H.F. CEREZKE Abstract Resume

Total Page:16

File Type:pdf, Size:1020Kb

H.F. CEREZKE Abstract Resume WARREN ROOTCOLLAR WEEVIL, HYLOBZUS WARREN1 WOOD (COLEOPTERA: CURCULIONIDAE), IN CANADA: ECOLOGY, BEHAVIOR, DAMAGE RELATIONSHIPS, AND MANAGEMENT H.F. CEREZKE Canada Department of Natural Resources, Canadian Forest Service, 5320 - 122 Street, Edmonton, Alberta, Canada T6H 3S5 Abstract The Canadian Entomologist 126: 1383- 1442 (1994) Warren rootcollar weevil, Hylobius warreni Wood, is a pest of several conifer species and is distributed widely throughout the boreal forest in Canada. Literature on this weevil is reviewed and interpreted to provide comprehensive coverage of its ecology, behavior, and impacts, and the implications for its management. New information is provided to fill gaps in our knowledge of H. warreni. These include distribution and hosts, immature stages, sex ratios, and daily and seasonal activity patterns of adults. Sex ratios, abundance, longevity, and pedestrian dispersal behavior of adults within the forest and on trees are described from mark, release, and recapture studies conducted over several years using a newly designed interception trap. Daily trap captures are correlated with previous night temperatures and this relationship is a tool for predicting adult captures. Fecundity and oviposition behavior on the host tree are described from laboratory- and field-reared adults. Population levels of H. warreni are compared across a variety of lodgepole pine stands in Alberta. Weevil numbers within forests are described in relation to tree size and age, depth of duff material around tree bases, and stand density. Analysis of weevil feeding scars distributed at the root collar base of mature pine stems were used to describe the likely temporal pattern of population abundance and change during stand develop- ment. Information supportive of this pattern is presented from surveys in young and mature stands. A new method of assessing stands of lodgepole pine for suitability of habitat for H. warreni takes into account the cumulative nature of this weevil's injury and reflects its temporal pattern of success in relation to stand conditions. The effects of a pre- commercial thinning treatment on H. warreni populations and its girdling injury were investigated in a 25-year-old lodgepole pine stand over an 8-year period. Compared with control plots, thinning treatment caused a 5-fold increase in weevil numbers per tree and increased the tree attack incidence by 2-fold, but resulted in an average 6% reduction in partial stem girdling of attacked trees. Information about the effects of various forest management practices on H. warreni abundance and survival is reviewed and areas requiring research are identified. Cerezke, H.F. 1994.Le Charanqon de Warren, Hylobius warreni Wood (Coleoptera:Curculionidae) au Canada. The Canadian Entomologist 126: 1383- 1442. Resume Le Charan~conde Warren, Hylobius warreni Wood, parasite plusieurs espbces de conifbres et est bien rCpandu dans la for& borCale canadienne. Les travaux sur cette espbce ont CtC rCvisCs et interprCtCs dans le but d'obtenir le plus d'informations possible sur l'Ccologie, le comportement et les effets de ce parasite avant d7Ctablirdes programmes de contrble. De nouvelles donnCes viennent combler les lacunes dans nos connaissances de l'espbce: rkpartition des hbtes, stades immatures, rapports m2les:femelles, activitCs quotidiennes et saisonnibres des adultes. Les donnCes sur les rapports miiles:femelles, l'abondance, la longCvitC et le comportement de dispersion pCdestre des adultes dans la forEt et sur les arbres ont CtC obtenues par marquage-capture-recapture durant plusieurs anntes au cours desquelles un nouveau type de pibge a CtC utilisC. Les captures quoti- diennes dans les pibges se sont avCrtes en corrClation avec la tempCrature de la nuit preckdente et celle relation permet de prCdire les captures des adultes. La fCconditC et le 1384 THE CANADTAN~MoLOGIST November/December 1994, comportement de ponte sur les arbres hates sont dCcrites B partir de donnCes sur des adultes ClevCs en laboratoire et en nature. Les densitks de population d'H. warreni ont ttt comparkes au sein de plusieurs for& de pins de Murray en Alberta. Le nombre de charan~onstrouvts a CtC mis en relation avec la taille et l'2ge des arbres, avec la profondeur de la couche d'humus autour de la base des arbres et avec la densit6 de la forCt. L'analyse des cicatrices laissts par les charan~onsse nounissant B la base du tronc d'arbres B maturitt, B la naissance des racines, a permis de