A Review of Botany, Phytochemical, and Pharmacological Effects of Dysphania Ambrosioides

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Botany, Phytochemical, and Pharmacological Effects of Dysphania Ambrosioides Indonesian Journal of Life Sciences Vol. 02 | Number 02 | September (2020) http://journal.i3l.ac.id/ojs/index.php/IJLS/ REVIEW ARTICLE A Review of Botany, Phytochemical, and Pharmacological Effects of Dysphania ambrosioides Lavisiony Gracius Hewis1, Giovanni Batista Christian Daeli1, Kenjiro Tanoto1, Carlos1, Agnes Anania Triavika Sahamastuti1* 1Pharmacy study program, Indonesia International Institute for Life-sciences, Jakarta, Indonesia *corresponding author. Email: [email protected] ABSTRACT Traditional medicine is widely used worldwide due to its benefits and healthier components that these natural herbs provide. Natural products are substances produced or retrieved from living organisms found in nature and often can exert biological or pharmacological activity, thus making them a potential alternative for synthetic drugs. Natural products, especially plant-derived products, have been known to possess many beneficial effects and are widely used for the treatment of various diseases and conditions. Dysphania ambrosioides is classified as an annual or short-lived perennial herb commonly found in Central and South America with a strong aroma and a hairy characteristic. Major components in this herb are ascaridole, p-cymene, α-terpinene, terpinolene, carvacrol, and trans-isoascaridole. Active compounds isolated from this herb are found to exert various pharmacological effects including schistosomicidal, nematicidal, antimalarial, antileishmanial, cytotoxic, antibacterial, antiviral, antifungal, antioxidant, anticancer, and antibiotic modulatory activity. This review summarizes the phytochemical compounds found in the Dysphania ambrosioides, together with their pharmacological and toxicological effects. Keywords: Dysphania ambrosioides; phytochemicals; pharmacological effect; secondary metabolites; toxicity INTRODUCTION pharmacologically-active compound, morphine, Natural products have been used by a wide was isolated from plants by Serturner spectrum of populations to alleviate and treat (Krishnamurti & Rao, 2016). Afterward, diseases. They can be retrieved from plants, numerous active compounds have been animals, microorganisms, or marine organisms. identified and isolated from abundant plants Natural products such as Traditional Chinese available in nature. Traditional medicines Medicine (TCM), Ayurveda, Kampo, Traditional nowadays still play a key role in many countries Korean Medicine (TKM), and Unani are used in as complementary, alternative, or ethnic alternative medicines (Yuan, Ma, Ye & Piao, medicine. They could provide anticancer, 2016). Those traditional medicines have been antihypertensive, antimigraine, widely practiced globally for hundreds or even hepatoprotective effects, and much more. thousands of years. In 1805, the first Nevertheless, the adverse effects generated 70 Indonesian Journal of Life Sciences Vol. 02 | Number 02 | September (2020) http://journal.i3l.ac.id/ojs/index.php/IJLS/ from them shall be reduced to ensure their safety (Yuan, Ma, Ye & Piao, 2016). Dysphania ambrosioides, also known as Chenopodium ambrosioides, is commonly known as Indian wormseed, sweet pigweed, or Mexican tea. It is a hairy, strongly aromatic, annual, or short-lived perennial herb that usually grows wild in Central and South America Figure 1. Dysphania ambrosioides (L.) Mosyakin & (Soares et al., 2017). The stem of the plant is Clemants Mexican tea (Mohlenbrock, 1992). equipped with glandular trichomes that secrete essential oils (Fatokun et al., 2019). According Botanical Description to Soares et al. (2017), it is traditionally used as a flavoring agent in various kinds of dishes due Domain : Eukaryote to its pungent flavor. It is cultivated in sub- Kingdom : Plantae tropical and sub-temperate regions, mostly Division : Spermatophyta used for consumption in the form of leafy Subphylum : Angiospermae vegetables or herbs. The same report also Class : Dicotyledonae stated that in Brazil, D. ambrosioides is known Order : Caryophyllales as 'erva de Santa Maria', which the infusion of Family : Chenopodiaceae the leaves can be used as a vermifuge. The Genus : Dysphania study mentioned that this plant's essential oil is Species :Dysphania ambrosioides used for pharmacological