Water Availability Challenges in Mozambique – Implications to the Nexus
Total Page:16
File Type:pdf, Size:1020Kb
Water availability challenges in Mozambique – implications to the Nexus Author: Ylva Nordström Supervisor: Eunice Ramos Examiner: Prof. Mark Howells Registration number: TRITA-ITM-EX 2019:14 January 2019 Master of Science Thesis KTH School of Industrial Engineering and Management Division of Energy Systems Analysis SE – 100 44 Stockholm 1 Sammanfattning Den här rapporten undersöker möjliga framtider för vattentillgångarna och vattenkonsumptionen i området kring Pungwefloden i Mozambique med hänsyn till den naturliga miljön och vattenanvändningen. De vanligaste landklasserna i området är olika typer av skog. De vanligaste ekonomiska aktiviteterna, jordbruk, boskap och fiske äger rum i den nedre delen av flodområdet kring Pungwe. Studien gjordes genom att utföra en kvalitativ analys of vatteninnehållet och andra resurssystem vilket ledde till identifieringen av tre utmaningar; tillgång till dicksvatten; klimatförändringar och tillgång till vatten för bevattning. Det följdes av en kvantifieringsanalys centrerad kring utvecklingen av en vattensystemmodell för området kring Pungwe som gjordes med modellverktyget Water Evaluation and Planning (WEAP). Ett scenario skapades för varje utmaning för att undersöka den inverkan de har på vattentillgången. I det första scenariot har hela populationen i flodområdet kring Pungwe tillgång till rent dricksvatten vid 2030. Det är i linje med den första delen av det sjätte hållbarhetsmålet satt av FN. I det andra scenariot är klimatet i området varmare och torrare än i referensscenariot. Klimatet är modellerat efter den torraste körningen av Representative Concentration Pathway 6.0 (RCP6.0). I det tredje scenariot är den odlade området större, precis som den bevattnade andelen av den odlade marken. Det andra scenariot är en fortsättning av det första och det tredje är en fortsättning av det andra. Det betyder att 100% av populationen har tillgång till rent dricksvatten 2030 i alla scenarier och att de sista två har klimatdata från RCP6. WEAP-modelleringen indikerade att ytvattentillgången inte är ett problem för 100% vattentillgång i det övre och nedre avrinningsområdet med avseende på vattenkvantitet fram till 2050 i alla scenarier. I det mellersta avrinningsområdet däremot brister vattentillgången redan i referensscenariot. Bristen sker under den torra säsongen. För varje scenario börjar underskottet tidigare och tidigare, fler månader påverkas och allvaret i det ouppfyllda behovet ökar. I bevattningsscenariot är januari den enda månaden som inte påverkas av vattenunderskott. Flödet i floden påverkas mycket av klimatförändringscenariot. Vid lågt flöde är påverkan mindre men under perioder med högt flöde är det inte ens hälften av vad det var tidigare. Efter analysering av resultaten och besvaring av forskningsfrågorna står det klart att vattnet i Pungwefloden inte är en tillräcklig vattenkälla för att tillmötesgå det ökande vattenbehovet i flodområdet, framförallt inte om bevattningen ökar. Möjliga lösningar för att handskas med vattenunderskottet som presenteras i rapporten är regnskörd, vattenbehandling, avsaltning i nedre avrinningsområdet och reglerad vattenförbrukning. 2 Abstract This report investigates futures for water supply and consumption in the Pungwe River basin in Mozambique taking into consideration the natural environment and water uses. The most common land classes in the basin are forest and woodland. The major economic activities of agriculture, live-stock production and fishing take place in the lower part of the Pungwe River basin. The study was made by doing a qualitative analysis of the water contents and other resource systems which then led to the identification of three challenges; access to drinking water; climate change and access to water for irrigation. This was followed by a quantification analysis that had its center in the development of a water systems model for the River basin using the Water Evaluation and Planning (WEAP) modelling tool. A scenario was formed for each challenge to investigate the impact they all have on the water availability. In the first scenario, the entire population in the Pungwe River basin has access to clean drinking water by 2030. This is in line with the first target of Sustainable Development Goal 6. In the second scenario, the climate in the basin will be warmer and drier than in the baseline scenario. The climate is modeled after the driest climate model run of the Representative Concentration Pathway 6.0 (RCP6.0). In the third scenario, the cultivated area of the basin is increased as well as the irrigated share of the cultivated area. The second scenario is a continuation of the first and the third is a continuation of the second. This means that the all three scenarios have 100% access to drinking water by 2030 and the last two both have RCP6.0. climate data. The WEAP modelling indicated that surface water availability is not a limitation for the achievement of 100% water access in the upper and lower catchments, in