A Review of Chenopodium Quinoa (Willd.) Diseases—An Updated Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monocyclic Components for Evaluating Disease Resistance to Cercospora Arachidicola and Cercosporidium Personatum in Peanut
Monocyclic Components for Evaluating Disease Resistance to Cercospora arachidicola and Cercosporidium personatum in Peanut by Limin Gong A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 6, 2016 Keywords: monocyclic components, disease resistance Copyright 2016 by Limin Gong Approved by Kira L. Bowen, Chair, Professor of Entomology and Plant Pathology Charles Y. Chen, Associate Professor of Crop, Soil and Environmental Sciences John F. Murphy, Professor of Entomology and Plant Pathology Jeffrey J. Coleman, Assisstant Professor of Entomology and Plant Pathology ABSTRACT Cultivated peanut (Arachis hypogaea L.) is an economically important crop that is produced in the United States and throughout the world. However, there are two major fungal pathogens of cultivated peanuts, and they each contribute to substantial yield losses of 50% or greater. The pathogens of these diseases are Cercospora arachidicola which causes early leaf spot (ELS), and Cercosporidium personatum which causes late leaf spot (LLS). While fungicide treatments are fairly effective for leaf spot management, disease resistance is still the best strategy. Therefore, it is important to evaluate and compare different genotypes for their disease resistance levels. The overall goal of this study was to determine resistance levels of different peanut genotypes to ELS and LLS. The peanut genotypes (Chit P7, C1001, Exp27-1516, Flavor Runner 458, PI 268868, and GA-12Y) used in this study include two genetically modified lines (Chit P7 and C1001) that over-expresses a chitinase gene. This overall goal was addressed with three specific objectives: 1) determine suitable conditions for pathogen culture and spore production in vitro; 2) determine suitable conditions for establishing infection in the greenhouse; 3) compare ELS and LLS disease reactions of young plants to those of older plants. -
Phaeoseptaceae, Pleosporales) from China
Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides. -
Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara Viticola
plants Technical Note Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara viticola Tyrone Possamai 1 , Daniele Migliaro 2,* , Massimo Gardiman 2 , Riccardo Velasco 2 and Barbara De Nardi 2 1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; [email protected] 2 CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy; [email protected] (M.G.); [email protected] (R.V.); [email protected] (B.D.N.) * Correspondence: [email protected] Received: 30 May 2020; Accepted: 20 June 2020; Published: 22 June 2020 Abstract: Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most serious grapevine diseases. The development of new varieties, showing partial resistance to downy mildew, through traditional breeding provides a sustainable and effective solution for disease management. Marker-assisted-selection (MAS) provide fast and cost-effective genotyping methods, but phenotyping remains necessary to characterize the host–pathogen interaction and assess the effective resistance level of new varieties as well as to validate MAS selection. In this study, the Rpv mediated defense responses were investigated in 31 genotypes, encompassing susceptible and resistant varieties and 26 seedlings, following inoculation of leaf discs with P. viticola. The offspring differed in Rpv loci inherited (none, one or two): Rpv3-3 and Rpv10 from Solaris and Rpv3-1 and Rpv12 from Kozma 20-3. To improve the assessment of different resistance responses, pathogen reaction (sporulation) and host reaction (necrosis) were scored separately as independent features. -
Download Full Article in PDF Format
