Therapy-Induced Changes in the Gene Expression Profile of Patients with Hematological Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Therapy-Induced Changes in the Gene Expression Profile of Patients with Hematological Diseases Department of MEDICINE, HEMATOLOGY CANCER RESEARCH CENTER-IBMCC (USAL-CSIC) Doctoral Dissertation Therapy-induced changes in the gene expression profile of patients with hematological diseases With the approval of Salamanca University, Department of Medicine, this thesis will be defended on 2th September 2019 Supervisors: Prof. Dr. Jesús María Hernández Rivas Dra. M del Rocío Benito Sánchez Dra. Ana E. Rodríguez Vicente Jesús María Hernández Sánchez, Salamanca, 2019 D. Jesús María Hernández Rivas, Doctor en Medicina, Catedrático del Departamento de Medicina de la Universidad de Salamanca, Médico Adjunto del Servicio de Hematología del Hospital Clínico Universitario de Salamanca e Investigador del Centro de Investigación del Cáncer de Salamanca, D.a María del Rocío Benito Sánchez, Doctora en Ciencias Biológicas e Investigadora del Centro de Investigación del Cáncer de Salamanca, D.a Ana Eugenia Rodríguez Vicente, Doctora por la universidad de Salamanca e Investigadora del Centro de Investigación del Cáncer de Salamanca, CERTIFICAN Que D. Jesús María Hernández Sánchez graduado en Farmacia por la Universidad de Salamanca, ha realizado bajo nuestra dirección el trabajo de Tesis Doctoral titulado “Therapy-induced changes in the gene expression profile of patients with hematological diseases”, y que éste reúne, a nuestro juicio, las condiciones de originalidad y calidad científica requeridas para su presentación y defensa ante el tribunal correspondiente para optar al grado de Doctor, con mención “Doctor International”, por la Universidad de Salamanca. Y para que así conste a los efectos oportunos, firmamos el presente certificado en Salamanca, a 2 de Julio de 2019. Fdo: Prof. Dr. Jesús M. Hernández Rivas Dra. M. del Rocío Benito Sánchez Dra. Ana Eugenia Rodríguez Vicente This thesis was performed being Jesús María Hernández Sánchez partially supported by “Beca de investigación de la fundación española de hematología y hemoterapia” Acknowledgments: • PI17/01741: Caracterización de los SMD de bajo riesgo sin sideroblastos en anillo: de las CPH a las vesículas extracelulares circulantes. 2018-2021 • GRS 1873/A/18: Ultrasecuenciación del ARN (RNA-seq) en pacientes con trombocitopenia inmune tratados con eltrombopag. Búsqueda de biomarcadores de respuesta y de nuevos mecanismos de acción de eltrombopag. 2018-2019 • GRS 1349/A/16: Impacto clínico y pronóstico de la presencia de mutaciones somáticas en pacientes con SMD de bajo riesgo sin sideroblastos en anillo. 2016- 2017 • Celgene Corporation, Spain. Determinación de la alteración 5q- en pacientes diagnosticados de SMD. 2013 • Novartis Farmacéutica, Spain: Estudio observacional y prospectivo sobre la influencia del tratamiento inhibidor selectivo de JAK 1/2 en el perfil de expresión génica de pacientes con mielofibrosis. 2015 • Roche IVS: IRON-III (Interlaboratory robustness of Next generation Sequencing). 2014-2015 Scientific contribution during the thesis performed by Jesús María Hernández Sánchez: Published papers [1] M. Hernández-Sánchez, A.E. Rodríguez-Vicente, I. González-Gascón y Marín, M. Quijada- Álamo, J.M. Hernández-Sánchez, M. Martín-Izquierdo, J.Á. Hernández-Rivas, R. Benito, J.M. Hernández-Rivas, DNA damage response-related alterations define the genetic background of patients with chronic lymphocytic leukemia and chromosomal gains, Experimental Hematology. 