Supplementary Table S1. Protein Identification Parameters Item Value

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table S1. Protein Identification Parameters Item Value Supplementary Table S1. Protein identification parameters Item Value Enzyme Trypsin Max Missed Cleavages 2 Carbamidomethyl (C), Fixed modifications TMT 10 plex (N-term), TMT 10 plex (K) Variable modifications Oxidation (M) Peptide Mass Tolerance ± 20 ppm Fragment Mass Tolerance 0.1Da Database uniprot_rat_36079_20170921.fasta Database pattern Decoy Peptide FDR ≤0.01 The protein ratios are calculated as the median of Protein Quantification only unique peptides of the protein Normalizes all peptide ratios by the median protein Experimental Bias ratio. The median protein ratio should be 1 after the normalization. Supplementary Table S2. List of protein quantification and differential analysis Accession Description HF/C t test p value Cytochrome P450 2C70 OS=Rattus norvegicus GN=Cyp2c70 P19225 1.808583525 9.953E-07 PE=2 SV=1 - [CP270_RAT] Carboxylic ester hydrolase OS=Rattus norvegicus G3V9D8 1.583811454 1.61313E-06 GN=LOC108348093 PE=1 SV=1 - [G3V9D8_RAT] Epoxide hydrolase 1 OS=Rattus norvegicus GN=Ephx1 PE=1 P07687 1.732555816 3.21041E-06 SV=1 - [HYEP_RAT] Cholesterol 7-alpha-monooxygenase OS=Rattus norvegicus P18125 1.398497925 4.77469E-06 GN=Cyp7a1 PE=1 SV=1 - [CP7A1_RAT] Methyltransferase-like protein 7B OS=Rattus norvegicus Q562C4 1.462168835 5.07554E-06 GN=Mettl7b PE=1 SV=1 - [MET7B_RAT] Serum paraoxonase/arylesterase 1 OS=Rattus norvegicus P55159 1.451799589 8.48466E-06 GN=Pon1 PE=1 SV=3 - [PON1_RAT] Estradiol 17-beta-dehydrogenase 11 OS=Rattus norvegicus Q6AYS8 1.652588897 1.39328E-05 GN=Hsd17b11 PE=2 SV=1 - [DHB11_RAT] Peroxisomal bifunctional enzyme OS=Rattus norvegicus P07896 1.221789306 1.92615E-05 GN=Ehhadh PE=1 SV=2 - [ECHP_RAT] Cytochrome P450 3A2 OS=Rattus norvegicus GN=Cyp3a2 P05183 1.588862955 1.98411E-05 PE=1 SV=2 - [CP3A2_RAT] Aldehyde oxidase 1 OS=Rattus norvegicus GN=Aox1 PE=1 F1LRQ1 1.283524072 2.20966E-05 SV=3 - [F1LRQ1_RAT] Receptor expression-enhancing protein 5 OS=Rattus norvegicus B2RZ37 1.539226349 2.31705E-05 GN=Reep5 PE=1 SV=1 - [REEP5_RAT] Carboxylesterase 1D OS=Rattus norvegicus GN=Ces1d PE=1 P16303 1.408036765 2.75019E-05 SV=2 - [CES1D_RAT] Dehydrogenase/reductase (SDR family) member 1 OS=Rattus Q6AXY8 1.536302694 2.83349E-05 norvegicus GN=Dhrs1 PE=1 SV=1 - [Q6AXY8_RAT] Retinal dehydrogenase 1 OS=Rattus norvegicus GN=Aldh1a1 P51647 1.840092428 3.4716E-05 PE=1 SV=3 - [AL1A1_RAT] Carboxylic ester hydrolase OS=Rattus norvegicus GN=Ces2a Q8K3R0 1.419675339 4.56731E-05 PE=2 SV=1 - [Q8K3R0_RAT] Ras-related protein Rab-18 OS=Rattus norvegicus GN=Rab18 Q5EB77 1.384447664 5.65736E-05 PE=2 SV=1 - [RAB18_RAT] Perilipin OS=Rattus norvegicus GN=Plin2 PE=2 SV=1 - Q5U2U5 2.013776015 5.94017E-05 [Q5U2U5_RAT] UDP-glucuronosyltransferase 1-1 OS=Rattus norvegicus Q64550 1.493772264 8.17548E-05 GN=Ugt1a1 PE=1 SV=1 - [UD11_RAT] Acyl-coenzyme A oxidase OS=Rattus norvegicus GN=Acox2 F1LNW3 1.203005945 8.86563E-05 PE=1 SV=1 - [F1LNW3_RAT] Carboxylic ester hydrolase OS=Rattus norvegicus GN=Ces2h Q32Q55 1.240199167 0.000107193 PE=1 SV=1 - [Q32Q55_RAT] Lysosome membrane protein 2 OS=Rattus norvegicus P27615 1.278903221 0.000111769 GN=Scarb2 PE=1 SV=2 - [SCRB2_RAT] Hypoxanthine-guanine phosphoribosyltransferase OS=Rattus P27605 1.2186336 0.000123457 norvegicus GN=Hprt1 PE=1 SV=1 - [HPRT_RAT] UDP-glucuronosyltransferase OS=Rattus norvegicus D3ZLR6 1.225683241 0.000140185 GN=Ugt2b15 PE=1 SV=3 - [D3ZLR6_RAT] UDP-glucuronosyltransferase OS=Rattus norvegicus Q8VD45 1.399046982 0.000144338 GN=Ugt1a5 PE=2 SV=1 - [Q8VD45_RAT] Cytochrome P-450 OS=Rattus norvegicus GN=Cyp3a23/3a1 Q06884 1.511835628 0.000147063 PE=1 SV=1 - [Q06884_RAT] Bile acid-CoA:amino acid N-acyltransferase OS=Rattus Q63276 1.200113485 0.000148178 norvegicus GN=Baat PE=1 SV=2 - [BAAT_RAT] Liver carboxylesterase 4 OS=Rattus norvegicus PE=2 SV=2 - Q64573 1.260627651 0.000159303 [EST4_RAT] Cytochrome P450 2C23 OS=Rattus norvegicus GN=Cyp2c23 P24470 1.318079504 0.000165039 PE=2 SV=2 - [CP2CN_RAT] Glutathione S-transferase, theta 3 OS=Rattus norvegicus D3Z8I7 1.239882511 0.000232724 GN=Gstt3 PE=1 SV=1 - [D3Z8I7_RAT] Aflatoxin B1 aldehyde reductase member 3 OS=Rattus P38918 1.494791392 0.0002348 norvegicus GN=Akr7a3 PE=1 SV=2 - [ARK73_RAT] Cytochrome b5 OS=Rattus norvegicus GN=Cyb5a PE=1 SV=2 P00173 1.227719353 0.000270095 - [CYB5_RAT] Very long-chain acyl-CoA synthetase OS=Rattus norvegicus P97524 1.249642255 0.000280848 GN=Slc27a2 PE=1 SV=1 - [S27A2_RAT] Enoyl-[acyl-carrier-protein] reductase, mitochondrial A0A140TAE6 OS=Rattus norvegicus GN=Mecr PE=1 SV=1 - 1.222638422 0.000332009 [A0A140TAE6_RAT] Cytochrome P450 3A18 OS=Rattus norvegicus GN=Cyp3a18 G3V635 1.372231059 0.000353707 PE=1 SV=1 - [G3V635_RAT] NADPH--cytochrome P450 reductase OS=Rattus norvegicus P00388 1.227318458 0.000406763 GN=Por PE=1 SV=3 - [NCPR_RAT] Glutathione S-transferase alpha-5 OS=Rattus norvegicus P46418 1.676939556 0.000423909 GN=Gsta5 PE=1 SV=2 - [GSTA5_RAT] Methyltransferase like 7A, isoform CRA_b OS=Rattus Q3KRE2 1.362230744 0.000447562 norvegicus GN=Mettl7a PE=1 SV=1 - [Q3KRE2_RAT] CCZ1 homolog B, vacuolar protein-trafficking and biogenesis- A0A140UHX9 associated OS=Rattus norvegicus GN=Ccz1b PE=1 SV=1 - 1.260979136 0.000471004 [A0A140UHX9_RAT] Membrane-associated progesterone receptor component 1 P70580 OS=Rattus norvegicus GN=Pgrmc1 PE=1 SV=3 - 1.250193271 0.00048953 [PGRC1_RAT] Acyl-coenzyme A synthetase ACSM5, mitochondrial Q6AYT9 OS=Rattus norvegicus GN=Acsm5 PE=2 SV=1 - 1.34807686 0.000492078 [ACSM5_RAT] Alcohol dehydrogenase 4 OS=Rattus norvegicus