The Effects of Endophytic Fungi of NZ Terrestrial Orchids: Developing Methods for Conservation

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Endophytic Fungi of NZ Terrestrial Orchids: Developing Methods for Conservation View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchArchive at Victoria University of Wellington The effects of endophytic fungi of NZ terrestrial orchids: developing methods for conservation By Jonathan Frericks A thesis submitted to the Victoria University of Wellington in fulfilment of the requirement for the degree of Masters in Ecology and Biodiversity Te Whare Wānanga o te Ūpoko o te Ika a Māui November 2014 II Abstract Nearly 40% of New Zealand (NZ) orchid species are of conservation concern, some critically endangered, largely due to habitat loss. In NZ, there are currently no propagation programs for terrestrial orchids all of which rely on symbiotic fungi to provide the nutrients required for germination, and little is known about the specific fungal species that might make this possible. To develop an understanding of the fungal interactions affecting recruitment in the field, a survey of endophytic fungal diversity from the roots of Chiloglottis valida, Microtis unifolia, Pterostylis banksii, Spiranthes novae-zelandiae and Thelymitra longifolia was carried out. The identification of fungi was assisted by obtaining sequences of the ITS rDNA gene marker. Seeds of M. unifolia, P. banksii, S. novae-zelandiae and T. longifolia were inoculated with cultured endophytes that were recovered from the roots of conspecific orchids, and their effect on seed germination evaluated. Seed viability using fluorescein diacetate was assayed on all species prior to all experiments and showed moderate to high viability scores for all species. Recovered endophytes belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The effect of the different endophytes on seed germination was variable, with five inoculants exhibiting a positive response. Three inoculants had a consistent negative effect on seed germination. The distribution of orchid symbiotic mycorrhizae in situ was investigated at Otari- Wilton’s Bush, Wellington, NZ. Mesh seed packets containing seed of M. unifolia and T. longifolia were interred for 150 days, along transects (≤ 1 metre) that originated at adult orchids at three sites, and an additional site with no adult orchids was used as a control. No small-scale patterns were detected; however, germination rates were higher at undisturbed sites. Seed viability was considerably reduced to <2% after five months under the soil suggesting M. unifolia and T. longifolia seeds do not persist in the seed bank beyond one growing season. Sequences of ITS rDNA indicate Tulasnella calospora assists in the germination of M. unifolia at this site. Similarly, Tulasnella calospora promoted germination of the Nationally Vulnerable wetland species S. novae-zelandiae. Pelotons were isolated from the roots of S. novae- zelandiae plants from a wild population from the lower north island and cultured in Petri dishes. Germination of this orchid began after 30 days from inoculation when the pelotons are already observed inside the embryo. Chlorophyllus tissue was observed after c. 80 days of inoculation. The phylogenetic relationship of Asian-Pacific Spiranthes species with New Zealand Spiranthes was also investigated using nuclear (ITS) and chloroplast (trnL- trnF) DNA sequences. Phylogenetic analyses supported the recognition of Spiranthes novae-zelandiae ‘Motutangi’ as a distinct taxonomic unit. It was also found that the Asian- Pacific Spiranthes species are in need of taxonomic revision. Methods used and developed in this thesis study could be used to identify potential orchid symbionts and pathogens, assess suitable potential relocation sites, and propagation of NZ orchids using symbiotic fungi for restoration and conservation purposes. III Acknowledgements I would like to thank Carlos Lehnebach for his incredible support, time, and enthusiasm for this project. I have really appreciated your supervision and look forward to further collaborations. Thanks to Andrew Munkacsi for sharing his lab and his knowledge. I would also like to thank Peter Ritchie who was always helpful and supportive. Thank you to Aaron Hart for pushing me on, even when things were not going well. Thank you to Kevin Matthews, Yangna Sun and Yibo Luo (Chinese Academy of Sciences), Kuga Yukari, Mike Lusk (New Zealand Native Orchid Group), and Jeremy Rolfe (Department of Conservation), without whom I would not have had so many samples. I am thankful for the support of the Otari-Wilton’s Bush Trust and Phil Parnell. Thanks to Finn Michalak and Rewi Elliot for allowing me to put my experiment in the middle of their garden beds. Thanks to Joe Zuccarello for answering my random questions and Lawrence Zettler for answering the less-random ones. I would also like to thank Shirley Pledger whose skilful statistics took me on a magical journey. I am extremely grateful to the Australian Orchid Foundation for enabling me to learn techniques first-hand from the kind people at Kings Park and Botanic Garden: Belinda Davis, Wei Han, and Kingsley Dixon. Thank you to: the Museum of New Zealand Te Papa Tongarewa for the Te Papa MSc Scholarship in Plant Molecular Systematics; the Wellington Botanical Society for the Student Grant and the Arnold and Ruth Dench Botanical Award; and the San Diego Orchid Society for helping fund this project. Thank you to the Royal Society of New Zealand Marsden Fund and the Victoria University Centre for Biodiscovery for enabling me to present my work, meet my orchid heroes, and gain global context for my work during the 5th International Orchid Conservation Congress (IOCC) at La Réunion. Finally, thank you to my family and friends for all you do in the other half of my life – now you get to see where I’ve been all this time! IV Table of Contents Abstract ......................................................................................... III Acknowledgements .....................................................................................IV Table of Contents ........................................................................................ V List of Tables................................................................................... VII List of Figures ................................................................................. VII Chapter 1: Introduction ................................................................................1 Orchids .............................................................................1 New Zealand orchids .......................................................2 Fungal interaction.............................................................3 Specificity .........................................................................4 Orchid mycorrhizae ..........................................................5 Mycorrhizae isolation and seed germination ...................6 Conservation issues of terrestrial orchids........................8 The aims of this thesis research ......................................9 References......................................................................................10 Chapter 2: Diversity of fungal endophytes in New Zealand orchids and their effect on seed germination .........................................15 Introduction .....................................................................................15 Methods ........................................................................................18 Results ........................................................................................24 Discussion.......................................................................................38 References......................................................................................46 Chapter 3: In situ germination of two terrestrial orchids: Microtis unifolia and Thelymitra longifolia, within an urban bush reserve in Wellington ............................................................52 Introduction .....................................................................................52 Methods ........................................................................................56 Results ........................................................................................60 Discussion.......................................................................................65 References......................................................................................70 Chapter 4: Phylogenetic affinities and symbiotic germination of Spiranthes novae-zelandiae Hook.f., a nationally vulnerable wetland orchid .......................................................73 Introduction .....................................................................................73 Methods ........................................................................................76 Results ........................................................................................81 Discussion.......................................................................................88 References......................................................................................93 V Table of Contents continued… Chapter 5: General discussion and recommendations .........................98 Endophyte diversity ........................................................98 Germination ....................................................................98 Seed baiting .................................................................100 Ex situ orchid ...............................................................101 Conservation
Recommended publications
  • Native Orchid Society of South Australia
    NATIVE ORCHID SOCIETY of SOUTH AUSTRALIA NATIVE ORCHID SOCIETY OF SOUTH AUSTRALIA JOURNAL Volume 6, No. 10, November, 1982 Registered by Australia Post Publication No. SBH 1344. Price 40c PATRON: Mr T.R.N. Lothian PRESIDENT: Mr J.T. Simmons SECRETARY: Mr E.R. Hargreaves 4 Gothic Avenue 1 Halmon Avenue STONYFELL S.A. 5066 EVERARD PARK SA 5035 Telephone 32 5070 Telephone 293 2471 297 3724 VICE-PRESIDENT: Mr G.J. Nieuwenhoven COMMITTFE: Mr R. Shooter Mr P. Barnes TREASURER: Mr R.T. Robjohns Mrs A. Howe Mr R. Markwick EDITOR: Mr G.J. Nieuwenhoven NEXT MEETING WHEN: Tuesday, 23rd November, 1982 at 8.00 p.m. WHERE St. Matthews Hail, Bridge Street, Kensington. SUBJECT: This is our final meeting for 1982 and will take the form of a Social Evening. We will be showing a few slides to start the evening. Each member is requested to bring a plate. Tea, coffee, etc. will be provided. Plant Display and Commentary as usual, and Christmas raffle. NEW MEMBERS Mr. L. Field Mr. R.N. Pederson Mr. D. Unsworth Mrs. P.A. Biddiss Would all members please return any outstanding library books at the next meeting. FIELD TRIP -- CHANGE OF DATE AND VENUE The Field Trip to Peters Creek scheduled for 27th November, 1982, and announced in the last Journal has been cancelled. The extended dry season has not been conducive to flowering of the rarer moisture- loving Microtis spp., which were to be the objective of the trip. 92 FIELD TRIP - CHANGE OF DATE AND VENUE (Continued) Instead, an alternative trip has been arranged for Saturday afternoon, 4th December, 1982, meeting in Mount Compass at 2.00 p.m.