72 (2019) 9–13. doi:10.1016/j.exphem.2019.02.003. [2] J.M. Bastida, O. López-Godino, A. Vicente-Sánchez, S. Bonanad-Boix, B. Xicoy-Cirici, J.M. Hernández-Sánchez, E. Such, J. Cervera, J.C. Caballero-Berrocal, F. López-Cadenas, M. Arnao-Herráiz, I. Rodríguez, I. Llopis-Calatayud, M.J. Jiménez, M.C. del Cañizo-Roldán, M. Díez-Campelo, Hidden myelodysplastic syndrome (MDS): A prospective study to confirm or exclude MDS in patients with anemia of uncertain etiology, International Journal of Laboratory Hematology. 41 (2019) 109–117. doi:10.1111/ijlh.12933. [3] J.M. Bastida, R. Benito, M.L. Lozano, A. Marín-Quilez, K. Janusz, M. Martín-Izquierdo, J. Hernández-Sánchez, V. Palma-Barqueros, J.M. Hernández-Rivas, J. Rivera, J.R. González- Porras, Molecular Diagnosis of Inherited Coagulation and Bleeding Disorders, Semin Thromb Hemost. (2019) s-0039-1687889. doi:10.1055/s-0039-1687889. [4] I. García-Tuñón, V. Alonso-Pérez, E. Vuelta, S. Pérez- Ramos, M. Herrero, L. Méndez, J.M. Hernández-Sánchez, M. Martín-Izquierdo, R. Saldaña, J. Sevilla, F. Sánchez- Guijo, J.M. Hernández-Rivas, M. Sánchez-Martín, Splice donor site sgRNAs enhance CRISPR/Cas9- mediated knockout efficiency, PLoS ONE. 14 (2019) e0216674. doi:10.1371/journal.pone.0216674. [5] J.M. Bastida, M.L. Lozano, R. Benito, K. Janusz, V. Palma-Barqueros, M. Del Rey, J.M. Hernández-Sánchez, S. Riesco, N. Bermejo, H. González-García, A. Rodriguez-Alén, C. Aguilar, T. Sevivas, M.F. López-Fernández, A.E. Marneth, B.A. van der Reijden, N.V. Morgan, S.P. Watson, V. Vicente, J.M. Hernández-Rivas, J. Rivera, J.R. González-Porras, Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders, Haematologica. 103 (2018) 148–162. doi:10.3324/haematol.2017.171132. [6] J. Sanchez-Garcia, J. Falantes, A. Medina Perez, F. Hernandez-Mohedo, L. Hermosin, A. Torres-Sabariego, A. Bailen, J.M. Hernandez-Sanchez, M. Solé Rodriguez, F.J. Casaño, C. Calderon, M. Labrador, M. Vahí, J. Serrano, E. Lumbreras, J.M. Hernández-Rivas, On behalf of Grupo Andaluz SMD, Prospective randomized trial of 5 days azacitidine versus supportive care in patients with lower-risk myelodysplastic syndromes without 5q deletion and transfusion-dependent anemia, Leukemia & Lymphoma. 59 (2018) 1095–1104. doi:10.1080/10428194.2017.1366998. [7] J.M. Bastida, R. Benito, K. Janusz, M. Díez-Campelo, J.M. Hernández-Sánchez, S. Marcellini, M. Girós, J. Rivera, M.L. Lozano, A. Hortal, J.M. Hernández-Rivas, J.R. González-Porras, Two novel variants of the ABCG5 gene cause xanthelasmas and macrothrombocytopenia: a brief review of hematologic abnormalities of sitosterolemia, Journal of Thrombosis and Haemostasis. 15 (2017) 1859–1866. doi:10.1111/jth.13777. [8] M. Forero-Castro, C. Robledo, R. Benito, I. Bodega-Mayor, I. Rapado, M. Hernández- Sánchez, M. Abáigar, J. Maria Hernández-Sánchez, M. Quijada-Álamo, J. María Sánchez- Pina, M. Sala-Valdés, F. Araujo-Silva, A. Kohlmann, J. Luis Fuster, M. Arefi, N. de las Heras, S. Riesco, J.N. Rodríguez, L. Hermosín, J. Ribera, M. Camos Guijosa, M. Ramírez, C.D. de Heredia Rubio, E. Barragán, J. Martínez, J.M. Ribera, E. Fernández-Ruiz, J.-M. Hernández- Rivas, Mutations in TP53 and JAK2 are independent prognostic biomarkers in B-cell precursor acute lymphoblastic leukaemia, British Journal of Cancer. 117 (2017) 256–265. doi:10.1038/bjc.2017.152. [9] M. Quijada-Álamo, M. Hernández-Sánchez, C. Robledo, J.-M. Hernández-Sánchez, R. Benito, A. Montaño, A.E. Rodríguez-Vicente, D. Quwaider, A.-Á. Martín, M. García-Álvarez, M.J. Vidal-Manceñido, G. Ferrer-Garrido, M.-P. Delgado-Beltrán, J. Galende, J.-N. Rodríguez, G. Martín-Núñez, J.-M. Alonso, A. García de Coca, J.A. Queizán, M. Sierra, C. Aguilar, A. Kohlmann, J.-Á. Hernández, M. González, J.