) and in home cage during the entire experiments should be balanced. Physical stress procedures: continuous overnight illumination, 2 hours of white noise (a tone of 80 dB), and 2 hours of high-intensity stroboscopic illumination (300 flashes/min) were selected separately at different days. In order to reduce habituation, one foot shock (1mA) was added (several seconds/time, five times in total)[4]. The stress regime was started at the end of week 4 and lasted for 8 weeks. Table S1. Chronic stress procedures 3 Time Methods Monday Tuesday Wednesday Thursday Friday Saturday Social stress 4h 4h 4h 4h 4h 4h Physical stress Overnight illumination 12h - - White noise(80db) 2h - - Stroboscopic illumination 2h - - Foot shock(1mA) 5times - - Assessment of chronic stress animal model[1] The rabbits were carefully inspected after stress exposure. The fur scoring was recorded to reflect the basic health status (referred to as the standard of mouse) [5]. To obtain the information on the impact of the stressors on animal behavior in natural state, all rabbits were recorded for 10 min on video, between 8:00 am and 9:00 am, before the rabbits began eating. The video was recorded 3 - 4 times every week. The individual behavioral assessment of the same group was summed to provide a total score of each 4-week stress period. Fur score: 1 point represents clean, shiny, and tidy fur; 2 points represent dull and irregular fur, with a few minor wounds; 3 points represent less hair fur, more marked with minor wounds; and 4 points represent lack of hair, ruffled fur, with several minor wounds. Rabbits with obvious wounding were excluded from the study. Behavior score: it was observed that rabbit behaviors were mainly classified into inactivity, locomotor, grooming, and drinking. Inactivity was defined as rabbits sitting or huddling quietly in the cage. Locomotor behaviors comprised of cage exploration, walking, stretching out, and reacting to the other rabbits in the same room. Grooming behavior included licking their paws and using their paws to wipe and wash their face, 4 ears, trunk or hind quarters [6]. The behavioral activity of the 4 categories for each rabbit was scored as the percentage of 10-min observation period. The total percent time in each group was calculated every 4 weeks after stress exposure (at week 8 and week 12). Results: The CS animal model was established successfully, which was presented in our previous publication. And please see the “Assessments of chronic stress model” section in the “Results” (PMID: 29336364)[1]. References [1] Z. M. Yu, X. T. Deng, R. M. Qi, L. Y. Xiao, C. Q. Yang, and T. Gong, "Mechanism of Chronic Stress-induced Reduced Atherosclerotic Medial Area and Increased Plaque Instability in Rabbit Models of Chronic Stress," Chinese medical journal, vol. 131, no. 2, pp. 161-170, 2018. [2] P. H. Black and L. D. Garbutt, "Stress, inflammation and cardiovascular disease," Journal of psychosomatic research, vol. 52, no. 1, pp. 1-23, 2002. [3] P. M. McCabe, J. A. Gonzales, J. Zaias et al., "Social environment influences the progression of atherosclerosis in the watanabe heritable hyperlipidemic rabbit," Circulation, vol. 105, no. 3, pp. 354-359, 2002. [4] C. Rabasa, C. Muñoz-Abellán, N. Daviu, R. Nadal, and A. Armario, "Repeated 5 exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic-pituitary-adrenal axis," Physiology & behavior, vol. 103, no. 2, pp. 125-133, 2011. [5] H. M. Savignac, N. P. Hyland, T. G. Dinan, and J. F. Cryan, "The effects of repeated social interaction stress on behavioural and physiological parameters in a stress-sensitive mouse strain," Behavioural brain research, vol. 216, no. 2, pp. 576-584, 2011. [6] V. J. Aloyo and K. D. Dave, "Behavioral response to emotional stress in rabbits: role of serotonin and serotonin2A receptors," Behavioural pharmacology, vol. 18, no. 7, pp. 651-659, 2007. 