purposes because of Plant Morphology its high ascaridole content. Besides ascaridole, D. ambrosioides i i y r nc e er based on the chemotypes, D. ambrosioides t t c n re c p t meter i essential oil contains other monoterpenes, such er e, ti , t , 8 t e e as p-cymene, α-terpinene, γ-terpinene, are alternate, elongated, with acute apex, terpinolene, carvacrol, and trans-isoascaridole jagged edges, hairy, with different sizes, where (Barros et al.,2019) as the major compounds as the smaller ones are on the top of the plant and well as other compounds, such as o-cymene, are sessile; the larger ones are at the bottom trans-beta-terpinyl butanoate, and D-limonene with a short petiole (Blanckaert et al., 2011). (Soares et al., 2017). This review paper Moreover, it has a strong and characteristic discusses the bioactive constituents of D. smell. D. ambrosioides has a racemose type of ambrosioides, along with its pharmacological inflorescence, presented as green colored small and toxicological properties and suggested flowers (Sá et al., 2016). Each cluster of flowers mechanisms of actions. usually has 3-5 sepals, partially or united, with 3-5 stamens, free or with adnate filaments, on each sepal. It also has numerous, spherical, black colored seeds that are surrounded by a persistent calyx that is less than 0.8 mm long (Fatokun et al., 2019). 71 Indonesian Journal of Life Sciences Vol. 02 | Number 02 | September (2020) http://journal.i3l.ac.id/ojs/index.php/IJLS/ Plant Distribution orange-yellow liquid, with a peculiar, Native to Central and South America, D. unpleasant smell and a bitter, burning taste ambrosioides is originated from Mexico. (Shah & Khan, 2017). Usually, its growth is spontaneous mainly in America and Africa due to its subtropical and Extract tropical regions, and also in temperature zones According to Ferreira et al. (2019), ranging from the Mediterranean to Central flavonoids, as rutin equivalent, are abundantly Europe. The distribution of D. ambrosioides is found in the aerial parts of D. ambrosioides extensive in Brazil, which occurs in almost all rather than other phenolic compounds. This territory (Sá et al., 2016). study has been done through spectrophotometric analytical methods. While SECONDARY METABOLITES OF D. another study by Shah and Khan (2017) AMBROSIOIDES extracted some compounds from D. Thirumurugan et al. (2018) said that plants ambrosioides using methanol, followed by synthesize their secondary metabolites for self- further fractionation using several solvents. The protection and self-regulation. The same report re t were: ti m ter , β-sitosterol, and stated that the plant metabolites have relevant octadecanoic acid from ethyl acetate biological and organoleptic properties, which subfraction; scopoletin from dichloromethane can play important roles in human health and subfraction; and 1-piperoylpiperidine from n- general well-being. Studies have discovered butanol subfraction. A study done by Zohra et that D. ambrosioides contains ascaridole, al. (2018) showed that extraction using tannins, flavonoids, kaempferol, cardiotonic, methanol was the best way to extract the anthraquinone, alkaloids, rutin, ethyl acetate, n- phytochemical contents of D. ambrosioides. heptacosane, n-hentriacontane, n-butanol, n- docosane, aritasone, camphor, p-cymene, p- BIOLOGICAL AND PHARMACOLOGICAL cim , β-pinene, pin c r ne, β-caryophyllene, EFFECTS OF D. AMBROSIOIDES er ni , γ- rj nene, γ-terpine , α-terpineol, The EO of D. ambrosioides obtained from the α-terpinene, spinasterol, safrole, thymol, whole plant, including the fruit or the aerial terpinyl-salicylate, terpinyl-acetate, triacontyl- parts of the plants, has been traditionally used alcohol, quercetin, and chrysin among others in many ways. In Cameroon, it is commonly (Pedro et al., 2019; Jesus et al , 8 used to repel and kill insects due to the er e, ti , t , 8 presence of monoterpene peroxide ascaridole and aromatic p-cymene (Pavela et al., 2017). Essential Oils (EO) Moreover, it has been observed to possess The EO of D. ambrosioides was reported to antibacterial, antiviral (Zefzoufi et al., 2019), contain δ-3-c rene, α-terpinene, p-cymene, antileishmanial, cytotoxicity, anticancer (Zohra im nene, γ-terpinene, p-cymen-8-ol, et al., 2018), antiprotozoal towards Plasmodium ascaridole, cis-piperitone oxide, trans- falciparum, antiparasitic (Pizzorno, Murray, & piperitone oxide, trans-ascaridolyglycol, thymol, Joiner-Bey, 2016), and