dCcrire la courbe probable d'abondance de la population en fonction du temps au cows du dCveloppement de la forCt. Le pattern obtenu est confirm6 par des donntes obtenues dans des for& jeunes et des for& B maturitC. Une nouvelle mCthode d'kaluation des forCts de pins de Murray comme hates de populations d'H. warreni tient compte de la nature cumulative des blessures causCes par le charan~onet reflkte son succ&sen fonction du temps en relation avec les conditions de la forst. Les effets d'un Cclaircissement prkliminaire de la forCt pour des fins commerciales sur les populations d'H. warreni et ceux des blessures d'annklation ont CtC Ctudits pendant 8 ans au sein d'une forCt de pins de Murray de 25 ans. La comparaison avec des for& tCmoins a rtvtlt que 1'Cclaircissement a entrain6 une augmentation considerable (X5) du nombre de LharanCons par arbre, a augment6 l'incidence des attaques aux arbres par un facteur de 2, mais a rksultt en une rkduction moyenne de 6% des anntlations partielles des tiges des arbres attaques. L'information sur les effets des pratiques d'am~na~ementdes for& sur l'abondance et la survie d'H. warreni est rtvisCe et les zones de recherche qui doivent Ctre approfondies sont indentifkes. [Traduit par la RCdaction] INTRODUCTION In North America, there are seven known species of weevils in the genus Hylobius. The following species occur in Canada: H. congener Dalla Torre, Shenkling, and Marshall, H. pales (Herbst), H. pinicola (Couper), H. radicis Buchanan, and H. warreni Wood. All attack and feed on coniferous hosts (Wood 1957; Warren 1958; Warner 1966). Warren rootcollar weevil, Hylobius warreni Wood, first described in 1957, is indigenous to coniferous forests in North America (Wood 1957; Warner 1966). Its larvae feed on the root and root collar region of trees, causing partial to complete girdling of roots and stem, large open wounds, and resinosis (Warren 1956b; Cerezke 1970~).Live healthy trees are susceptible to attack at a young age and these trees are subject to repeated attacks at irregular intervals through to stand maturity or harvest (Cerezke 1969, 1970~).Highest populations of the weevil and its incidence of attacks tend to occur on trees of vigorous crown classes and on high-productivity sites (Cerezke 1969, 1970b, 1970~;Ives and Rentz 1993). Trees may be killed directly from the girdling injury, and their wounds may provide entry courts for root and stem diseases (Warren 1956b; Whitney 1961; Cerezke 1974). Partially girdled trees may also accumulate losses in growth from repeated attacks and be made less windfinn because of weakened roots and stems (Cerezke 1974). Different habitat conditions are created during the process of forest removal and the early establishment of the new forest, and most of these conditions influence the population dynamics of H. warreni. The cut stumps left behind after harvesting allow established resident populations of H. warreni to complete their development, but the newly planted or naturally grown seedlings provide continuity of habitat as breeding sites for subsequent generations of the weevil (Cerezke 1973~).Thus early establishment of H. warreni into young stands is often assured at an age when the risk of tree mortality from larval girdling is maximal (Cerezke 1970c, 1974; Ives and Rentz 1993). Various silvicultural treatments are often applied in young stands to help achieve optimal growth. Studies in stands of white spruce [Picea glauca (Moench) Voss] and lodgepole pine (Pinus contorta Dougl. var. latifolia Engel.) in western Canada have shown that this weevil is distributed in relation to various site and stand parameters. Its abundance and survival can therefore be influenced Volume 126 THE CANADIAN ENTOMOLOGIST 1385 by harvesting practices and probably also by post-harvest treatments including prescribed bums, scarification, and stump removal (Warren 1956b, 1956d; Stark 1959~;Cerezke 1969, 1970a, 1970b, 1973~;Byford and McLean 1991). Such treatments as precommercial thinnings and spacings, stand fertilization, and alternate species selection may all influence H. warreni abundance and its injury (Goyer and Benjamin 1972; Wilson and Millers 1983; Selander and lmmonen 1992; Hunt et al. 1993). The earliest collections in Canada of adult H. warreni were probably made during 1930-1935, but concern for its injury to trees did not develop until the late 1940s and early 1950s (Daviault 1949). Early investigations in Saskatchewan and Manitoba were prompted by the concern that its larval wounds on white spruce provided courts of entry for root and stem