<<

Identification of Plant Derived Substances That Enhance Biodegradation of Polycyclic Aromatic Hydrocarbons In

David Crowley*, Haakrho Yi, Joong Wook Park, Ian Balcom, and Monica Winters Department of Environmental Sciences University of California, Riverside Phytoremediation Phytoextraction Rhizofiltration Phytostabilization Rhizoremediation Phytovolatilization Phytobial Remediation

Plant Common Name Petroleum Hydrocarbons Mechanism of (Genus, Species ) [Family] Phytoremediation

Western wheatgrass chrysene, benzo[a]pyrene, unknown (Agropyron smithii) benz[a]anthracene, dibenz[a,h]anthracene

Big bluestem (Andropogon chrysene, benzo[a]pyrene, unknown gerardi) [Gramineae] benz[a]anthracene, dibenz[a,h]anthracene

Side oats grama (Bouteloua chrysene, benzo[a]pyrene unknown curtipendula) benz[a]anthracene, dibenz[a,h]anthracene

Blue grama (Bouteloua chrysene, benzo[a]pyrene, benz[a]anthracene, unknown gracilis) dibenz[a,h]anthracene

Common buffalograss naphthalene, fluorene, phenanthrene unknown (Buchloe dactyloides)

Prairie buffalograss naphthalene, fluorene, phenanthrene unknown (Buchloe dactyloides)

Canada wild rye (Elymus chrysene, benzo[a]pyrene, benz[a]anthracene, unknown canadensis) dibenz[a,h]anthracene

Red fescue (Festuca rubra crude oil and diesel rhizosphere effect var. Arctared)

Poplar trees (Populus potential to phytoremediate benzene, toluene, rhizosphere effect deltoides x nigra) o-xylene

Little bluestem chrysene, benzo[a]pyrene, benz[a]anthracene, unknown (Schizchyrium scoparious dibenz[a,h]anthracene

Indiangrass (Sorghastrum chrysene, benzo[a]pyrene, benz[a]anthracene, unknown nutans) dibenz[a,h]anthracene

RhizosphereRhizosphere EffectsEffects onon SoilSoil ContaminantsContaminants

GrowthGrowth LinkedLinked MetabolismMetabolism SelectiveSelective EnrichmentEnrichment CometabolismCometabolism SurfactantsSurfactants Selective Enrichment:

Diversity of PAH degrading bacteria in Esturarine Grasses (Daane et al., 2001) Plant species Distichlis spicata Juncus gerardi Phragmites australis Spartina alterniflora Paenibacillus validus Paenibacillus validus No PAH degraders Paenibacillus validus Pseudomonas stutzeri Pseudomonas putida Rhodococcus ruber Tsukamurella wratislaviensis Arthrobacter oxydans Sphingomonas subarctica Co-Metabolism Analogs of Xenobiotic Contaminants

TerpenesTerpenes:: QuinonesQuinones

FlavonoidsFlavonoids AlkaloidsAlkaloids

LigninLignin PyrazinesPyrazines PlantPlant ScreeningScreening AssayAssay Gilbert and Crowley 1996

SpearmintSpearmint ((MenthaMentha spicataspicata)) ActiveActive component:component: carvonecarvone

ArthrobacterArthrobacter B1BB1B

Evidence:Evidence: PCBPCB ringring oxidationoxidation productproduct chlorobenzoatechlorobenzoate productproduct formationformation disappearancedisappearance ofof AroclorAroclor 12421242 DevelopmentDevelopment ofof aa FieldField ApplicationApplication VectorVector

Sorbitan Trioleate Criteria: Nontoxic Selective Growth Substrate

O Solubilizes PCB O OH O Biodegradable

O O O O Fatty Acid Composition:

Oleic acid 74% Linoleic acid 7% Linolenic acid 2% Palmitoleic acid 7%7% Palmitic acid 10% Cometabolic Degradation of Aroclor 1242 PCBs