-M. Hernández-Rivas, Next-generation sequencing and FISH studies reveal the appearance of gene mutations and chromosomal abnormalities in hematopoietic progenitors in chronic lymphocytic leukemia, Journal of Hematology & Oncology. 10 (2017) 83. doi:10.1186/s13045-017-0450-y. [10] A.M. Dubuc, M.S. Davids, M. Pulluqi, O. Pulluqi, K. Hoang, J.M. Hernandez-Sánchez, C. Schlich, J.M. Hernández-Rivas, J.R. Brown, P. Dal Cin, FISHing in the dark: How the combination of FISH and conventional karyotyping improves the diagnostic yield in CpG- stimulated chronic lymphocytic leukemia: Combined FISH and Karyotyping Improves Diagnostic Yield in CLL, American Journal of Hematology. 91 (2016) 978–983. doi:10.1002/ajh.24452. [11] A.E. Rodríguez-Vicente, E. Lumbreras, J.M. Hernández, M. Martín, A. Calles, C.L. Otín, S.M. Algarra, D. Páez, M. Taron, Pharmacogenetics and pharmacogenomics as tools in cancer therapy, Drug Metabolism and Personalized Therapy. 31 (2016). doi:10.1515/dmpt-2015- 0042. [12] M. Forero-Castro, C. Robledo, E. Lumbreras, R. Benito, J.M. Hernández-Sánchez, M. Hernández-Sánchez, J.L. García, L.A. Corchete-Sánchez, M. Tormo, P. Barba, J. Menárguez, J. Ribera, C. Grande, L. Escoda, C. Olivier, E. Carrillo, A. García de Coca, J.-M. Ribera, J.M. Hernández-Rivas, The presence of genomic imbalances is associated with poor outcome in patients with burkitt lymphoma treated with dose-intensive chemotherapy including rituximab, British Journal of Haematology. 172 (2016) 428–438. doi:10.1111/bjh.13849. [13] M.A. Dasi, R. Gonzalez-Conejero, S. Izquierdo, J. Padilla, J.L. Garcia, N. Garcia-Barberá, B. Argilés, M.E. de la Morena-Barrio, J.M. Hernández-Sánchez, J.M. Hernández-Rivas, V. Vicente, J. Corral, Uniparental disomy causes deficiencies of vitamin K-dependent proteins, Journal of Thrombosis and Haemostasis. 14 (2016) 2410–2418. doi:10.1111/jth.13517. [14] J.C. Caballero Berrocal, Mercedes Sánchez Barba, Jesús M. Hernández Sánchez, Monica del Rey, Kamila Janusz, C. Chillón, Esperanza Such, Guillermo F Sanz, Ana María Hurtado López, C. Calderón Cabrera, David Valcarcel, Eva Lumbreras, Cristina Robledo, María Abáigar, F. López Cadenas, M. Cabrero, A. Redondo-Guijo, J.M. Hernández Rivas, Maria-Consuelo del Cañizo, M. Díez Campelo, Chronic Graft Versus Host Disease could ameliorate the impact of adverse somatic mutations in patients with Myelodysplastic Syndromes and Hematopoietic Stem Cell Transplantation. Annals of
Recommended publications
  • RT² Profiler PCR Array (384-Well Format) Human Apoptosis 384HT
    RT² Profiler PCR Array (384-Well Format) Human Apoptosis 384HT Cat. no. 330231 PAHS-3012ZE For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 7900HT (384-well block), Format E ViiA™ 7 (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (384-well block) Format G Description The Human Apoptosis RT² Profiler PCR Array profiles the expression of 370 key genes involved in apoptosis, or programmed cell death. The array includes the TNF ligands and their receptors; members of the bcl-2 family, BIR (baculoviral IAP repeat) domain proteins, CARD domain (caspase recruitment domain) proteins, death domain proteins, TRAF (TNF receptor-associated factor) domain proteins and caspases. These 370 genes are also grouped by their functional contribution to apoptosis, either anti-apoptosis or induction of apoptosis. Using real-time PCR, you can easily and reliably analyze expression of a focused panel of genes related to apoptosis with this array. For further details, consult the RT² Profiler PCR Array Handbook. Sample & Assay Technologies Shipping and storage RT² Profiler PCR Arrays in formats E and G are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. For long term storage, keep plates at –20°C. Note: Ensure that you have the correct RT² Profiler PCR Array format for your real-time cycler (see table above). Note: Open the package and store the products appropriately immediately