diseases (Warren and Whitney 1951). Since 1949, a considerable body of information has accumulated on the biology, ecology, behavior, and tree damage relationships of H. warreni, especially in western Canada. Much of this information is contained in published reports, a number of unpublished file and internal reports, theses, and as unpublished data, much of which is not readily available. There is a need to compile and synthesize this information into a single document and thereby make it available to land managers and researchers. The objectives of this paper are to review all sources of information on H. warreni in Canada, present a synthesis and interpretation of the knowledge about this weevil, and formulate guidelines for coping with this insect in managed forests and plantations. The content of this document is arranged under four main sections. The first three sections (geographical distribution and hosts; life history and behavior; and population dynamics and impact) present the main body of scientific information; the last section focuses on forest management guidelines and research needs.
Recommended publications
  • Bulletin Number / Numéro 1 Entomological Society of Canada March / Mars 2011 Société D’Entomologie Du Canada
    ............................................................ ............................................................ Volume 43 Bulletin Number / numéro 1 Entomological Society of Canada March / mars 2011 Société d’entomologie du Canada Published quarterly by the Entomological Society of Canada Publication trimestrielle par la Société d’entomologie du Canada ........................................................ .......................................................................................................................................................... .......................................................................................................................................................... ................................................................... .................................................................................. ............................................................... .......................................................................................................................................................................................... List of contents / Table des matières Volume 43(1), March / mars 2011 Up front / Avant-propos ..............................................................................................................1 Moth balls / Boules à mites ............................................................................................................3 Dear Buggy / Cher Bibitte ...............................................................................................................6
    [Show full text]
  • This Is an Author Produced Pre-Print Version of a Paper Later Published in the Canadian Entomologist
    This is an author produced pre-print version of a paper later published in The Canadian Entomologist. Citation for the published paper: Björklund, N. (2009) A non-destructive tree trunk funnel trap for capturing Hylobius warreni (Coleoptera: Curculionidae) ascending stems of trees. The Canadian Entomologist. Volume: 141 Number: 4, pp 422-424. http://dx.doi.org/10.4039/n09-030 Access to the published version may require journal subscription. Published with permission from: Entomological Society of Canada Epsilon Open Archive http://epsilon.slu.se N. Björklund, page 1. Author's Pre‑print: Björklund, N. (2009) A non-destructive tree trunk funnel trap for capturing Hylobius warreni (Coleoptera: Curculionidae) ascending stems of trees. The Canadian Entomologist 141, 422-424. doi: 10.4039/n09-030 Note that the title below was later changed to the one above. A nondestructive tree trunk funnel trap for capturing insects ascending stems of trees Niklas Björklund Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, S-750 07 Uppsala, Sweden. E-mail: [email protected], Phone: +46 18 672879 1 N. Björklund, page 2. 1 Abstract 2 An efficient, simple, and inexpensive trap that catches insects as they ascend tree boles is 3 described. The performance of the trap was tested in a capture-mark-recapture experiment on 4 the Warren root collar weevil, Hylobius warreni Wood (Coleoptera: Curculionidae). A high 5 percentage (77%) of the marked H. warreni were recaptured at least once and a high 6 percentage of the weevils were recaptured several times, with one weevil recaptured eight 7 times.