GN=Adh4 A1L128 1.203832432 0.000524367 PE=1 SV=1 - [A1L128_RAT] RGD1563250 (Predicted), isoform CRA_a OS=Rattus D3ZJZ0 1.26805429 0.000604991 norvegicus GN=Tmem205 PE=1 SV=1 - [D3ZJZ0_RAT] Solute carrier organic anion transporter family member 1A4 O35913 OS=Rattus norvegicus GN=Slco1a4 PE=2 SV=1 - 1.316493831 0.000627043 [SO1A4_RAT] Peroxisomal multifunctional enzyme type 2 OS=Rattus P97852 1.212332672 0.00066838 norvegicus GN=Hsd17b4 PE=1 SV=3 - [DHB4_RAT] Myosin, heavy chain 15 OS=Rattus norvegicus GN=Myh15 A0A0G2JY53 1.279298327 0.000676785 PE=3 SV=1 - [A0A0G2JY53_RAT] UDP-glucuronosyltransferase OS=Rattus norvegicus D4A147 1.313522947 0.000686365 GN=Ugt2a3 PE=1 SV=3 - [D4A147_RAT] Translation initiation factor eIF-2B subunit beta OS=Rattus Q62818 2.16653058 0.000718203 norvegicus GN=Eif2b2 PE=2 SV=1 - [EI2BB_RAT] Cathepsin D OS=Rattus norvegicus GN=Ctsd PE=1 SV=1 - P24268 1.277952633 0.000768561 [CATD_RAT] Ectonucleoside triphosphate diphosphohydrolase 5 OS=Rattus F1LPB8 1.211922712 0.000899361 norvegicus GN=Entpd5 PE=1 SV=2 - [F1LPB8_RAT] UDP-glucuronosyltransferase 2B1 OS=Rattus norvegicus P09875 1.410760147 0.000984948 GN=Ugt2b1 PE=2 SV=1 - [UD2B1_RAT] PDZ and LIM domain protein 1 OS=Rattus norvegicus P52944 1.338035136 0.000997626 GN=Pdlim1 PE=1 SV=4 - [PDLI1_RAT] Platelet glycoprotein 4 OS=Rattus norvegicus GN=Cd36 PE=1 A0A096MJ39 1.226873712 0.001019201 SV=1 - [A0A096MJ39_RAT] 3-ketoacyl-CoA thiolase B, peroxisomal OS=Rattus norvegicus P07871 1.728987207 0.001173721 GN=Acaa1b PE=1 SV=2 - [THIKB_RAT] Cysteine dioxygenase type 1 OS=Rattus norvegicus GN=Cdo1 P21816 1.438903572 0.001253103 PE=1 SV=1 - [CDO1_RAT] UDP-glucuronosyltransferase OS=Rattus norvegicus A0A0G2K727 1.209882937 0.001325651 GN=Ugt2b35 PE=1 SV=1 - [A0A0G2K727_RAT] Dimethylaniline monooxygenase [N-oxide-forming] 1 P36365 1.21035083 0.001344383 OS=Rattus norvegicus GN=Fmo1 PE=1 SV=2 - [FMO1_RAT] 2,4-dienoyl CoA reductase 1, mitochondrial, isoform CRA_a G3V734 OS=Rattus norvegicus GN=Decr1 PE=1 SV=1 - 1.20205063 0.001385445 [G3V734_RAT] Palmitoyl-protein thioesterase 1 OS=Rattus norvegicus P45479 1.283496091 0.001414815 GN=Ppt1 PE=1 SV=1 - [PPT1_RAT] Srxn1 protein (Fragment) OS=Rattus norvegicus GN=Srxn1 B3DM86 1.226049465 0.001620823 PE=2 SV=1 - [B3DM86_RAT] Carboxylic ester hydrolase OS=Rattus norvegicus GN=Ces1a D4AA05 1.330073999 0.001718485 PE=1 SV=1 - [D4AA05_RAT] UDP-glucuronosyltransferase OS=Rattus norvegicus P97886 1.290171117 0.001795007 GN=UGT1 PE=2 SV=1 - [P97886_RAT] Prospero homeobox 2 OS=Rattus norvegicus GN=Prox2 PE=4 D3ZHL7 1.558385759 0.001853077 SV=2 - [D3ZHL7_RAT] UDP-glucuronosyltransferase OS=Rattus norvegicus F1LM22 1.228549218 0.002271255 GN=Ugt2b PE=1 SV=2 - [F1LM22_RAT] Sulfotransferase OS=Rattus norvegicus GN=Sult1c2a PE=2 Q569D0 1.284200924 0.002281477 SV=1 - [Q569D0_RAT] Enoyl-CoA