    [Show full text]
  • List of Plants Observed and Identified by Members of the Ringwood Field Naturalists Club Inc
    LIST OF PLANTS OBSERVED AND IDENTIFIED BY MEMBERS OF THE RINGWOOD FIELD NATURALISTS CLUB INC. ON THEIR SPRING FIELD TRIP TO YARRAM 16-18 NOVEMBER 2012 COMPILED BY JUDITH V COOKE Ninety Mile Beach 17 11 2012 1 Map of Yarram and surrounding places visited 16-18 11 2012 2 3 Botanical Name Common Name 16 17 18 11 11 11 ORCHIDS Caladenia carnea Pink Fingers F Caladenia gracilis Musky Caladenia F Caleana major Flying Duck Orchid F Calochilus campestris Copper Beard Orchid F Chiloglottis cornuta Little Bird Orchid F Chiloglottis valida Common Bird Orchid F Diuris sulphurea Hornet Orchid F F Microtis sp Onion Orchid F Stegostyla transitoria Eastern Bronze Caladenia F Thelymitra ixiodes Spotted Sun Orchid F Thelymitra media Tall Sun Orchid F 4 5 Botanical Name Common Name 16 17 18 11 11 11 FERNS Asplenium bulbiferum Mother Spleenwort Blechnum chambersii Lance Water Fern Blechnum fluviatile Ray Water Fern Blechnum nudum Fishbone Water Fern Blechnum patersonii Strap Water Fern Blechnum wattsii Hard Water Fern Calochlaena dubia Common Ground Fern Cyathea australis Rough Tree Fern Dicksonia antarctica Soft Tree Fern Grammitis billardieri Finger Fern Histiopteris incisa Batswing Fern Hymenophyllum cupressiforme Common Filmy Fern Hymenophyllum sp? Filmy Fern Hymenophyllum sp? Filmy/Bristle Fern Lastreopsis acuminata Shiny Shield Fern Microsorum diversifolium Kangaroo Fern Polystichum proliferum Mother Shield Fern Pteridium esculentum Austral Bracken Rumohra adiantiformis Shield Hare's-foot 6 Botanical Name Common Name 16 17 18
    [Show full text]
  • Australian Endangered Orchid, Microtis Angusii: an Evaluation of the Utility of Dna Barcoding
    Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica FLANAGAN, NICOLA S.; PEAKALL, ROD; CLEMENTS, MARK A.; OTERO, J. TUPAC MOLECULAR GENETIC DIAGNOSIS OF THE ‘TAXONOMICALLY DIFFICULT’ AUSTRALIAN ENDANGERED ORCHID, MICROTIS ANGUSII: AN EVALUATION OF THE UTILITY OF DNA BARCODING. Lankesteriana International Journal on Orchidology, vol. 7, núm. 1-2, marzo, 2007, pp. 196-198 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44339813040 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 7(1-2): 196-198. 2007. MOLECULAR GENETIC DIAGNOSIS OF THE ‘TAXONOMICALLY DIFFICULT’ AUSTRALIAN ENDANGERED ORCHID, MICROTIS ANGUSII: AN EVALUATION OF THE UTILITY OF DNA BARCODING. 1,3,5 1 2 2, 4 NICOLA S. FLANAGAN , ROD PEAKALL , MARK A. CLEMENTS & J. TUPAC OTERO 1 School of Botany and Zoology, The Australian National University, Canberra, ACT 0200, Australia. 2 Centre for Plant Biodiversity Research, GPO Box 1600 Canberra ACT 2601, Australia. 3 Genetics & Biotechnology, University College Cork, Ireland 4 Dept. de Ciencias Agricolas, Universidad Nacional de Colombia, Palmira, Valle, Colombia 5 Author for correspondence: [email protected] KEY WORDS: Species diagnosis, barcoding, practical outcomes, clonality, Internal Transcribed Sequences (ITS), Single Nucleotide Polymorphisms (SNPs) As species are the common currency for conserva- to the endangered Australian orchid, Microtis angusii tion efforts, their accurate description is essential for (Flanagan et al.