Cryptogamie, Mycologie, 2014, 35 (2): 151-156 © 2014 Adac. Tous droits réservés Two new species of Passalora and Periconiella (cercosporoid hyphomycetes) from Panama Roland KIRSCHNERa & Meike PIEPENBRINGb aDepartment of Life Sciences, National Central University, No. 300, Jhong-Da Road, Jhongli City, Taoyuan County 32001, Taiwan (R.O.C.) email: [email protected] bDepartment of Mycology, Cluster for Integrative Fungal Research (IPF), Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany Abstract – New species of Passalora on Aphelandra scabra (Acanthaceae) and of Periconiella on Persea americana (Lauraceae) are described from tropical lowland vegetation in Panama. The new Passalora species differs from congeneric species on members of Acanthaceae by its external hyphae giving rise to conidiophores. The new Periconiella species can be distinguished from other species of the genus by its conidiogenous cells being conspicuously oriented outwards from the conidiophore head and by its sizes being intermediate between those of P. machilicola on the one hand and of P. longispora and P. rapaneae on the other. Anamorphic Dothideomycetes (Ascomyocta) / microfungi / Mycosphaerella / neotropics INTRODUCTION Plant-associated hyphomycetes with relationships to Mycosphaerella and related taxa of Dothideomycetes (Ascomycota) are generally considered cercosporoid fungi with frequently changing generic concepts. Reviews and keys of the present stage of generic concepts in the cercosporoid hyphomycetes are provided by Crous & Braun (2003). Species of two genera with pigmented conidiophores and conidia with blackened conidiogenous loci and conidial hila are treated in this study, namely of Passalora and Periconiella. Species of Periconiella are additionally characterized by conidiophores differentiated into a stipe and head composed of branches and conidiogenous cells. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Ascochyta Pisi, a Disease of Seed Peas
April, 1906.} Ascoehytapisi—Disease of Seed Peas. 507 ASCOCHYTA PISI,—A DISEASE OF SEED PEAS.1 J. M. VAN HOOK. During the season of 1904 and 1905, there was an exceptional blighting2 of peas from Ascochyta pisi Lib. The disease was general throughout the state and occasioned loss especially where peas are grown in large areas for canning purposes. My attention was first called to this trouble June 24, 1904, on French June field peas, which had been sown with oats as a for- age crop. Most of the peas at this time, were about two feet high and just beginning to bloom. The lower leaves were, for the most part, dead. A few plants were wilting after several days of sunshine following continuous wet weather. Other stunted peas grew among these, some of which never attained a height greater than a few inches. Appearance on stems, leaves, pods and seed.—A close examina- tion of the plants showed that the stems had been attacked at many points, frequently as high as one and one-half feet from the ground, though most severely near the ground where the disease starts. In the beginning, dead areas were formed on the stem in the form of oval or elongated lesions. At a point, from the top of the ground to two or three inches above the ground, these lesions were so numerous and had spread so rapidly as to become continuous, leaving the stem encircled by a dead area. In some cases, the woody part of the stem was also dead, though the greater number of such plants still remained green above. -
Biology and Recent Developments in the Systematics of Phoma, a Complex Genus of Major Quarantine Significance Reviews, Critiques
Fungal Diversity Reviews, Critiques and New Technologies Reviews, Critiques and New Technologies Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance Aveskamp, M.M.1*, De Gruyter, J.1, 2 and Crous, P.W.1 1CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Plant Protection Service (PD), P.O. Box 9102, 6700 HC Wageningen, The Netherlands Aveskamp, M.M., De Gruyter, J. and Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1-18. Species of the coelomycetous genus Phoma are ubiquitously present in the environment, and occupy numerous ecological niches. More than 220 species are currently recognised, but the actual number of taxa within this genus is probably much higher, as only a fraction of the thousands of species described in literature have been verified in vitro. For as long as the genus exists, identification has posed problems to taxonomists due to the asexual nature of most species, the high morphological variability in vivo, and the vague generic circumscription according to the Saccardoan system. In recent years the genus was revised in a series of papers by Gerhard Boerema and co-workers, using culturing techniques and morphological data. This resulted in an extensive handbook, the “Phoma Identification Manual” which was published in 2004. The present review discusses the taxonomic revision of Phoma and its teleomorphs, with a special focus on its molecular biology and papers published in the post-Boerema era. Key words: coelomycetes, Phoma, systematics, taxonomy. -
