Dye Selectivity and Colour Fastness Assessment of Dyed Microcrystallinecellulose Extracted from Cornstalks

Total Page:16

File Type:pdf, Size:1020Kb

Dye Selectivity and Colour Fastness Assessment of Dyed Microcrystallinecellulose Extracted from Cornstalks IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE) e-ISSN: 2348-019X, p-ISSN: 2348-0181, Volume 3, Issue 1 (Jan. - Feb. 2016), PP 10-16 www.iosrjournals.org Dye Selectivity and Colour Fastness Assessment of Dyed MicrocrystallineCellulose Extracted From Cornstalks Adeyemo Bilyaminu Adebola1, Yakubu Mohammed Kabir1, BelloKasali Ademola1, GadimohSylvester.2. 1. Department of Textile Science and Technology, Ahmadu Bello University, Zaria, Nigeria 2. National Research Institute for Chemical Technology (NARICT), Bassawa, Zaria, Nigeria Abstract: Microcrystalline cellulose (MCC) was extracted from cellulose obtained from cornstalks by sulphuric acid hydrolysis method. The exhaustion dyeing of microcrystalline cellulose with selected commercial dyes; Procion Violet H-3R (reactive), Solophenyl Yellow PFL (direct), and Foron Yellow S.E-2GL (disperse) was carried out and their substantivity were studied from their percentage exhaustions. The percentage exhaustion (% E) of 17.9%, 65.5%, and 75% were obtained for reactive, direct, and disperse dyes, respectively. The fastness properties of dyed microcrystalline cellulose to light, wash, and chlorinated water were investigated. The colour fastness result of the dyed microcrystalline cellulose to chlorinated water was very good for Solophenyl Yellow PFL but fair to wash and light fastness. Procion Violet H-3R displayed good fastness to light than others. Foron Yellow S.E- 2GL exhibited very good fastness to wash test than Procion violet H-3R and Solophenyl Yellow PFL which have good and fair fastness, respectively. And based on these findings, the colour fastness tests that were conducted have revealed that any of the three dyes could be used for MCC colouration depending on the area of use. Keywords: Cornstalks,Microcrystalline Cellulose (MCC), Procion Violet H-3R, Solophenyl Yellow PFL, Foron Yellow S.E- 2GL. I. Introduction Corn stalk is one of the post-harvest residues of maize cultivation which is made up of lignified tissue. This stalk is an interesting lignocellulosic biomass which composes of lignin, cellulose and hemicellulose, as potential sources of biomaterials. Corn stalk is considered as biodegradable agricultural wastes, which contain high quantities of organic matter therefore, an efficient utilization of such agricultural wastes is of great importance not only for minimizing the environmental impact, but also for obtaining a higher profit (Nuruddinet al., 2011).Microcrystalline cellulose (MCC) can be obtained from any material that is high in cellulose ranging from pure cellulose, commercial grade wood cellulose to lignocellulosic materials. Microcrystalline cellulose is a purified form of cellulose, obtained from the natural polymer after a severe acid hydrolysis treatment in which the amorphous regions are preferentially attacked and transformed into a crystalline residue (Vieira Ferreiraet al., 1995).The hydrolysis of cellulose to obtain microcrystalline cellulose can also be accomplished using enzymes or microorganisms. Although enzymatic methods are more desirable because glucose, a useful by- product, is produced, these methods are more expensive and create products having a lower crystallinity. Thus, acid hydrolysis is the conventional method of choice for manufacturing microcrystalline cellulose (Hanna et al., 2001). MCCis used in various fields such as pharmacy, cosmetics, food industry, and plastics processing industry. In the powder form, it is used, as a filler and binder in medical tablets and food tablets for dietary purposes. In the gel form, microcrystalline cellulose is used as viscosity regulator, a suspending agent, emulsifier in different pastes, creams, etc. (Laka and Chernyavskaya, 2007). It has also been reported elsewherethat microcellulose fibres from corn stalk could find applications inindustrial sectors like the paper, textile and as reinforcements for compositesused in the automotive and construction industries(Weirnicket al., 2002).Colouration generally imparts beauty and improve aesthetic properties of materials, thus to the best of our knowledge determination of substantivity of commercial dyes and their colour fastness