    [Show full text]
  • Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B
    molecules Article Small Molecule Inhibitors of KDM5 Histone Demethylases Increase the Radiosensitivity of Breast Cancer Cells Overexpressing JARID1B Simone Pippa 1, Cecilia Mannironi 2, Valerio Licursi 1,3, Luca Bombardi 1, Gianni Colotti 2, Enrico Cundari 2, Adriano Mollica 4, Antonio Coluccia 5 , Valentina Naccarato 5, Giuseppe La Regina 5 , Romano Silvestri 5 and Rodolfo Negri 1,2,* 1 Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (S.P.); [email protected] (V.L.); [email protected] (L.B.) 2 Institute of Molecular Biology and Pathology, Italian National Research Council, 00185 Rome, Italy; [email protected] (C.M.); [email protected] (G.C.); [email protected] (E.C.) 3 Institute for Systems Analysis and Computer Science “A. Ruberti”, Italian National Research Council, 00185 Rome, Italy 4 Department of Pharmacy, University “G. d’ Annunzio” of Chieti, Via dei Vestini 31, 66100 Chieti, Italy; [email protected] 5 Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (A.C.); [email protected] (V.N.); [email protected] (G.L.R.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +39-06-4991-7790 Academic Editors: Sergio Valente and Diego Muñoz-Torrero Received: 12 October 2018; Accepted: 1 May 2019; Published: 4 May 2019 Abstract: Background: KDM5 enzymes are H3K4 specific histone demethylases involved in transcriptional regulation and DNA repair. These proteins are overexpressed in different kinds of cancer, including breast, prostate and bladder carcinomas, with positive effects on cancer proliferation and chemoresistance.
    [Show full text]
  • Differentiation-Defective Phenotypes Revealed by Large-Scale Analyses of Human Pluripotent Stem Cells
    Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells Michiyo Koyanagi-Aoia,1, Mari Ohnukia,1, Kazutoshi Takahashia, Keisuke Okitaa, Hisashi Nomab, Yuka Sawamuraa, Ito Teramotoa, Megumi Naritaa, Yoshiko Satoa, Tomoko Ichisakaa, Naoki Amanoa, Akira Watanabea, Asuka Morizanea, Yasuhiro Yamadaa,c, Tosiya Satod, Jun Takahashia,e, and Shinya Yamanakaa,f,2 aCenter for iPS Cell Research and Application, eDepartment of Biological Repair, Institute for Frontier Medical Sciences, and cInstitute for Integrated Cell- Material Sciences, Kyoto University, Kyoto 606-8507, Japan; bDepartment of Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan; dDepartment of Biostatistics, Kyoto University School of Public Health, Kyoto 606-8501, Japan; and fGladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 Contributed by Shinya Yamanaka, October 30, 2013 (sent for review September 13, 2013) We examined the gene expression and DNA methylation of 49 at least three passages. In addition, we analyzed the original somatic human induced pluripotent stem cells (hiPSCs) and 10 human cells, two human embryonic carcinoma cell (hECC) lines (NTera2 embryonic stem cells and found overlapped variations in gene cloneD1 and 2102Ep 4D3), and three cancer cell lines (HepG2, expression and DNA methylation in the two types of human MCF7, and Jurkat). pluripotent stem cell lines. Comparisons of the in vitro neural The mRNA microarray analyses (Fig. 1A) identified 61 probes fi differentiation of 40 hiPSCs and 10 human embryonic stem cells with signi cant differences in expression between hESCs and < showed that seven hiPSC clones retained a significant number of hiPSCs [t test, false discovery rate (FDR) 0.05].