Colletotrichum – Names in Current Use
Online advance Fungal Diversity Colletotrichum – names in current use Hyde, K.D.1,7*, Cai, L.2, Cannon, P.F.3, Crouch, J.A.4, Crous, P.W.5, Damm, U. 5, Goodwin, P.H.6, Chen, H.7, Johnston, P.R.8, Jones, E.B.G.9, Liu, Z.Y.10, McKenzie, E.H.C.8, Moriwaki, J.11, Noireung, P.1, Pennycook, S.R.8, Pfenning, L.H.12, Prihastuti, H.1, Sato, T.13, Shivas, R.G.14, Tan, Y.P.14, Taylor, P.W.J.15, Weir, B.S.8, Yang, Y.L.10,16 and Zhang, J.Z.17 1,School of Science, Mae Fah Luang University, Chaing Rai, Thailand 2Research & Development Centre, Novozymes, Beijing 100085, PR China 3CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK and Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 4Cereal Disease Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA 5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 7International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 8Landcare Research, Private Bag 92170, Auckland 1142, New Zealand 9BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 10Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 11Hokuriku Research Center, National Agricultural Research Center, -
Evidence of Resistance to the Downy Mildew Agent Plasmopara Viticola in the Georgian Vitis Vinifera Germplasm
Vitis 55, 121–128 (2016) DOI: 10.5073/vitis.2016.55.121-128 Evidence of resistance to the downy mildew agent Plasmopara viticola in the Georgian Vitis vinifera germplasm S. L. TOFFOLATTI1), G. MADDALENA1), D. SALOMONI1), D. MAGHRADZE2), P. A. BIANCO1) and O. FAILLA1) 1) Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy 2) Scientific – Research Center of Agriculture, Tbilisi, Georgia Summary ability during late spring and summer usually prevent the spread of the disease (VERCESI et al. 2010). The control of Grapevine downy mildew, caused by Plasmopara downy mildew on grapevine varieties requires regular appli- viticola, is one of the most important diseases at the inter- cation of fungicides. However, the intensive use of chemicals national level. The mainly cultivated Vitis vinifera varie- becomes more and more restrictive due to human health ties are generally fully susceptible to P. viticola, but little risk and negative environmental impact (BLASI et al. 2011). information is available on the less common germplasm. Damages due to P. viticola could be reduced by using The V. vinifera germplasm of Georgia (Caucasus) is char- resistant grapevine varieties. The breeding programs are acterized by a high genetic diversity and it is different usually carried out by crossing V. vinifera with resistant from the main European cultivars. Aim of the study is species and in particular with American Vitaceae that co- finding possible sources of resistance in the Georgian evolved with the pathogen. The first generation hybrids, autochthonous varieties available in a field collection in obtained from the end of the XIXth to the beginning of the northern Italy. -
In Vitro Antimicrobial and Antimycobacterial Activity and HPLC–DAD Screening of Phenolics from Chenopodium Ambrosioides L
b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 296–302 ht tp://www.bjmicrobiol.com.br/ Food Microbiology In vitro antimicrobial and antimycobacterial activity and HPLC–DAD screening of phenolics from Chenopodium ambrosioides L. a,∗ a a a Roberta S. Jesus , Mariana Piana , Robson B. Freitas , Thiele F. Brum , a a a a Camilla F.S. Alves , Bianca V. Belke , Natália Jank Mossmann , Ritiel C. Cruz , b c c c Roberto C.V. Santos , Tanise V. Dalmolin , Bianca V. Bianchini , Marli M.A. Campos , a,∗ Liliane de Freitas Bauermann a Universidade Federal de Santa Maria, Departamento de Farmácia Industrial, Laboratório de Pesquisa Fitoquímica, Santa Maria, RS, Brazil b Centro Universitário Franciscano, Laboratório de Pesquisa em Microbiologia, Santa Maria, RS, Brazil c Universidade Federal de Santa Maria, Departamento de Análise Clínica e Toxicológica, Laboratório de Pesquisa Mycobacteriana, Santa Maria, RS, Brazil a r t i c l e i n f o a b s t r a c t Article history: The main objective of this study was to demonstrate the antimicrobial potential of the Received 25 January 2016 crude extract and fractions of Chenopodium ambrosioides L., popularly known as Santa- Accepted 11 February 2017 Maria herb, against microorganisms of clinical interest by the microdilution technique, Available online 19 July 2017 and also to show the chromatographic profile of the phenolic compounds in the species. Associate Editor: Luis Henrique The Phytochemical screening revealed the presence of cardiotonic, anthraquinone, alka- Guimarães loids, tannins and flavonoids. -