    [Show full text]
  • Lindgren-S-Heritage
    Heritage lecture / Allocution du patrimoine Staffan Lindgren Trips, traps, triumphs and tribulations: A journey from childhood dreams to a dream-career in entomology Modified from the Heritage Lecture presented at the Joint Annual Meeting of the Entomological Societies of Canada and British Columbia, Vancouver, 2 November 2010 hen first asked to deliver the 2010 Heritage Lecture (Fig. 1), WI immediately started thinking about what the word “heritage” actually means. I turned to the authoritative Wikipe- dia for the answer, and found the following (http://en.wikipedia.org/wiki/Heritage): “Heritage” refers to something inherited from one’s ancestors. It has several differ- ent senses, including: Natural heritage, a group’s inheritance of fauna and flora, geology, landscape and landforms, and other natural resources Dezene Huber Cultural heritage, the legacy of physi- cal artifacts and intangible attributes of a Fig. 1. Staffan presenting the Heritage Lecture. group or society: man-made heritage In entomology, our heritage combines these two, but it is really cultural heritage that makes humans what they are, in that we can pass accumulated knowledge down from generation to generation. Knowledge isn’t acquired by osmosis, however. All of us have had people in our lives who have guided and inspired us, our mentors. Returning to the web, I found the following: Mentor - A wise and trusted counselor or teacher Mentorship - “… informal transmission of knowledge… relevant to work, career, or profes- sional development Mentoring entails informal communication… during a sustained period of time, between … the mentor and …the protégé.” (Modified from Bozeman and Feeney 2007) This paper is not meant to focus on me, but rather to recognize the importance of heritage and mentorship.
    [Show full text]
  • Spatiotemporal Associations Between Forests Impacted by Mountain Pine Beetle and Adjacent Replantings Impacted by Warren Root Collar Weevil
    Spatiotemporal Associations Between Forests Impacted By Mountain Pine Beetle And Adjacent Replantings Impacted By Warren Root Collar Weevil Matthew D. Klingenberg B.Sc, Redeemer University College, 2006 Thesis Submitted In Partial Fulfillment Of The Requirements For The Degree Of Master Of Science In Natural Resources And Environmental Studies (Biology) The University Of Northern British Columbia August 2008 © Matthew D. Klingenberg Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-48764-8 Our file Notre reference ISBN: 978-0-494-48764-8 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Predicting the Occurrence of Insect, Disease, Animal, and Abiotic
    1 Predicting the occurrence of insect, disease, animal, and abiotic damage in 15-30 2 year old southern interior British Columbia lodgepole pine stands from climatic and 3 site factors 4 5 6 7 8 Jean L. Heineman1, Donald L. Sachs2, W. Jean Mather3, and Suzanne W. Simard4 9 10 11 1 J. Heineman Consulting, 2125 East 5th Ave., Vancouver, B.C., Canada, V5N 1M5. Telephone: 604-251- 12 5662; Fax: 604-251-5663; Email: [email protected] 13 2 Forest Research Consultant. 3928 West 31st Ave., Vancouver, B.C., Canada, V6S 1Y5. Telephone and 14 fax: (250)-352-0601; Email: [email protected] 15 3 Skyline Forestry Consultants, Ltd., 4-375 4th Ave., Kamloops, B.C., Canada, V2C 3P1. Telephone: 250- 16 828-1848; Fax: 250-828-1849; Email: [email protected] 17 4 University of British Columbia, Forest Science Department, 2424 Main Mall, Vancouver, BC, Canada, 18 V6T 1Z4. Telephone: (604)-822-1955; Fax: (604)-822-9102; Email: [email protected] 19 20 1Author to whom all correspondence should be addressed. 21 22 23 24 Keywords: lodgepole pine, disease, insects, hard pine stem rust, western gall rust, Sequoia pitch 25 moth, pine terminal weevil, pine needle cast 26 27 1 1 Abstract 2 We quantified the presence of 17 individual disease, insect, animal, and abiotic agents in 15-30 3 year-old lodgepole pine-leading stands in southern interior British Columbia, Canada. Data were 4 collected from an average of nine 50m2 plots at each of 66 randomly selected sites that had 5 previously met provincial standards for condition and stocking.