6 Supplement 2 7 Supplement 2: General data of the animals about body weight, food intake, biochemistry, inflammation and blood morphology Material and methods: Blood sampling, blood routine and biochemical assays Rabbit blood samples were obtained from the central ear artery between 7:00 a.m. and 9:00 a.m. every 4 weeks, after 12 h of fasting. Then take 0.4ml blood and put it into the EDTA anticoagulant tube. The serum samples separated by centrifugation at 4°C were stored in aliquots at −80°C. The relevant parameters of blood routine, such as white blood cell (WBC), red blood cell (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean erythrocyte hemoglobin concentration (MCHC), red cell distribution width (RDW), platelet (PLT), and mean platelet volume (MPV) were measured by enzymatic assays using a full blood count analyzer (Beckman, USA). The concentrations of total cholesterol (TC), triglyceride (TG), low‑density lipoprotein cholesterin (LDLC), and high‑density lipoprotein cholesterin (HDLC), alanine transaminase (ALT), aspartate transaminase (AST), blood glucose (GLU), blood urea (BUN), blood uric acid (URIC) were measured by an automated analyzer (Beckman, USA). Interleukin‑6 (IL‑6) were measured by commercially available enzyme‑linked immunosorbent assay (ELISA) kits (R and D Systems, Minneapolis, MN, USA). High‑sensitivity C‑reactive protein (hs‑CRP) was measured by enhanced immunoturbidimetric assay. 8 Wright staining Wright’s Giemsa staining kit was bought from the Servicebio (G1009). Use capillary pipette to absorb 5-7 UL of EDTA anticoagulant peripheral blood and drop blood to one end of the slide. The push piece and the slide form an Angle of 30 degrees, and push the blood to the other end of the slide with a uniform speed. Label the blood smear, put the blood smear flat on the staining frame, and drop liquid A to cover the whole blood membrane. After 1 minute, add liquid B, mix liquid A and B evenly. The ratio of liquid A and B is 1:2. After staining in a horizontal position for 5-10 minutes, lift the slide and shake it gently so that the dye is no longer attached to the blood membrane. Use the pure water to wash the dye solution on the tissue, waiting for natural drying. Rapid observation under microscope (Axio Zoom V16, ZEISS, Germany). Results: General data of the animals about body weight, food intake, biochemistry, inflammation The general data of body weight, food intake, biochemistry, inflammation of the animals was presented in the Table S2. There were no differences among the four groups at aspects of body weight, food intake, ALT, AST, BUN, URIC, WBC, RBC, MCV, MCH, RDW, PLT, MPV. Compared with the control group, the TC level in the AS (38.09±2.38 mmol/L) and AS+CS (43.96±0.67 mmol/L) groups was higher (P<0.05). The concentration of TG in the AS+CS (5.84±0.72 mmol/L) was higher than the control group (2.77±0.58 mmol/L) (P<0.05). Compared with the control group, the 9 LDLC level in the AS (17.25±1.22 mmol/L) and AS+CS (19.37±0.32 mmol/L) groups was higher (P<0.05).
Recommended publications
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Genetic Analysis and Gene Mapping for a Short-Petiole Mutant in Soybean (Glycine Max (L.) Merr.)
    agronomy Article Genetic Analysis and Gene Mapping for a Short-Petiole Mutant in Soybean (Glycine max (L.) Merr.) Meifeng Liu, Yaqi Wang, Junyi Gai, Javaid Akhter Bhat, Yawei Li, Jiejie Kong and Tuanjie Zhao * National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; [email protected] (M.L.); [email protected] (Y.W.); [email protected] (J.G.); [email protected] (J.A.B.); [email protected] (Y.L.); [email protected] (J.K.) * Correspondence: [email protected]; Tel.: +86-025-8439-9531 Received: 15 October 2019; Accepted: 28 October 2019; Published: 1 November 2019 Abstract: Short petiole is a valuable trait for the improvement of plant canopy of ideotypes with high yield. Here, we identified a soybean mutant line derived short petiole (dsp) with extremely short petiole in the field, which is obviously different from most short-petiole lines identified previously. Genetic analysis on 941 F2 individuals and subsequent segregation analysis of 184 F2:3 and 172 F3:4 families revealed that the dsp mutant was controlled by two recessive genes, named as dsp1 and dsp2. Map-based cloning showed that these two recessive genes were located on two nonhomologous regions of chromosome 07 and chromosome 11, of which the dsp1 locus was mapped at a physical interval of 550.5-Kb on chromosome 07 near to centromere with flanking markers as BARCSOYSSR_07_0787 and BARCSOYSSR_07_0808; whereas, the dsp2 locus was mapped to a 263.3-Kb region on chromosome 11 with BARCSOYSSR_11_0037 and BARCSOYSSR_11_0043 as flanking markers.