    [Show full text]
  • Phylogenetic Relationships of Discyphus Scopulariae
    Phytotaxa 173 (2): 127–139 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.3 Phylogenetic relationships of Discyphus scopulariae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae GERARDO A. SALAZAR1, CÁSSIO VAN DEN BERG2 & ALEX POPOVKIN3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: [email protected] 2Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil 3Fazenda Rio do Negro, Entre Rios, Bahia, Brazil Abstract The monospecific genus Discyphus, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of Discyphus have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony
    [Show full text]
  • Introduction Methods Results
    Papers and Proceedings Royal Society ofTasmania, Volume 1999 103 THE CHARACTERISTICS AND MANAGEMENT PROBLEMS OF THE VEGETATION AND FLORA OF THE HUNTINGFIELD AREA, SOUTHERN TASMANIA by J.B. Kirkpatrick (with two tables, four text-figures and one appendix) KIRKPATRICK, J.B., 1999 (31:x): The characteristics and management problems of the vegetation and flora of the Huntingfield area, southern Tasmania. Pap. Proc. R. Soc. Tasm. 133(1): 103-113. ISSN 0080-4703. School of Geography and Environmental Studies, University ofTasmania, GPO Box 252-78, Hobart, Tasmania, Australia 7001. The Huntingfield area has a varied vegetation, including substantial areas ofEucalyptus amygdalina heathy woodland, heath, buttongrass moorland and E. amygdalina shrubbyforest, with smaller areas ofwetland, grassland and E. ovata shrubbyforest. Six floristic communities are described for the area. Two hundred and one native vascular plant taxa, 26 moss species and ten liverworts are known from the area, which is particularly rich in orchids, two ofwhich are rare in Tasmania. Four other plant species are known to be rare and/or unreserved inTasmania. Sixty-four exotic plantspecies have been observed in the area, most ofwhich do not threaten the native biodiversity. However, a group offire-adapted shrubs are potentially serious invaders. Management problems in the area include the maintenance ofopen areas, weed invasion, pathogen invasion, introduced animals, fire, mechanised recreation, drainage from houses and roads, rubbish dumping and the gathering offirewood, sand and plants. Key Words: flora, forest, heath, Huntingfield, management, Tasmania, vegetation, wetland, woodland. INTRODUCTION species with the most cover in the shrub stratum (dominant species) was noted. If another species had more than half The Huntingfield Estate, approximately 400 ha of forest, the cover ofthe dominant one it was noted as a codominant.
    [Show full text]
  • Nzbotsoc No 107 March 2012
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 107 March 2012 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8013 Subscriptions The 2012 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2012 student subscription, available to full-time students, is $12 (reduced to $9 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $7.00 each. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the June 2012 issue is 25 May 2012. Please post contributions to: Lara Shepherd Museum of New Zealand Te Papa Tongarewa P.O. Box 467 Wellington Send email contributions to [email protected]. Files are preferably in MS Word, as an open text document (Open Office document with suffix “.odt”) or saved as RTF or ASCII. Macintosh files can also be accepted. Graphics can be sent as TIF JPG, or BMP files; please do not embed images into documents.