delta isomerase 1, mitochondrial OS=Rattus P23965 1.218036059 0.002456794 norvegicus GN=Eci1 PE=1 SV=1 - [ECI1_RAT] N-acetyltransferase 8 OS=Rattus norvegicus GN=Nat8 PE=1 Q9QXT3 1.260794763 0.002624452 SV=1 - [NAT8_RAT] Proteoglycan 4 OS=Rattus norvegicus GN=Prg4 PE=1 SV=2 - F1LRA5 1.275701953 0.002921552 [F1LRA5_RAT] Carboxylic ester hydrolase OS=Rattus norvegicus GN=Ces1d A0A0G2JY66 1.321744902 0.002988524 PE=1 SV=1 - [A0A0G2JY66_RAT] BRISC and BRCA1-A complex member 1 OS=Rattus Q5XIJ6 2.047810457 0.003061915 norvegicus GN=Babam1 PE=1 SV=1 - [BABA1_RAT] Transmembrane protein 116 OS=Rattus norvegicus F1LRF5 1.221267555 0.003105812 GN=Tmem116 PE=4 SV=2 - [F1LRF5_RAT] Immediate early response 3-interacting protein 1 OS=Rattus P85007 1.225574395 0.003189177 norvegicus GN=Ier3ip1 PE=3 SV=1 - [IR3IP_RAT] UDP-glucuronosyltransferase OS=Rattus norvegicus F1LTB8 1.22465606 0.003317991 GN=RGD1559459 PE=1 SV=2 - [F1LTB8_RAT] Carboxylesterase 1C OS=Rattus norvegicus GN=Ces1c PE=1 P10959 1.252466596 0.003546064 SV=3 - [EST1C_RAT] Cysteine-sulfinate decarboxylase OS=Rattus norvegicus B3VPA7 1.463542701 0.003795817 GN=Csad PE=2 SV=1 - [B3VPA7_RAT] Myotilin-like OS=Rattus norvegicus GN=LOC100909868 M0R5Y4 1.682931624 0.003932265 PE=4 SV=1 - [M0R5Y4_RAT] Vacuolar protein
Recommended publications
  • ABSTRACT ANGSTADT, ANDREA Y. Evaluation of the Genomic
    ABSTRACT ANGSTADT, ANDREA Y. Evaluation of the Genomic Aberrations in Canine Osteosarcoma and Their Resemblance to the Human Counterpart. (Under the direction of Dr. Matthew Breen). In the last decade the domestic dog has emerged as an ideal biomedical model of complex genetic diseases such as cancers. Cancer in the dog occurs spontaneously and several studies have concluded that human and canine cancers have similar characteristics such as presentation of disease, rate of metastases, genetic dysregulation, and survival rates. Furthermore, in the genomic era the dog genome was found more homologous in sequence conservation to humans than mice, making it a valuable model organism for genetic study in addition to pathophysiological analysis. Osteosarcoma (OS), the most commonly diagnosed malignant bone tumor in humans and dogs, is one such cancer that would benefit from comparative genomic analysis. In humans, OS is a rare cancer diagnosed in fewer than 1,000 people per year in the USA, while in the domestic dog population the annual number of new cases is estimated to far exceed 10,000. This high rate of disease occurrence in dogs provides a unique opportunity to study the genomic imbalances in canine OS and their translational value to human OS as a means to identify important alterations involved in disease etiology. OS in humans is characterized by extremely complex karyotypes which contain both structural changes (translocations and/or rearrangements) and DNA copy number changes. Metaphase and array comparative genomic hybridization (aCGH) has assisted in uncovering the genetic imbalances that are associated with human OS phenotype. In dog OS, previous low-resolution (10-20Mb) aCGH analysis identified a wide range of recurrent copy number aberrations (CNAs), indicative of a similar level of genomic instability to human OS.