    [Show full text]
  • A Genomic Survey of Proteases in Aspergilli
    Budak et al. BMC Genomics 2014, 15:523 http://www.biomedcentral.com/1471-2164/15/523 RESEARCH ARTICLE Open Access A genomic survey of proteases in Aspergilli Sebnem Ozturkoglu Budak1,2,3†, Miaomiao Zhou1,3†, Carlo Brouwer1, Ad Wiebenga1,3, Isabelle Benoit1,3, Marcos Di Falco4, Adrian Tsang4 and Ronald P de Vries1,3* Abstract Background: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far. Results: We have performed a combined analysis of comparative genomics, proteomics and enzymology tests on seven Aspergillus species grown on wheat bran and sugar beet pulp. Putative proteases were identified by homology search and Pfam domains. These genes were then clusters based on orthology and extracellular proteases were identified by protein subcellular localization prediction. Proteomics was used to identify the secreted enzymes in the cultures, while protease essays with and without inhibitors were performed to determine the overall protease activity per protease class. All this data was then integrated to compare the protease productivities in Aspergilli. Conclusions: Genomes of Aspergillus species contain a similar proportion of protease encoding genes. According to comparative genomics, proteomics and enzymatic experiments serine proteases make up the largest group in the protease spectrum across the species.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]
  • A Genomic Survey of Proteases in Aspergilli
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Budak et al. BMC Genomics 2014, 15:523 http://www.biomedcentral.com/1471-2164/15/523 RESEARCH ARTICLE Open Access A genomic survey of proteases in Aspergilli Sebnem Ozturkoglu Budak1,2,3†, Miaomiao Zhou1,3†, Carlo Brouwer1, Ad Wiebenga1,3, Isabelle Benoit1,3, Marcos Di Falco4, Adrian Tsang4 and Ronald P de Vries1,3* Abstract Background: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far. Results: We have performed a combined analysis of comparative genomics, proteomics and enzymology tests on seven Aspergillus species grown on wheat bran and sugar beet pulp. Putative proteases were identified by homology search and Pfam domains. These genes were then clusters based on orthology and extracellular proteases were identified by protein subcellular localization prediction. Proteomics was used to identify the secreted enzymes in the cultures, while protease essays with and without inhibitors were performed to determine the overall protease activity per protease class. All this data was then integrated to compare the protease productivities in Aspergilli. Conclusions: Genomes of Aspergillus species contain a similar proportion of protease encoding genes.
    [Show full text]
  • Standardization of a Protocol for Shotgun Proteomic Analysis of Saliva
    Original Article http://dx.doi.org/10.1590/1678-7757-2017-0561 Standardization of a protocol for shotgun proteomic analysis of saliva Abstract Talita Mendes da Silva VENTURA1 Saliva contains numerous proteins and peptides, each of them carries a number of biological functions that are very important in maintaining Nathalia Regina RIBEIRO1 the oral cavity health and also yields information about both local and Aline Salgado DIONIZIO1 systemic diseases. Currently, proteomic analysis is the basis for large-scale Isabela Tomazini SABINO1 identification of these proteins and discovery of new biomarkers for distinct 1 Marília Afonso Rabelo BUZALAF diseases. Objective: This study compared methodologies to extract salivary proteins for proteomic analysis. Material and Methods: Saliva samples were collected from 10 healthy volunteers. In the first test, the necessity for using an albumin and IgG depletion column was evaluated, employing pooled samples from the 10 volunteers. In the second test, the analysis of the pooled samples was compared with individual analysis of one sample. Salivary proteins were extracted and processed for analysis by LC-ESI-MS/ MS. Results: In the first test, we identified only 35 proteins using the albumin and IgG depletion column, while we identified 248 proteins without using the column. In the second test, the pooled sample identified 212 proteins, such as carbonic anhydrase 6, cystatin isoforms, histatins 1 and 3, lysozyme C, mucin 7, protein S100A8 and S100A9, and statherin, while individual analysis identified 239 proteins, among which are carbonic anhydrase 6, cystatin isoforms, histatin 1 and 3, lactotransferrin, lyzozyme C, mucin 7, protein S100A8 and S100A9, serotransferrin, and statherin.