anthelmintics activity c r cr , i c ri e, n β-ionone based on (Ortner & Buikstra, 2019). The EO of D. GC-MS analysis (Zefzoufi et al., 2019). The EO of ambrosioides was also reported to have D. ambrosioides was found to be pale yellow to antibiotic modulatory (Almeida et al., 2019) and 72 Indonesian Journal of Life Sciences Vol. 02 | Number 02 | September (2020) http://journal.i3l.ac.id/ojs/index.php/IJLS/ antioxidant activity (Brahim et al., 2015). μ /mL c e m re t n 9 % ec n ‐ t e Furthermore, some studies stated that this juveniles (J2) mortality of Meloidogyne plant might show schistosomicidal (Soares et incognita, with LC50 and LC95 values of 307 al., 2017) and nematicidal effects (Faria et al., μ /mL n 58 μ /mL, re pecti e y The study 2016). found that significant reduction of J2 hatching and toxicity toward M. incognita eggs were Schistosomicidal
Recommended publications
  • PESTICIDAL PLANT LEAFLET Aloe Ferox Mill
    PESTICIDAL PLANT LEAFLET Aloe ferox Mill. ROYAL BOTANIC GARDENS Taxonomy and nomenclature Family: Xanthorrhoeaceae (formerly Asphodelaceae) Synonym(s): Aloe candelabrum A. Berger (1906) Vernacular/ common names : (English): Red aloe, bitter aloe, cape aloe (French): Aloes du Cap Distribution and habitat A. ferox is indigenous to South Africa and Lesotho, growing in the semi-arid open plains to rocky mountain slopes. In Kenya it is commonly cultivated in Nairobi gardens and its environs. It is distributed throughout the tropics and sub tropics where it grows as an ornamental or medicinal plant. It grows in a wide range of climatic conditions, but abundant on arid, rocky hillsides up to 1000 mo altitude, where mean temperature ranges from Botanical description 27-31 C and annual rainfall is 50-300 mm. A. ferox is a single-stemmed plant growing up to 2-5 m tall. The crown is a dense rosette of green to red-brown succulent leaves up to 1 m long and the stem is covered Uses in persistent dried leaves. Each leaf has brown spines There are two main useful products obtained from A. along the margins and often on the surfaces. The flowers ferox. Aloe gel comes from the leaf parenchyma, the are bisexual, about 10 cylindrical racemes on a branched white inner fleshy part. It drains from the leaf when cut panicle, long with dark orange stamens protruding from and is used for its cleansing, antiseptic, moisturizing the mouth. Some forms can have bright red, yellow or and anti-inflamatory properties. Aloe bitters, the dark white flowers. sap comes from between the green peel and the white jelly and are used as a laxative and to treat arthritis.
    [Show full text]
  • Toxicity in Artemia Salina by Hydroalcoholic Extracts Of
    367 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 79, 2020 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Enrico Bardone, Antonio Marzocchella, Marco Bravi Copyright © 2020, AIDIC Servizi S.r.l. DOI: 10.3303/CET2079062 ISBN 978-88-95608-77-8; ISSN 2283-9216 Toxicity in Artemia Salina by Hydroalcoholic Extracts of Monocotyledonous and Dicotyledonous Varieties of Medicinal Plants from the Peruvian Amazon Ana N. Sandoval*a, Jhonny W. Valverde Flores,b, Kriss M. Callaa, Rafael A. Albaa, a a c d Herry Lloclla , Santos A. Sotero Armando G. Ismiño , Marco L. Salazar aUniversidad César Vallejo, 22201, Cacatachi, San Martín, Perú. bUniversidad Nacional Agraria La Molina,15024, Lima, Perú. cAsociación de Productores Jardines de Palma, 22236, Pongo de Caynarachi, San Martin, Perú. d Universidad Nacional de Trujillo, 13006, Trujillo, Perú. [email protected] Medicinal plants have been used since ancient times, acquiring broad interest in their healing properties due to their active compounds. The Peruvian Amazon rainforest has a great variety of flora, such as monocots ( Dracontium loretense Krause and Commelina diffusa) and dicotyledons (Dysphania ambrosioides, Malva sylvestris, Origanum vulgare, Bixa orellana, Pinus edulis, Jatropha curcas L, and Brunfelsia). The study aimed to evaluate the toxicity in saline artemia by hydroalcoholic extracts of leaves of medicinal plants of the Peruvian Amazon. A phytochemical analysis of the leaves of the medicinal plants was performed to identify their active components. For the hydroalcoholic extraction, 300 g of leaves were used and dried extracts were obtained at concentrations of 10, 100 and 1000 μL/mL. The toxicity of the extract of each plant species in 10 larvae of Artemia was evaluated by triplicate tests.