    [Show full text]
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • BD Biosciences New RUO Reagents - November 2020
    BD Biosciences New RUO reagents - November 2020 Reactivity Description Format Clone Size Cat. number Hu CD133 FITC W6B3C1 100µg 567029 Hu CD133 FITC W6B3C1 25µg 567033 Hu CD39 PE A1/CD39 100Tst 567156 Hu CD39 PE A1/CD39 25Tst 567157 Hu KIR2DL1/S1/S3/S5 PE HP-MA4 100Tst 567158 Hu KIR2DL1/S1/S3/S5 PE HP-MA4 25Tst 567159 Hu IL-22 Alexa Fluor® 647 MH22B2 100µg 567160 Hu IL-22 Alexa Fluor® 647 MH22B2 25µg 567161 Hu CD99 R718 TU12 50µg 751651 Hu CD161 R718 DX12 50µg 751652 Hu CD116 R718 HGMCSFR-M1 50µg 751653 Hu HLA-G R718 87G 50µg 751670 Hu CD27 R718 O323 50µg 751686 Hu CD80 (B7-1) R718 2D10.4 50µg 751737 Hu Integrin αvβ5 R718 ALULA 50µg 751738 Hu CD266 (Tweak-R) R718 ITEM-4 50µg 751739 Hu ErbB3 (HER-3) R718 SGP1 50µg 751799 Hu TCR Vβ5.1 R718 LC4 50µg 751816 Hu CD123 (IL-3Ra) R718 6H6 50µg 751844 Hu CD1a R718 SK9 50µg 751847 Hu CD20 R718 L27 50µg 751849 Hu Disial GD2 R718 14.G2A 50µg 751851 Reactivity Description Format Clone Size Cat. number Hu CD71 R718 L01.1 50µg 751853 Hu CD278 (ICOS) R718 DX29 50µg 751854 Hu B7-H4 R718 MIH43 50µg 751857 Hu CD53 R718 HI29 50µg 751858 Hu CD197 (CCR7) R718 2-L1-A 50µg 751859 Hu CD197 (CCR7) R718 3D12 50µg 751861 Hu CD31 R718 L133.1 50µg 751863 Hu EGF Receptor R718 EMAB-134 50µg 751864 Hu CD8b R718 2ST8.5H7 50µg 751867 Hu CD31 R718 MBC 78.2 50µg 751869 Hu CD162 R718 KPL-1 50µg 751873 Hu CD24 R718 ML5 50µg 751874 Hu CD159C (NKG2C) R718 134591 50µg 751876 Hu CD169 (Siglec-1) R718 7-239 50µg 751877 Hu CD16b R718 CLB-GRAN11.5 50µg 751880 Hu IgM R718 UCH-B1 50µg 751881 Hu CD275 R718 2D3/B7-H2 50µg 751883 Hu CD307e
    [Show full text]
  • Overexpressed Nup88 Stabilized Through Interaction with Nup62 Promotes NFB
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063057; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Overexpressed Nup88 stabilized through interaction with Nup62 promotes NFB dependent pathways in cancer Usha Singh1, Atul Samaiya2, and Ram Kumar Mishra1,* 1 Nups and Sumo Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, 462066, India. 2 Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh, 462016, India * To whom correspondence should be addressed. Corresponding Author: Phone – +91-755-2691407 Fax - +91-755-2692392 Email- [email protected] Keywords Nup88; NFB; Head and neck cancer; ubiquitination; cell proliferation; inflammation 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063057; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Nuclear pores control nucleo-cytoplasmic trafficking and directly or indirectly regulate vital cellular processes. Nup88, important for Crm1 mediated nuclear export process, is overexpressed in many cancers. A positive correlation exists between progressive stages of cancer and Nup88 expression. However, links between Nup88 overexpression and head and neck cancer are insignificant, and mechanistic details are non-existent. Here, we report that Nup88 exhibits positive correlation in head and neck cancer in addition to elevated Nup62 levels. We demonstrate that Nup88 interacts with Nup62 in a cell-cycle and glycosylation independent manner.