A Review of Botany, Phytochemical, and Pharmacological Effects of Dysphania Ambrosioides
Indonesian Journal of Life Sciences Vol. 02 | Number 02 | September (2020) http://journal.i3l.ac.id/ojs/index.php/IJLS/ REVIEW ARTICLE A Review of Botany, Phytochemical, and Pharmacological Effects of Dysphania ambrosioides Lavisiony Gracius Hewis1, Giovanni Batista Christian Daeli1, Kenjiro Tanoto1, Carlos1, Agnes Anania Triavika Sahamastuti1* 1Pharmacy study program, Indonesia International Institute for Life-sciences, Jakarta, Indonesia *corresponding author. Email: [email protected] ABSTRACT Traditional medicine is widely used worldwide due to its benefits and healthier components that these natural herbs provide. Natural products are substances produced or retrieved from living organisms found in nature and often can exert biological or pharmacological activity, thus making them a potential alternative for synthetic drugs. Natural products, especially plant-derived products, have been known to possess many beneficial effects and are widely used for the treatment of various diseases and conditions. Dysphania ambrosioides is classified as an annual or short-lived perennial herb commonly found in Central and South America with a strong aroma and a hairy characteristic. Major components in this herb are ascaridole, p-cymene, α-terpinene, terpinolene, carvacrol, and trans-isoascaridole. Active compounds isolated from this herb are found to exert various pharmacological effects including schistosomicidal, nematicidal, antimalarial, antileishmanial, cytotoxic, antibacterial, antiviral, antifungal, antioxidant, anticancer, and antibiotic modulatory activity. This review summarizes the phytochemical compounds found in the Dysphania ambrosioides, together with their pharmacological and toxicological effects. Keywords: Dysphania ambrosioides; phytochemicals; pharmacological effect; secondary metabolites; toxicity INTRODUCTION pharmacologically-active compound, morphine, Natural products have been used by a wide was isolated from plants by Serturner spectrum of populations to alleviate and treat (Krishnamurti & Rao, 2016). -
Protecting the Australian Capsicum Industry from Incursions of Colletotrichum Pathogens
Protecting the Australian Capsicum industry from incursions of Colletotrichum pathogens Dilani Danushika De Silva ORCID identifier 0000-0003-4294-6665 Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy Faculty of Veterinary and Agricultural Sciences The University of Melbourne January 2019 1 2 Declaration I declare that this thesis comprises only my original work towards the degree of Doctor of Philosophy. Due acknowledgement has been made in the text to all other material used. This thesis does not exceed 100,000 words and complies with the stipulations set out for the degree of Doctor of Philosophy by the University of Melbourne. Dilani De Silva January 2019 i Acknowledgements I am truly grateful to my supervisor Professor Paul Taylor for his immense support during my PhD, his knowledge, patience and enthusiasm was key for my success. Your passion and knowledge on plant pathology has always inspired me to do more. I appreciate your time and the effort you put in to help me with my research as well as taking the time to understand and help me cope during the most difficult times of my life. This achievement would not have been possible without your guidance and encouragement. I am blessed to have a supervisor like you and I could not have imagined having a better advisor for my PhD study. I sincerely thank Dr. Peter Ades whose great advice, your vast knowledge in statistical analysis, insightful comments and encouragement is what incented me to widen my research to various perspectives. I extend my gratitude to my external supervisor Professor Pedro Crous for his invaluable contribution in taxonomy and phylogenetic studies of my research.