    [Show full text]
  • Edible Flower and Herb and Pollinator Plant Varieties 2018
    Edible Flower and Herb and Pollinator Plant Varieties 2018 Crop Type Variety Edible Flowers Alyssum Mixed Colors Edible Flowers Bachelor Buttons Polka Dot Edible Flowers Bellis English Daisy Strawberries and Cream Edible Flowers Bellis English Daisy Tasso Red Edible Flowers Borage Borago officinalis Borage Edible Flowers Calendula Solar Flashback Mix Edible Flowers Calendula Alpha Edible Flowers Calendula Resina Edible Flowers Calendula Neon Edible Flowers Calendula Triangle Flashback Edible Flowers Calendula Strawberry Blonde Edible Flowers Dianthus Everlast Lilac Eye Edible Flowers Dianthus Everlast Dark Pink Edible Flowers Dianthus Volcano Mix Edible Flowers Dianthus Dynasty Mix Edible Flowers Dianthus Everlast Edible Flowers Dianthus Pink Kisses Edible Flowers Marigold Lemon Gem Edible Flowers Marigold Tangerine Gem Edible Flowers Marigold Kilimanjaro White Edible Flowers Marigold Harlequin Edible Flowers Marigold Bonanza Deep Orange Edible Flowers Marigold Mister Majestic Edible Flowers Marigold Mexican Mint Edible Flowers Marigold Red Marietta Edible Flowers Marigold Bonanza Mix Edible Flowers Nasturtium Trailing Edible Flowers Nasturtium Alaska Edible Flowers Nasturtium Moonlight Edible Flowers Nasturtium Empress of India Edible Flowers Nasturtium Jewel Mix Edible Flowers Nigella Nigella damascena Perisan Jewels Edible Flowers Nigella Nigella sativa Black Cumin Edible Flowers Nigella Nigella hispanica Exotic Edible Flowers Sunflower Mammoth Edible Flower and Herb and Pollinator Plant Varieties 2018 Crop Type Variety Edible Flowers
    [Show full text]
  • In Vitro Antimicrobial and Antimycobacterial Activity and HPLC–DAD Screening of Phenolics from Chenopodium Ambrosioides L
    b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 296–302 ht tp://www.bjmicrobiol.com.br/ Food Microbiology In vitro antimicrobial and antimycobacterial activity and HPLC–DAD screening of phenolics from Chenopodium ambrosioides L. a,∗ a a a Roberta S. Jesus , Mariana Piana , Robson B. Freitas , Thiele F. Brum , a a a a Camilla F.S. Alves , Bianca V. Belke , Natália Jank Mossmann , Ritiel C. Cruz , b c c c Roberto C.V. Santos , Tanise V. Dalmolin , Bianca V. Bianchini , Marli M.A. Campos , a,∗ Liliane de Freitas Bauermann a Universidade Federal de Santa Maria, Departamento de Farmácia Industrial, Laboratório de Pesquisa Fitoquímica, Santa Maria, RS, Brazil b Centro Universitário Franciscano, Laboratório de Pesquisa em Microbiologia, Santa Maria, RS, Brazil c Universidade Federal de Santa Maria, Departamento de Análise Clínica e Toxicológica, Laboratório de Pesquisa Mycobacteriana, Santa Maria, RS, Brazil a r t i c l e i n f o a b s t r a c t Article history: The main objective of this study was to demonstrate the antimicrobial potential of the Received 25 January 2016 crude extract and fractions of Chenopodium ambrosioides L., popularly known as Santa- Accepted 11 February 2017 Maria herb, against microorganisms of clinical interest by the microdilution technique, Available online 19 July 2017 and also to show the chromatographic profile of the phenolic compounds in the species. Associate Editor: Luis Henrique The Phytochemical screening revealed the presence of cardiotonic, anthraquinone, alka- Guimarães loids, tannins and flavonoids.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,927.241 B2 Ajikumar Et Al
    USOO8927241B2 (12) United States Patent (10) Patent No.: US 8,927.241 B2 Ajikumar et al. (45) Date of Patent: *Jan. 6, 2015 (54) MICROBIAL ENGINEERING FOR THE 2010/0297722 A1 11/2010 Anterola et al. PRODUCTION OF CHEMICAL AND 38: i h S. A. s3. Fi Sharks et al. PHARMACEUTICAL PRODUCTS FROM THE Jikumar et al. ISOPRENOID PATHWAY FOREIGN PATENT DOCUMENTS (75) Inventors: Parayil K. Ajikumar, Cambridge, MA WO WO97,385.71 A1 10, 1997 (US); Gregory Stephanopoulos, Int (US); Too Heng Phon, OTHER PUBLICATIONS 73) Assi : M h Insti fTechnol Broun et al., Catalytic plasticity of fatty acid modification enzymes (73) SS1gnees: C s t it's R nology, underlying chemical diversity of plant lipids. Science, 1998, vol. 282: ambridge, ; Nationa 1315-1317. liversity of Singapore, Singapore Chica et al., Semi-rational approaches to engineering enzyme activ (SG) ity: combining the benefits of directed evolution and rational design. (*) Notice: Subject to any disclaimer, the term of this Curr. Opi. Biotechnol.