properties on MCC has never been done. II. Materials And Methods 2.1 Raw materials The cornstalks were collected from Samaru College of Agriculture, Ahmadu University, Zaria Nigeria. In the dried form, outer covering of the stalks was peeled off to obtain the soft inner lignocellulose stalk. A bleached cellulose fabric pieces which serves as control during colouration were also obtained. The chemicals used are of analytical grade and the commercial dyes are reactive (Procion Violet H-3R), direct (Solophenyl Yellow PFL), and disperse (Foron Yellow S.E-2GL). DOI: 10.9790/019X-03011016 www.iosrjournals.org 10 | Page Dye Selectivity And Colour Fastness Assessment Of Dyed Microcrystallinecellulose Extracted From 2.2 Delignification of cornstalks A 5g quantity of cornstalks were placed in a three-neck flask containing a magnet and securely clamped on a magnetic stirrer hot plate. The delignification was carried out in a reflux setup at boiling temperature with 90% (v/v) formic acid, stalk-to-liquor ratio, 1:30, for 2hrs.The hot plate rotor drives the magnet and the stalks were continuously stirred while water passes through the condenser to cool the reaction. The formic acid at boil temperature dissolved the stalks to a dark brown colour pulp. On completion of the reaction time, the lignocellulosic pulp was washed thoroughly in hot distilled water and filtered in a Buchner funnel. The formic acid treated residue was further delignified by treatment with peroxyformic acid (prepared o by mixing 90% formic acid with 4% H2O2), at 80 C in a thermostatic water bath to dissolve the residual lignin and hemicelluloses in the pulp. After 2hrs, the mass was washed by adding water and filtered in a Buchner funnel. The cellulose obtained from this treatment was dried gently in oven at 50oC for 1hr.30min. 2.3 Extraction of microcrystalline cellulose Microcrystalline cellulose was extracted by acid hydrolysisof cellulose isolated from cornstalks, under the following conditions: 50% w/w sulphuric acid solution for 2hours at 40 °C, using mass-to-liquor ratio 1:8, under constant stirring. Hydrolysis was stopped by adding large volume of distilled water to the reaction mixture. The resulting mixture was washed with cold water, repeatedly centrifuged to recover the microcrystalline cellulose, and subsequently neutralised with 1% sodium hydroxide. It was finally rinsed thoroughly in water and repeatedly centrifuged, filtered and dried gently in oven at 50oC for 1hr.30min. 2.4 Bleaching of microcrystalline cellulose Bleaching was carried out at 80oC for 1hr in thermostatic water bath in the following recipe; 10% microcrystalline cellulose, 4% hydrogen peroxide on oven dry (o.d) microcrystalline cellulose, 1% sodium silicate and magnesium sulphate were used to stabilise the bleaching process at pH 11 by addition of required amount of sodium hydroxide. This procedure was repeated once to producea bleached, product which was then properly rinsed with distilled water, centrifuged and filtered. 2.5 Percentage yield The yields of all products obtained aftereach chemical treatment was calculated, and expressed in percentage, as the ratio of weight of product, w2, to its theoretical weight, w1. 푤 %푌푖푒푙푑 = 2 × 100 … … … … … … … … … … … … … … … … 1 푤1 2.6 Determination of particle size of microcrystalline cellulose The micro-cellulose particles, obtained were milled in a laboratory mortar with pestle to produce the crystalline powder. The average particle size of the microcrystalline cellulose was carried out using Zetasizer Nano-S. 1mg of MCC powder per 10ml of water was prepared and the resulting suspension was transferred into a disposable cuvette using 0.22 micrometer filter unit. The cuvette containing the sample was placed into the analysis stage of the equipment for analysis. 2.7 Dyeing of microcrystalline cellulose and cellulosic fabric The dyeing of the microcrystalline cellulose and cellulosic fabric which served as control samples was carried out to 3% shade. 2.7.1 Dyeing with reactive dye At dye-baths temperature 30oC, a 0.5g microcrystalline cellulose and 0.5g cellulose fabric were introduced to attain equilibrium for a period of 20minutes. Sodium chloride 20% (o.w.f) was added to each dye bath and dyeing was continued for another 20minutes to assist the exhaustion of dye. Sodium hydroxide (0.3%) was introduced for fixation and dyeing was carried out for further 20minutes at 60oC. The dyed samples were then rinsed soaped at the boil for 30mins, rinsed in distilled water and dried (Nkeonye, 1987). 