    [Show full text]
  • Native Orchid Society South Australia
    Journal of the Native Orchid Society of South Australia Inc Arachnorchis cardiochila Print Post Approved .Volume 31 Nº 10 PP 543662/00018 November 2007 NATIVE ORCHID SOCIETY OF SOUTH AUSTRALIA POST OFFICE BOX 565 UNLEY SOUTH AUSTRALIA 5061 www.nossa.org.au. The Native Orchid Society of South Australia promotes the conservation of orchids through the preservation of natural habitat and through cultivation. Except with the documented official representation of the management committee, no person may represent the Society on any matter. All native orchids are protected in the wild; their collection without written Government permit is illegal. PRESIDENT SECRETARY Bill Dear: Cathy Houston Telephone 8296 2111 mob. 0413 659 506 telephone 8356 7356 Email: [email protected] VICE PRESIDENT Bodo Jensen COMMITTEE Bob Bates Thelma Bridle John Bartram John Peace EDITOR TREASURER David Hirst Marj Sheppard 14 Beaverdale Avenue Telephone 8344 2124 Windsor Gardens SA 5087 0419 189 188 Telephone 8261 7998 Email [email protected] LIFE MEMBERS Mr R. Hargreaves† Mr. L. Nesbitt Mr H. Goldsack† Mr G. Carne Mr R. Robjohns† Mr R Bates Mr J. Simmons† Mr R Shooter Mr D. Wells† Mr W Dear Conservation Officer: Thelma Bridle Registrar of Judges: Les Nesbitt Field Trips Coordinator: Trading Table: Judy Penney Tuber bank Coordinator: Jane Higgs ph. 8558 6247; email: [email protected] New Members Coordinator: John Bartram ph: 8331 3541; email: [email protected] PATRON Mr L. Nesbitt The Native Orchid Society of South Australia, while taking all due care, take no responsibility for loss or damage to any plants whether at shows, meetings or exhibits.
    [Show full text]
  • Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits
    plants Article Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits Surya Diantina 1,2,*, Craig McGill 1, James Millner 1, Jayanthi Nadarajan 3 , Hugh W. Pritchard 4 and Andrea Clavijo McCormick 1 1 School of Agriculture and Environment, Massey University, Tennent Drive, 4410 Palmerston North, New Zealand; [email protected] (C.M.); [email protected] (J.M.); [email protected] (A.C.M.) 2 Indonesia Agency for Agricultural Research and Development (IAARD), Jl. Ragunan 29, Pasar Minggu, Jakarta Selatan 12540, Indonesia 3 The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand; [email protected] 4 Royal Botanic Gardens Kew, Wellcome Trust Millennium Building, Wakehurst, Ardingly, West Sussex RH17 6TN, UK; [email protected] * Correspondence: [email protected] or [email protected] Received: 5 December 2019; Accepted: 17 January 2020; Published: 29 January 2020 Abstract: Seed morphology underpins many critical biological and ecological processes, such as seed dormancy and germination, dispersal, and persistence. It is also a valuable taxonomic trait that can provide information about plant evolution and adaptations to different ecological niches. This study characterised and compared various seed morphological traits, i.e., seed and pod shape, seed colour and size, embryo size, and air volume for six orchid species; and explored whether taxonomy, biogeographical origin, or growth habit are important determinants of seed morphology. We investigated this on two tropical epiphytic orchid species from Indonesia (Dendrobium strebloceras and D.
    [Show full text]
  • Download Pdf (493
    TRILEPIDEA Newsletter of the New Zealand Plant Conservation Network NO. 185 CONFERENCE REGISTRATION OPEN NOW! May 2019 We invite you to register for the 2019 Australasian Systematic Botany Society and New Deadline for next issue: Zealand Plant Conservation Network joint conference to be held at the Museum of New Monday 20 May 2019 Zealand Te Papa Tongarewa, Wellington, New Zealand in the last week of November. SUBMIT AN ARTICLE Start planning now! Spaces in workshops and fi eld trips are limited, so register early to TO THE NEWSLETTER get your top choices. Contributions are welcome Check out the recently updated conference website to get all the important details to the newsletter at any time. The closing date for about conference dates, venue, accommodation, programme, keynote speakers, fi eld articles for each issue is trips, workshops, silent auction, and more! approximately the 15th of each month. The conference theme, ‘Taxonomy for Plant Conservation – Ruia mai i Rangiātea’ aims to capitalise on the vast expertise of our two societies. There will be multiple upskilling Articles may be edited and used in the newsletter and/ workshops, three days of symposia, and a chance to explore Wellington’s forests and or on the website news page. rugged coastlines on our fi ve diff erent full-day fi eld trips. The Network will publish Feel free to contact the organising committee by email if you have any queries: almost any article about [email protected], otherwise go to the conference website (https://systematics. plants and plant conservation with a particular focus on the ourplants.org/) to keep up to date with developments, or follow us on Facebook or plant life of New Zealand and Twitter for announcements.