    [Show full text]
  • Profound Treg Perturbations Correlate with COVID-19 Severity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.416180; this version posted December 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Profound Treg perturbations correlate with COVID-19 severity Silvia Galván-Peña1*, Juliette Leon1,2*, Kaitavjeet Chowdhary1, Daniel A. Michelson1, Brinda Vijaykumar1, Liang Yang1, Angela Magnuson1, Zachary Manickas-Hill3,4, Alicja Piechocka- Trocha3,4, Daniel P. Worrall3,4, Kathryn E. Hall3,5, Musie Ghebremichael3,4, Bruce D. Walker3,4,6, Jonathan Z. Li3,7, Xu G. Yu3,4, MGH COVID-19 Collection & Processing Team, Diane Mathis1 and Christophe Benoist1,8,+ 1Department of Immunology, Harvard Medical School, Boston, MA, USA 2 INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France 3Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA 4Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA 5Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 6Howard Hughes Medical Institute, Center for the AIDS Programme of Research in South Africa. 7Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 8Lead contact * Equal contribution +Address correspondence to: Christophe Benoist Department of Immunology Harvard Medical School 77 Avenue Louis Pasteur, Boston, MA 02115 e-mail: [email protected] Phone: (617) 432-7741 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.416180; this version posted December 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Integrated Genomic Analysis Identifies ANKRD36 Gene As a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2021 doi:10.20944/preprints202108.0498.v1 Article Integrated Genomic Analysis Identifies ANKRD36 Gene as a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia Zafar Iqbal 1,2,3, Muhammad Absar2, Tanveer Akhtar2, Aamer Aleem4, Abid Jameel5, Sulman Basit 6, Anhar Ullah7, Sibtain Afzal8, Khushnooda Ramzan9, Mahmood Rasool10, Sajjad Karim10, Zeenat Mirza10, Mudassar Iqbal11, Mar- yam AlMajed1, Buthinah AlShehab1, Sarah AlMukhaylid1, Nouf AlMutairi1, Nawaf Al-anazi1, 12, Muhammad Farooq Sabar13, Muhammad Arshad14, Muhammad Asif15, Masood Shammas16 and Amer Mehmood15 1: Clinical Laboratory Sciences, College of Applied Medical Sciences (CoAMS-A), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City/Kind Abdullah International Medical Research Centre (KAIMRC)/Saudi Society for Blood and Marrow Transplantation (SSBMT), King Abdulaziz Medical City, National Guard Health Affairs, Al-Ahsa, Saudi Arabia. 2:Hematology, Oncology and Pharmaco-genetic Engineering Sciences (HOPES) Group, Health Sciences Labora- tories (HaSiL), Department of Zoology, University of the Punjab (ZPU), Lahore 54590, Pakistan. 3: Next-Generation Medical Biotechnology & Genomic Medicine Division, Department of Biotechnology, Qarshi University, Lahore, Pakistan. 4Division of Hematology/Oncology, Department of Medicine, KKUH and College of Medicine, King Saud University, Riyadh, Saudi Arabia. 5 Khyber Teaching Hospital and Hayatabad Medical Complex, Peshawar, Pakistan. 6Taibah University Madinah-Center for Genetics and, Inherited Diseases Center for Genetics and Inherited Diseases,, Taibah University Madinah, 30001, Saudi Arabia, Almadinah Almunawarah 30001, Saudi Arabia. 7 National Heart and Lung Institute, Imperial College London, UK. 8Biomedical Research Laboratory, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. 9Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
    [Show full text]