    [Show full text]
  • Mass Spectrometry-Based Proteomics Analysis of Bioactive Proteins in EMD That Modulate Adhesion of Gingival Fibroblast to Improve Bio-Integration of Dental Implants
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 3-28-2019 3:00 PM Mass Spectrometry-Based Proteomics Analysis Of Bioactive Proteins In EMD That Modulate Adhesion Of Gingival Fibroblast To Improve Bio-Integration Of Dental Implants David Zuanazzi Machado Jr The University of Western Ontario Supervisor Siqueira, Walter L. The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © David Zuanazzi Machado Jr 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biochemistry Commons, Dental Materials Commons, Oral Biology and Oral Pathology Commons, and the Periodontics and Periodontology Commons Recommended Citation Zuanazzi Machado, David Jr, "Mass Spectrometry-Based Proteomics Analysis Of Bioactive Proteins In EMD That Modulate Adhesion Of Gingival Fibroblast To Improve Bio-Integration Of Dental Implants" (2019). Electronic Thesis and Dissertation Repository. 6064. https://ir.lib.uwo.ca/etd/6064 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i ABSTRACT Titanium (Ti) implants are used in dental practice to replace damaged or lost teeth. For effective treatment, the dental implant needs to integrate with the surrounding hard and soft tissues on the implant site. Despite improvements in bone-implant integration that have been achieved through surface modifications, the integration with the soft tissues is still deficient. The oral mucosa that embraces the transmucosal component of the implant only contacts the surface without making a strong attachment with the connective tissue.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Identification and Characterization of a Novel Stay‐Green QTL That Increases Yield in Maize
    Plant Biotechnology Journal (2019), pp. 1–14 doi: 10.1111/pbi.13139 Identification and characterization of a novel stay-green QTL that increases yield in maize Jun Zhang1,* , Kevin A. Fengler1, John L. Van Hemert1, Rajeev Gupta1,†, Nick Mongar1, Jindong Sun1, William B. Allen1, Yang Wang1, Benjamin Weers1, Hua Mo1, Renee Lafitte1, Zhenglin Hou1, Angela Bryant1, Farag Ibraheem2,3,‡, Jennifer Arp2,§, Kankshita Swaminathan2,–, Stephen P. Moose2, Bailin Li1 and Bo Shen1 1Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, USA 2Department of Crop Sciences, University of Illinois, Urbana, IL, USA 3Botany Department, Faculty of Science, Mansoura University, Egypt Received 22 January 2019; Summary revised 6 April 2019; Functional stay-green is a valuable trait that extends the photosynthetic period, increases accepted 16 April 2019. source capacity and biomass and ultimately translates to higher grain yield. Selection for *Correspondence (Tel (515)535-7821; fax higher yields has increased stay-green in modern maize hybrids. Here, we report a novel QTL (515)535-4755; email controlling functional stay-green that was discovered in a mapping population derived from [email protected]) the Illinois High Protein 1 (IHP1) and Illinois Low Protein 1 (ILP1) lines, which show very †Present address: International Crops Research Institute for the Semi-Arid Tropics, different rates of leaf senescence. This QTL was mapped to a single gene containing a NAC- Patancheru, India. domain transcription factor that we named nac7. Transgenic maize lines where nac7 was ‡Present address: Mansoura University, down-regulated by RNAi showed delayed senescence and increased both biomass and Mansoura, Egypt. nitrogen accumulation in vegetative tissues, demonstrating NAC7 functions as a negative §Present address: Donald Danforth Plant regulator of the stay-green trait.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Downloaded on 7 December 2020 and Including 56565 Protein Sequences)
    viruses Article Comparative Proteomic Profiling: Cellular Metabolisms Are Mainly Affected in Senecavirus A-Inoculated Cells at an Early Stage of Infection Fuxiao Liu 1,† , Bo Ni 2,† and Rong Wei 2,* 1 College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; [email protected] 2 Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao 266032, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Senecavirus A (SVA), also known as Seneca Valley virus, belongs to the genus Senecavirus in the family Picornaviridae. SVA can cause vesicular disease and epidemic transient neonatal losses in pigs. This virus efficiently propagates in some non-pig-derived cells, like the baby hamster kidney (BHK) cell line and its derivate (BSR-T7/5). Conventionally, a few proteins or only one protein is selected for exploiting a given mechanism concerning cellular regulation after SVA infection in vitro. Proteomics plays a vital role in the analysis of protein profiling, protein-protein interactions, and protein-directed metabolisms, among others. Tandem mass tag-labeled liquid chromatography- tandem mass spectrometry combined with the parallel reaction monitoring technique is increasingly used for proteomic research. In this study, this combined method was used to uncover separately proteomic profiles of SVA- and non-infected BSR-T7/5 cells. Furthermore, both proteomic profiles were compared with each other. The proteomic profiling showed that a total of 361 differentially Citation: Liu, F.; Ni, B.; Wei, R. expressed proteins were identified, out of which, 305 and 56 were upregulated and downregulated Comparative Proteomic Profiling: in SVA-infected cells at 12 h post-inoculation, respectively.
    [Show full text]