    [Show full text]
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-C12orf43
    Anti-C12orf43 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-C12orf43 Product Number HPA046148 Gene Description chromosome 12 open reading frame 43 Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: AWGLEQRPHVAGKPRAGAANSQLSTSQPSLRHKVNEHEQDGNELQTTPEF RAHVAKKLGALLDSFITISEAAKEPAKAKVQKVALEDDGFRLFFTSVPGG REKEESPQPR Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:50 - 1:200 - Retrieval method: HIER pH6 WB (Western Blot) - Working concentration: 0.04-0.4 µg/ml ICC-IF (Immunofluorescence) - Fixation/Permeabilization: PFA/Triton X-100 - Working concentration: 0.25-2 µg/ml Characterization Data Available at atlasantibodies.com/products/HPA046148 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions.
    [Show full text]
  • Molecular Genetic Delineation of 2Q37.3 Deletion in Autism and Osteodystrophy: Report of a Case and of New Markers for Deletion Screening by PCR
    UC Irvine UC Irvine Previously Published Works Title Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR. Permalink https://escholarship.org/uc/item/83f0x61r Journal Cytogenetics and cell genetics, 94(1-2) ISSN 0301-0171 Authors Smith, M Escamilla, JR Filipek, P et al. Publication Date 2001 DOI 10.1159/000048775 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Original Article Cytogenet Cell Genet 94:15–22 (2001) Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR M. Smith, J.R. Escamilla, P. Filipek, M.E. Bocian, C. Modahl, P. Flodman, and M.A. Spence Department of Pediatrics, University of California, Irvine CA (USA) Abstract. We recently studied a patient who meets criteria us to determine the parental origin of the deletion in our for autistic disorder and has a 2q37 deletion. Molecular cyto- patient. DNA from 8–13 unrelated individuals was used to genetic studies were carried out using DNA isolated from 22 determine heterozygosity estimates for these markers. We re- different 2q37 mapped BACs to more precisely define the view four genes deleted in our patient – genes whose known extent of the chromosome deletion. We also analyzed 2q37 functions and sites of expression in the brain and/or bone make mapped polymorphic markers. In addition DNA sequences of them candidates for involvement in autism and/or the osteo- BACs in the deletion region were scanned to identify microsa- dystrophy observed in patients with 2q37.3 deletions.