-- 200 5, vol. 16. 378RSRRSRA 384. sk atent is extended or adjusted under 35 Devos et al., Practical limits of function prediction. Proteins: Struc p S.C. 154(b) by 354 days ture, Function, and Genetics. 2000, vol. 41: 98-107. M YW- y yS. Kisselev L., Polypeptide release factors in prokaryotes and This patent is Subject to a terminal dis- eukaryotes: same function, different structure. Structure, 2002, vol. claimer. 10:8-9. Seffernicket al., Melamine deaminase and Atrazine chlorohydrolase: (21) Appl. No.: 13/249,388 98 percent identical but functionally different. J. Bacteriol., 2001, vol. 183 (8): 2405-2410.* (22) Filed: Sep.
    [Show full text]
  • Astonishing Diversity of Natural Peroxides As Potential Therapeutic Agents Valery M Dembitsky* Institute of Drug Discovery, P.O
    a ular nd G ec en l e o t i M c f M o l e Journal of Molecular and Genetic d a i n c r i n u e o Dembitsky, J Mol Genet Med 2015, 9:1 J Medicine ISSN: 1747-0862 DOI: 10.4172/1747-0862.1000163 Review Article Open Access Astonishing Diversity of Natural Peroxides as Potential Therapeutic Agents Valery M Dembitsky* Institute of Drug Discovery, P.O. Box 45289, Jerusalem 91451, Israel *Corresponding author: Dembitsky VM, Institute of Drug Discovery, P.O. Box 45289, Jerusalem 91451, Israel, Tel: +972 526 877 444, E-mail: [email protected] Received date: January 28, 2015, Accepted date: February 25, 2015, Published date: March 04, 2015 Copyright: © 2015 Dembitsky VM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Peroxides are an interesting group among biological active natural compounds. These metabolites contain a peroxide group (-O-O-) in which each oxygen atom is bonded to the other oxygen and to another atom. β-Oxygen in hydroperoxide group is considered as more active. Present review describes research on more than 230 natural peroxides isolated from plants, algae, and fungi. Intensive searches for new classes of biologically active metabolites produced by terrestrial and marine origin have resulted in the discovery of dozens of compounds possessing high antimalarial, antibacterial, cytotoxic, and other pharmacological activities as an important source of leads for drug discovery.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Origin and Age of Australian Chenopodiaceae
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times.
    [Show full text]
  • Understanding the Weedy Chenopodium Complex in the North Central States
    UNDERSTANDING THE WEEDY CHENOPODIUM COMPLEX IN THE NORTH CENTRAL STATES BY SUKHVINDER SINGH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Patrick J. Tranel, Chair Associate Professor Aaron G. Hager Associate Professor Geoffrey A. Levin Assistant Professor Matthew E. Hudson ABSTRACT The genus Chenopodium consists of several important weed species, including Chenopodium album, C. berlandieri, C. strictum, and C. ficifolium. All of these species share similar vegetative morphology and high phenotypic plasticity, which makes it difficult to correctly identify these species. All of these weedy Chenopodium species have developed resistance to one or more classes of herbicides. An experiment was conducted to determine if there is variability in response of Chenopodium species present in the North Central states to glyphosate. Our results indicate variable responses within and among the Chenopodium species. Species such as C. berlandieri and C. ficifolium had higher levels of tolerance to glyphosate than did various accessions of C. album. In another experiment, 33 populations of Chenopodium sampled across six North Central states were screened with glyphosate. The results showed variable responses to glyphosate within and among the Chenopodium populations. In general, the Chenopodium populations from Iowa were more tolerant, but some biotypes from North Dakota, Indiana and Kansas also had significantly high tolerance to glyphosate. Given there are species other than C. album that have high tolerance to glyphosate, and there are Chenopodium populations across the North Central states that showed tolerance to glyphosate, one intriguing question was to whether the Chenopodium populations were either biotypes of C.