    [Show full text]
  • A Stand Establishment Decision Aid for Warren Root Collar Weevil
    Extension Note BC Journal of Ecosystems and Management British Columbia’s Northern Interior Forests Warren Root Collar Weevil Stand Establishment Decision Aid Larry McCulloch1, Brian Aukema2, Ken White3, and Matthew Klingenberg4 Introduction Warren root collar weevil (Hylobius warreni) is a commonly occurring insect found in most of British Columbia and as far north as the Northwest Territories. This weevil affects many tree species and is found in forest stands of any age, although its impact as a disturbance agent is most important in lodgepole pine stands. Engelmann and white spruce are also common hosts, but incidence levels have not been high enough with these species to cause reforestation issues. Incidence levels in lodgepole pine stands commonly exceed 30%, although mortality levels are generally far less and occur in younger stands (5–20 years of age). Recent research suggests that a link exists between stands affected by mountain pine beetle (MPB) and root collar weevil. In one study, the incidence of weevil-attacked trees was elevated in young plantations adjacent to mature stands that had sustained high levels of MPB-caused mortality. An understanding of the weevil’s biology and the identification of high-hazard stand conditions for both insect species are essential to successfully avoid regeneration issues. Most treatments involve mitigation measures applied during stand establishment. The Stand Establishment Decision Aid (SEDA) format has been used to extend information on a variety of vegetation and forest health concerns in British Columbia. The two-page SEDA presented in this extension note was developed to summarize information that northern forest managers will need to manage the impacts of the Warren root collar weevil.
    [Show full text]
  • UBC 1969 A1 C47.Pdf
    THE DISTRIBUTION AND ABUNDANCE OF THE ROOT WEEVIL, HYLOBIUS WARRENI WOOD IN RELATION TO LODGEPOLE PINE STAND CONDITIONS IN ALBERTA by HERBERT FREDERICK CEREZKE Sc. (1959), M.Sc. (1962), University of Alberta A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of FORESTRY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December, 1968 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesjs for financial gain shall not be allowed without my written permission. Department of C^To^^dk^ The University of British Columbia Vancouver 8, Canada Date ABSTRACT The distribution, population ecology, behavior and host interactions of the root weevil, Hylobius warreni Wood were investigated in lodgepole pine forests in Alberta. Highest incidence of the weevil occurs in the.Lower Foothills Section cf the Boreal Forest Region, between 2,500 and 4,000 feet in elevation. In even-aged forests weevil numbers are distributed according to stand maturity, stand density, tree size and duff depth. Interactions between these variables modify the patterns of abundance in different stands. Attack incidence upon the host varies, being highest in the collar zone and least on lateral roots.
    [Show full text]
  • Incidencia De Hylobius Abietis En El Sur De Galicia
    Trabajo de Fin de Grado: Incidencia de Hylobius abietis en el sur de Galicia. Efectos de la gestión silvícola y de la abundancia y continuidad de las masas de pinar en los alrededores Grado: Enxeñería Forestal. Escola de Enxeñería Forestal. Curso 2016/17 Campus de Pontevedra. Universidade de Vigo. Codirectores: Dr. Rafael Zas, Xosé López Goldar y Estefanía Suárez Vidal. Grupo de Xenética e Ecoloxía Forestal da Misión Biolóxica de Galicia, CSIC. Tutor: Prof. Dr. Carlos Souto, Escola de Enxeñería Forestal, Universidade de Vigo. Alumno: Santiago Carreño Morales Especialmente dedicado a Nuria Vázquez Trabajo de Fin de Grado Incidencia de Hylobius abietis en el sur de Galicia. Efectos de la gestión silvícola y de la abundancia y continuidad de las masas de pinar en los alrededores En Pontevedra, octubre de 2016 Los Codirectores: Dr. Rafael Zas Xosé López Goldar Estefanía Suárez Vidal El Tutor: El alumno: Dr. Carlos Souto Otero Santiago Carreño Morales Trabajo de Fin de Grado: Incidencia de Hylobius abietis en el sur de Galicia INDICE 1. RESUMEN ............................................................................................................. 1 2. INTRODUCCION .................................................................................................... 4 2.1. Hylobius abietis: TAXONOMÍA, DISTRIBUCIÓN Y CICLO DE VIDA ............... 4 2.2. PLAGA SILVÍCOLA: DAÑOS ............................................................................. 8 2.3. MÉTODOS DE CONTROL .................................................................................