Arthrobacter B1B carvone induced cells Carvone addition – indigenous bacteria control 100 90 PCB degradation with surfactant 80 70 60 50 40 30 Percent Degradation Percent Degradation 20 10 0 diCB tri-CB tetra-CB penta-CB total Congener group Salicylate:Salicylate: PlantPlant SignalSignal Compound,Compound, Siderophore,Siderophore, andand InducerInducer ofof XenobioticXenobiotic DegradationDegradation EnzymesEnzymes

Toluene dioxygenase substrates:

Benzene, toluene, xylene (BTEX) Trichloroethylene (TCE) Trinitrotoluene (TNT) Naphthalene, benzopyrene (PAH) Polychlorinated biphenyls (PCB) Chenopodium ambrosioides

Alpha-, Aritasone, Ascaridole, Ascorbic-acid, Beta-, Butyric-acid, Calcium, D-, EO, Ferulic-acid, , L-pinocarvone, Leucine, , Malic-acid, Menthadiene, Methyl- salicylate, , Niacin, P-cymene, P-cymol, , Safrole, , Spinasterol, Tartaric-acid, , Terpinyl-acetate, Terpinyl- salicylate, Thiamin, Triacontyl-, Trimethylamine, Urease, Vanillic-acid PhytoremediationPhytoremediation ofof PyrenePyrene usingusing CeleryCelery RootRoot

Root essential oil: ppm β pinene 15,000 carvone 5000 dihydro-carvone 5000 p-cymene 31,000 limonene 117,000 myrcene 18,000 terpenoline 33,000 trans-ocimine 290,000 cis-ocimine 68,000

Duke, J. A. 1992. Handbook of phytochemical constituents of GRAS herbs and other economic plants. Boca Raton, FL. CRC Press. Degradation of pyrene in amended with pulverized celery root or in the rhizosphere of wheat and celery plants

Organic amendment Rhizoremediation Control Wheat Yardwaste Celery mg/g soil 100.0 100.0 10 100 80.0 200 80.0 ing ing ing ing in 60.0 in 60.0 in in Celery root ma ma ma ma mg/g soil re re re re m 10 m

m 10 m 40.0 40.0 pp pp pp pp 100 200 20.0 20.0

0.0 0.0 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 Week Week What is the active inducing substance in celery?

Terpenes Coumarin

Coumaric acid Salicylic acid Linoleic Acid Oleic Acid

C18H32O2 C18H34O2 Biosurfactants from Rhizosphere Microorganisms

Pseudomonads Rhamnolipids Sphingomonas Sphingans Mycobacterium Extracellular polymers Plants Saponins, Linoleic Acid Fungi Linoleic acid

Mycobacteria Sphingomonas sp. Rhamnolipid Pseudomonas aeruginosa

R = palmitic acid, C16:0; oleic acid, C18:1n-9; linoleic acid, 18:2n-6 Acylated glycosides Rhodococcus Mycobacterium Nocardia Microsite sampling methods for comprehensive analysis of pollutant degrading communities.

Pollutant Microbial community impregnated analyses quartz filter strips

Degradation / PCR-DGGE solubilization Real time PCR assays Clone Libraries Gene Probes Reporter Gene Assays Phenanthrene Treatment and Bacterial Community Shift

Control Soil Phenanthrene-treated Soil

0 1 5 7 8 9 10 14 30 0 1 5 7 8 9 10 14 30 Research Needs

• Determine the importance of plant and microbially produced surfactants for enhancing bioavailablity of metal and organic pollutants in the rhizosphere.

• Identification of bacterial species and genes that function in soils for biodegradation of PCBs and PAHs.

• Establish the relevance of microbial consortia: eg. surfactants, cooperative, sequential degradation pathways. ConclusionsConclusions

• Enhanced degradation of xenobiotics in the rhizosphere can be faciliated by several processes that function alon or in combination. These include selective enrichment of degraders, growth-linked metabolism, release of cometabolic substances, and production of surfactants.

• Biosurfactants appear to have a key role in the bioremediation of both metal and organic pollutants, but too date have been almost completely ignored in research on rhizoremediation.

July 2004