    [Show full text]
  • CHENOPODIACEAE 藜科 Li Ke Zhu Gelin (朱格麟 Chu Ge-Ling)1; Sergei L
    Flora of China 5: 351-414. 2003. CHENOPODIACEAE 藜科 li ke Zhu Gelin (朱格麟 Chu Ge-ling)1; Sergei L. Mosyakin2, Steven E. Clemants3 Herbs annual, subshrubs, or shrubs, rarely perennial herbs or small trees. Stems and branches sometimes jointed (articulate); indumentum of vesicular hairs (furfuraceous or farinose), ramified (dendroid), stellate, rarely of glandular hairs, or plants glabrous. Leaves alternate or opposite, exstipulate, petiolate or sessile; leaf blade flattened, terete, semiterete, or in some species reduced to scales. Flowers monochlamydeous, bisexual or unisexual (plants monoecious or dioecious, rarely polygamous); bracteate or ebracteate. Bractlets (if present) 1 or 2, lanceolate, navicular, or scale-like. Perianth membranous, herbaceous, or succulent, (1–)3–5- parted; segments imbricate, rarely in 2 series, often enlarged and hardened in fruit, or with winged, acicular, or tuberculate appendages abaxially, seldom unmodified (in tribe Atripliceae female flowers without or with poorly developed perianth borne between 2 specialized bracts or at base of a bract). Stamens shorter than or equaling perianth segments and arranged opposite them; filaments subulate or linear, united at base and usually forming a hypogynous disk, sometimes with interstaminal lobes; anthers dorsifixed, incumbent in bud, 2-locular, extrorse, or dehiscent by lateral, longitudinal slits, obtuse or appendaged at apex. Ovary superior, ovoid or globose, of 2–5 carpels, unilocular; ovule 1, campylotropous; style terminal, usually short, with 2(–5) filiform or subulate stigmas, rarely capitate, papillose, or hairy on one side or throughout. Fruit a utricle, rarely a pyxidium (dehiscent capsule); pericarp membranous, leathery, or fleshy, adnate or appressed to seed. Seed horizontal, vertical, or oblique, compressed globose, lenticular, reniform, or obliquely ovoid; testa crustaceous, leathery, membranous, or succulent; embryo annular, semi-annular, or spiral, with narrow cotyledons; endosperm much reduced or absent; perisperm abundant or absent.
    [Show full text]
  • Thesis Style Document
    Application of Membrane Technologies in Water Purification Junjie Shen Submitted for the degree of Doctor of Philosophy Heriot-Watt University School of Engineering and Physical Sciences Institute of Chemical Sciences Edinburgh, United Kingdom May 2016 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. Abstract The world is facing a serious water crisis due to rapid population growth, industrialization and climate change. Water purification using membrane technologies provides a promising solution to address this problem. This thesis investigated the feasibility of membrane technologies in a wide range of applications covering drinking water purification and wastewater treatment. Target contaminants included fluoride, natural organic matter (NOM), emerging contaminants bisphenol A (BPA) and cimetidine, and the waterborne parasite Cryptosporidium. The first part of the thesis explored the solute- solute interactions of fluoride and humic substances (HS) in order to understand the behaviour of fluoride in natural water and during membrane filtration processes. It is shown that, at low pH and high ionic strength, fluoride ions are temporarily trapped inside the structure of HS aggregates. The second part of the thesis examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural waters in Tanzania containing high fluoride and NOM concentrations, with the aim to increase the availability of drinking water sources. Fluoride retention was found to be dependent on ionic strength and recovery, which was predominantly due to a solution-diffusion mechanism.
    [Show full text]