    [Show full text]
  • The Weevils (Coleoptera: Curculionoidea) of the Maritime Provinces of Canada, II: New Records from Nova Scotia and Prince Edward Island and Regional Zoogeography
    397 The weevils (Coleoptera: Curculionoidea) of the Maritime Provinces of Canada, II: New records from Nova Scotia and Prince Edward Island and regional zoogeography Christopher G. Majka1 Nova Scotia Museum of Natural History, 1747 Summer Street, Halifax, Nova Scotia, Canada B3H 3A6 Robert S. Anderson Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4 David B. McCorquodale Cape Breton University, Department of Biology, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada B1P 6L2 Abstract—Seventy-nine species of weevils are newly reported in Nova Scotia and 66 species are newly reported on Prince Edward Island, increasing the known provincial weevil faunas to 244 and 92 species, respectively. Thirty-six species are recorded for the first time in the Maritime Provinces; of these, Ceutorhynchus pallidactylus (Marsham), Listronotus dietzi O’Brien, Corthylus columbianus Hopkins, and Orchidophilus aterrimus (Waterhouse) are recorded for the first time in Canada. Orchidophilus aterrimus has been collected only in exotic domesticated orchids and is not established in the wild. Fourteen species previously recorded on Cape Breton Island, Nova Scotia, are reported from the provincial mainland. Four species — Curculio sulcatulus (Casey), Ceutorhynchus squamatus LeConte, Tachyerges niger (Horn), and Ips calligraphus (Germar) — are removed from the faunal list of Nova Scotia, and three species — Temnocerus cyanellus (LeConte), Curculio nasicus (Say), and Cryphalus ruficollis ruficollis Hopkins — are removed from the faunal list of Prince Edward Island. The combined known weevil fauna of the Maritime Provinces now totals 290 species. The adequacy of collection effort is discussed and in Nova Scotia, where collection effort has been greatest, distribution patterns of selected groups of species are examined.
    [Show full text]
  • Head Capsule Width Is Useful for Determining Larval Instar in Heilipus
    Head capsule width is useful for determining larval instar in Heilipus lauri (Coleoptera: Curculionidae) Álvaro Castañeda-Vildózola1,2,*, Héctor González-Hernández1, Armando Equihua- Martínez1, Jorge Valdez-Carrasco1, Jorge E. Peña3, Lucas Emiliano Cazado4, and Omar Franco-Mora2 The big avocado seed weevil, Heilipus lauri Boheman (Coleoptera: capsule measurements for each larval instar, and the probability for Curculionidae), is a curculionid pest that feeds on seeds of avocado, overlap in sizes between instars. Persea americana Mill. (Laurales: Lauraceae). It was described by The Hcap program has been used successfully to determine the Boheman (1845) from specimens collected in Mexico, but it has also number of instars in several curculionid species, such as Pissodes been reported in the Mexican states of Puebla, Morelos, Veracruz, castaneus De Greer, Tomicus destruens Wollaston, and Rhyssoma- Hidalgo, Guerrero, and Estado de Mexico (Peña 1998; Castañeda- tus subtilis Fielder (Panzavolta 2007; Sabbatini-Peverieri & Faggi Vildózola et al. 2013) and Colombia (Caicedo et al. 2010). 2005; Cazado et al. 2014). The objective of this study was to de- Heilipus lauri is considered an important quarantine pest. As a fine the number of larval instars in H. lauri from a larval population consequence, the Mexican government has restricted movement reared under laboratory conditions by measuring the width of the into H. lauri–free areas of any avocado fruits for human consump- head capsules and using the Hcap program as well as by following tion and any material for propagation that comes from regions in- Dyar’s rule. fested with this pest. This strategy has helped to ensure that the Heilipus lauri was reared from adults that were collected in Apr main avocado production areas of Michoacan remain free from this 2005 from avocado trees (‘Colin V-33’) cultivated in a non-commercial pest (SAGARPA 2002).