terms of water quantity, every year until 2050 in all the scenarios. In the middle catchment, however, there is a deficit in water access already in the reference scenario towards the century. The deficit occurs in the dry season. For each scenario, the deficit starts years earlier, more months are affected and the severity of the unmet demand increases. In the irrigation scenario, only January is unaffected by insufficient water access. The streamflow in the river is greatly affected in the climate change scenario. During low flow there is not much difference but in high flow the streamflow is not even half of what it was earlier. After analyzing the results and answering the research questions it is clear that the surface water in the Pungwe River will not be a sufficient water source to accommodate the increasing water demand in the basin, in particular if the use of irrigation is expanded. Possible solutions to cope with the water deficit presented are rain harvest, water treatment, desalination in the lower catchment and regulated water consumption. 3 Table of Contents Sammanfattning 2 Abstract 3 Table of Contents 4 Table of Tables 7 Acronyms and abbreviations 8 Introduction 9 Background 11 National context 11 Socio-economic trends 11 Overview of the status of the nexus systems 12 Climate – national 12 Land – national 12 Energy – National 13 Water – National 15 Pungwe River basin context 15 Socio-economic trends 17 Characterization of nexus systems 17 Climate 17 Land 17 Energy 18 Water 18 Overview of the status of the nexus systems 18 Climate 20 Identification of water challenges in the Pungwe river basin 20 Review of studies focused on analyzing water resources availability and use in Mozambique/Pungwe 21 Water governance 21 National level 21 Basin level 21 Methodology 22 Overview of methodology 23 WEAP model development 23 Model structure 25 Model calibration 26 4 Scenarios for Pungwe River basin 28 Reference scenario – description and main assumptions 29 Population: 29 Water 30 Irrigation 30 Land use 31 Climate 32 Water access scenario 32 Climate change scenario 32 Irrigation scenario 33 Results and Discussion 33 Reference scenario 33 The water access scenario, SDG6, compared to the reference scenario 35 The climate change scenario, CC, compared to the water access scenario, SDG6 38 The irrigation scenario, IRR, compared to the climate change scenario, CC 40 Conclusions and implications to policy design/planning 42 Answers to research questions 42 Limitations 43 Future work 44 References 45 5 Table of figures Figure 1: Mozambique highlighted on a map of Africa (JCDecaux, n.d.). 11 Figure 2: Pie chart showing the share of energy sources for total primary energy supply and total final energy consumption (IEA, 2018). 14 Figure 3: Pungwe river basin outlined on a map of Mozambique. 16 Figure 4: Pungwe River basin outlined on Manica and Sofala. Manica is the province to the left and Sofala is to the right. 16 Figure 5: Pie charts showing the crop shares in the Sofala and Manica provinces (MASA, 2015). 18 Figure 6: The water agencies in Mozambique (NEPAD, 2013). 22 Figure 7: Diagram over the methodology. 23 Figure 8: Schematic of the Pungwe River basin in WEAP. 25 Figure 9: Streamflow comparison at the Bue Maria stream gauge. 27 Figure 10: Percentage of time exceeded at the Bue Maria stream gauge. 27 Figure 11: Streamflow comparison at the E.N. 102 stream gauge. 28 Figure 12: Percentage of time exceeded at the E.N. 102 stream gauge. 28 Figure 13: Diagram of the land classes each catchment of the basin. 31 Figure 14:Graph showing the annual total supply requirement (including loss, reuse and DSM) for the catchments in the reference scenario. 33 Figure 15: Graph showing the supply requirement of the different water consumers in each catchment. 33 Figure 16: Coverage in the upper catchment. Error! Bookmark not defined.Figure 18: Coverage in the middle catchment. 34 Figure 19: Monthly average of coverage in the middle catchment. 34 Figure 20: Streamflow in the Pungwe River basin. The 6th reach is after the upper catchments demand return, 12th is after the middle catchments demand return and 18th is after the lower catchments demand return. 35 Figure 21: The supply requirements for each catchment in the SDG6 scenario relative to the reference scenario. 35 Figure 22: Supply requirement for the water consumers in the different catchments in the SDG6 scenario. 36 Figure 23: Coverage in the basin’s middle catchment. 36 Figure 24: The monthly average of the coverage in the middle catchment for the reference and SDG6 scenarios. 37 Figure 25: The streamflow of the different catchments in the SDG6 scenario relative to the reference scenario. The 6th reach is after the upper catchments demand return, 12th is after the middle catchments demand return and 18th is after the lower catchments demand return. 37 Figure 26: Coverage in the middle catchment in the CC and SDG6 scenarios. 38 Figure 27: Monthly average of the coverage in the CC and SDG6 scenarios. 38 Figure 28: Streamflow in the upper catchment in the CC and SDG6 scenarios.