    [Show full text]
  • Table 1. Identified Proteins with Expression Significantly Altered in the Hippocampus of Rats of Exposed Group (Pb) Vs
    Table 1. Identified proteins with expression significantly altered in the hippocampus of rats of exposed group (Pb) vs. Control. Fold Change Accession Id a Protein Description Score Pb P35213 14-3-3 protein beta/alpha 85420 −0.835 P62260 14-3-3 protein epsilon 96570 −0.878 P68511 14-3-3 protein eta 85420 −0.844 P68255 14-3-3 protein theta 85420 −0.835 P63102 14-3-3 protein zeta/delta 105051 −0.803 P13233 2',3'-cyclic-nucleotide 3'-phosphodiesterase 151400 1.405 P68035 Actin, alpha cardiac muscle 1 442584 −0.942 P68136 Actin, alpha skeletal muscle 441060 −0.970 P62738 Actin, aortic smooth muscle 438270 −0.970 P60711 Actin, cytoplasmic 1 630104 −0.942 P63259 Actin, cytoplasmic 2 630104 −0.942 P63269 Actin, gamma-enteric smooth muscle 438270 −0.951 Q05962 ADP/ATP translocase 1 60100 −0.554 Q09073 ADP/ATP translocase 2 49102 −0.482 P84079 ADP-ribosylation factor 1 34675 −0.644 P84082 ADP-ribosylation factor 2 22412 −0.644 P61206 ADP-ribosylation factor 3 34675 −0.619 P61751 ADP-ribosylation factor 4 22412 −0.670 P84083 ADP-ribosylation factor 5 22412 −0.625 P04764 Alpha-enolase 46219 −0.951 P23565 Alpha-internexin 9478 1.062 P37377 Alpha-synuclein 89619 −0.771 P13221 Aspartate aminotransferase, cytoplasmic 23661 1.083 P00507 Aspartate aminotransferase, mitochondrial 46049 1.116 P10719 ATP synthase subunit beta, mitochondrial 232442 −0.835 P85969 Beta-soluble NSF attachment protein 9638 1.419 Q63754 Beta-synuclein 66842 −0.779 P11275 Calcium/calmodulin-dependent protein kinase type II subunit alpha 181954 1.105 P08413 Calcium/calmodulin-dependent protein kinase type II subunit beta 80840 1.127 P15791 Calcium/calmodulin-dependent protein kinase type II subunit delta 62682 1.105 Int.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Systems Analysis Implicates WAVE2&Nbsp
    JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.5,NO.4,2020 ª 2020 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects a b b b Jonathan J. Edwards, MD, Andrew D. Rouillard, PHD, Nicolas F. Fernandez, PHD, Zichen Wang, PHD, b c d d Alexander Lachmann, PHD, Sunita S. Shankaran, PHD, Brent W. Bisgrove, PHD, Bradley Demarest, MS, e f g h Nahid Turan, PHD, Deepak Srivastava, MD, Daniel Bernstein, MD, John Deanfield, MD, h i j k Alessandro Giardini, MD, PHD, George Porter, MD, PHD, Richard Kim, MD, Amy E. Roberts, MD, k l m m,n Jane W. Newburger, MD, MPH, Elizabeth Goldmuntz, MD, Martina Brueckner, MD, Richard P. Lifton, MD, PHD, o,p,q r,s t d Christine E. Seidman, MD, Wendy K. Chung, MD, PHD, Martin Tristani-Firouzi, MD, H. Joseph Yost, PHD, b u,v Avi Ma’ayan, PHD, Bruce D. Gelb, MD VISUAL ABSTRACT Edwards, J.J. et al. J Am Coll Cardiol Basic Trans Science. 2020;5(4):376–86. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2020.01.012 JACC: BASIC TO TRANSLATIONALSCIENCEVOL.5,NO.4,2020 Edwards et al. 377 APRIL 2020:376– 86 WAVE2 Complex in LVOTO HIGHLIGHTS ABBREVIATIONS AND ACRONYMS Combining CHD phenotype–driven gene set enrichment and CRISPR knockdown screening in zebrafish is an effective approach to identifying novel CHD genes.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]