    [Show full text]
  • Lankesteriana IV
    LANKESTERIANA 7(1-2): 229-239. 2007. DENSITY INDUCED RATES OF POLLINARIA REMOVAL AND DEPOSITION IN THE PURPLE ENAMEL-ORCHID, ELYTHRANTHERA BRUNONIS (ENDL.) A.S. GEORGE 1,10 2 3 RAYMOND L. TREMBLAY , RICHARD M. BATEMAN , ANDREW P. B ROWN , 4 5 6 7 MARC HACHADOURIAN , MICHAEL J. HUTCHINGS , SHELAGH KELL , HAROLD KOOPOWITZ , 8 9 CARLOS LEHNEBACH & DENNIS WIGHAM 1 Department of Biology, 100 Carr. 908, University of Puerto Rico – Humacao campus, Humacao, Puerto Rico, 00791-4300, USA 2 Natural History Museum, Cromwell Road, London SW7 5BD, UK 3 Department of Environment and Conservation, Species and Communities Branch, Locked Bag 104 Bentley Delivery Centre WA 6893, Australia 4 New York Botanic Garden, 112 Alpine Terrace, Hilldale, NJ 00642, USA 5 School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex, BN1 9QG, UK 6 IUCN/SSC Orchid Specialist Group Secretariat, 36 Broad Street, Lyme Regis, Dorset, DT7 3QF, UK 7 University of California, Ecology and Evolutionary Biology, Irvine, CA 92697, USA 8 Massey University, Allan Wilson Center for Molecular Ecology and Evolution 9 Smithsonian Institution, Smithsonian Environmental Research Center, Box 28, Edgewater, MD 21037, USA 10 Author for correspondence: [email protected] RESUMEN. La distribución y densidad de los individuos dentro de las poblaciones de plantas pueden afectar el éxito reproductivo de sus integrantes. Luego de describir la filogenia de las orquideas del grupo de las Caladeniideas y su biología reproductiva, evaluamos el efecto de la densidad en el éxito reproductivo de la orquídea terrestre Elythranthera brunonis, endémica de Australia del Oeste. El éxito reproductivo de esta orquídea, medido como la deposición y remoción de polinios, fue evaluado.
    [Show full text]
  • Orchid Historical Biogeography, Diversification, Antarctica and The
    Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the
    [Show full text]
  • Orchid Seed Coat Morphometrics. Molvray and Kores. 1995
    American Journal of Botany 82(11): 1443-1454. 1995 . CHARACTER ANALYSIS OF THE SEED COAT IN SPIRANTHOIDEAE AND ORCHIDOIDEAE, WITH SPECIAL REFERENCE TO THE DIURIDEAE (ORCHIDACEAE)I MIA MOLVRAy2 AND PAUL J. KORES Department of Biological Sciences, Loyola University, New Orleans, Louisiana 70118 Previous work on seed types within Orchidaceae has demonstrated that characters associated with the seed coat may have considerable phylogenetic utility. Application of the se characters has been complicated in practice by the absence of quan­ titative descriptors and in some instances by their apparent lack of congruity with the taxa under con sideration. Using quantitative descriptors of size and shape, we have demonstrated that some of the existing seed classes do not represent well delimited, discrete entities, and we have proposed new seed classes to meet these criteria. In the spiranthoid-orchidoid complex, the characters yielding the most clearly delimited shape classes are cell number and variability and degree and stochasticity of medial cell elongation. Of lesser, but still appreciable, significance are the pre sence of varying types and degrees of intercellular gaps, and some, but not all, features of cell walls. Four seed classes are evident on the basis of these characters in Spiranthoideae and Orchidoideae. These seed types are briefly described, and their distribution among the taxa examined for this study is reported. It is hoped that these more strictly delimited seed classes will faci litate phylogenetic analysis in the family. Phylogenetic relationships within the Orchidaceae delimitation of the seed coat characters within the two have been discussed extensively in a series of recent pub­ putatively most primitive subfamilies of monandrous or­ lications by Garay (1960, 1972), Dressler (1981, 1986, chids and evaluates the util ity of these characters for the 1990a, b, c, 1993), Rasmussen (1982, 1986), Burns-Bal­ purpose of phylogenetic inference, extends this avenue of ogh and Funk (1986), and Chase et aI.
    [Show full text]