    [Show full text]
  • Brian H. Aukema Or Matthew D. Klingenberg Organization
    Proponent Information Name: Brian H. Aukema or Matthew D. Klingenberg Organization: Canadian Forest Service, Natural Resources Canada Mailing Address: ℅ University of Northern British Columbia Enhanced Forestry Laboratory 11-123 3333 University Way Prince George, BC V2N 4Z9 Email Address: [email protected] or [email protected] Telephone: (250) 960-5924 or 960-6337 Fax: (250) 960-6498 Project Information Project Number: M086046 Project Title: Stand and forest dynamics following MPB: how spatial patterns of salvage harvesting affect Warren root collar weevil pressure in regenerating stands Project Purpose / Management Implications: Project Description: The outbreak of mountain pine beetle in BC currently covers more than 10 million ha, although the majority of the outbreak in the northern interior of the province has run its course (Aukema et al. 2006). Salvage operations will continue at unprecedented rates throughout the next decade, transforming the landscape into a mosaic of numerous patches of regenerating stands adjacent to killed timber. Despite widespread salvage operations, little is known about how the spatial patterns of salvage logging will affect recruitment and success of both planted and naturally regenerating stands. Large-scale disturbance events such as insect outbreaks frequently affect plant and animal species assemblages in successional communities (Matsuoka et al. 2001). In the current context of mountain pine beetle disturbance, a significant threat to regeneration is the Warren root collar weevil (Hylobius warreni) both concentrating in and migrating from residual stands. The Warren root collar weevil is prevalent in lodgepole pine and mixed lodgepole pine/spruce stands throughout BC. Larvae develop and feed subcortically on the root collars of trees.
    [Show full text]
  • Random and Directed Movement by Warren Root Collar Weevils (Coleoptera: Curculionidae), Relative to Size and Distance of Host Lodgepole Pine Trees
    Journal of Insect Science, (2020) 20(4): 9; 1–12 doi: 10.1093/jisesa/ieaa063 Research Random and Directed Movement by Warren Root Collar Weevils (Coleoptera: Curculionidae), Relative to Size and Distance of Host Lodgepole Pine Trees Sharleen L. Balogh,1,3 Niklas Björklund,2 Dezene P. W. Huber,1 and B. Staffan Lindgren1 Downloaded from https://academic.oup.com/jinsectscience/article/20/4/9/5875974 by guest on 08 January 2021 1Natural Resources and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada, 2Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07, Uppsala, Sweden, 3Corresponding author, e-mail: [email protected] Subject Editor: Jessica Vereijssen Received 22 February 2020; Editorial decision 7 June 2020 Abstract Hylobius warreni Wood (Coleoptera: Curculionidae) is a pest of conifers, especially lodgepole pine (Pinus contorta var. latifolia Douglas ex Loudon) (Pinales: Pinaceae) in the Interior of British Columbia. The larvae feed on the roots and root collars and cause girdling damage, resulting in mortality or growth reductions. Previous research has suggested the adult weevils locate potential host trees by using random movements and vision, but likely not chemosensory cues. The purpose of this study is to determine if adult H. warreni respond to particular tree characteristics versus encounter potential hosts at random. Study A was a capture–mark–recapture experiment where weevils were captured on mature pine trees, while Study B was a tracking experiment within a young pine plantation. Weevils showed a preference for larger trees, and for trees that were closer to the weevil’s last known location.
    [Show full text]