2.7.2 Dyeing with direct dye The dye was added in well dissolved condition to the dye bath, 20% sodium chloride was then added. A 0.5g microcrystalline cellulose and 0.5g cellulose fabric were introduced into the dye liquor at 40oC, the temperature of the bath was raised over a period of 30min to the boil and dyeing was continued at this temperature for 60min (Nkeonye, 1987). Thereafter, the samples were rinsed thoroughly and dried. DOI: 10.9790/019X-03011016 www.iosrjournals.org 11 | Page Dye Selectivity And Colour Fastness Assessment Of Dyed Microcrystallinecellulose Extracted From 2.7.3 Dyeingwith disperse dye A 0.5g each of microcrystalline cellulose and fabric was entered into a separatedyebathcontaining 5g/l soap solution (dispersing agent) at 60oC.The temperature was raised to the boil and dyeing was performed at this temperature, for
Recommended publications
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • A Comparison of the Patterns Formed by Primary Textile Structures and Their Photographic Abstraction
    Rochester Institute of Technology RIT Scholar Works Theses 9-22-1976 A comparison of the patterns formed by primary textile structures and their photographic abstraction Pamela Perlman Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Perlman, Pamela, "A comparison of the patterns formed by primary textile structures and their photographic abstraction" (1976). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Thesis Proposal for the Master of Fine Arts De gree Collee;e of Fine and Applj_ed .Arts Rochester Institute of Technology Title: A Comparison of the Fatterns Formed by Primary Textile structures and their Phot ographic Abstraction Submitted by: Pamela Anne Perlman Date: September 22, 1976 Thesis Co mm it te~: Nr . Donald Du jnowski I-Ir. I,l az Lenderman hr. Ed 1iiller Depart~ental Approval : Date :-:--g---li6~-r-71-b-r-/ ----- ---------~~~~~'~~~r------------------------- Chairman of the School for American Craftsme:l: ___-r-----,,~---- ____ Da t e : ---.:...,'?7~JtJ--J7~i,-=-~ ___ _ Chairr.ian of the Gr3.duate Prog:rarn: ------------------------~/~~/~. --- Date: ___________________~ /~~,~~;j~~, (~/_' ~i~/~: 7 / Final Committee Decision: Date: ----------------------- Thesis Proposal for the Master of Fine Arts Degree College of Fine and Applied Arts Rochester Institute of Technology Title: A Comparison of the Patterns Frmed by Primary Textile Structures and their Photographic Abstraction My concern in textiles is with structure and materials. I v/ould like to do v/all hangings based on primary textile structures such as knotting, looping, pile, balanced weaves, and tapestry.
    [Show full text]
  • Colour and Textile Chemistry—A Lucky Career Choice
    COLOUR AND TEXTILE CHEMISTRY—A LUCKY CAREER CHOICE By David M. Lewis, The University of Leeds, AATCC 2008 Olney Award Winner Introduction In presenting this Olney lecture, I am conscious that it should cover not only scientific detail, but also illustrate, from a personal perspective, the excitement and opportunities offered through a scientific career in the fields of colour and textile chemistry. The author began this career in 1959 by enrolling at Leeds University, Department of Colour Chemistry and Dyeing; the BSc course was followed by research, leading to a PhD in 1966. The subject of the thesis was "the reaction of ω-chloroacetyl-amino dyes with wool"; this study was responsible for instilling a great enthusiasm for reactive dye chemistry, wool dyeing mechanisms, and wool protein chemistry. It was a natural progression to work as a wool research scientist at the International Wool Secretariat (IWS) and at the Australian Commonwealth Scientific Industrial Research Organisation (CSIRO) on such projects as wool coloration at room temperature, polymers for wool shrink-proofing, transfer printing of wool, dyeing wool with disperse dyes, and moth-proofing. Moving into academia in 1987 led to wider horizons bringing many new research challenges. Some examples include dyeing cellulosic fibres with specially synthesised reactive dyes or reactive systems with the objective of achieving much higher dye-fibre covalent bonding efficiencies than those produced using currently available systems; neutral dyeing of cellulosic fibres with reactive dyes; new formaldehyde-free crosslinking agents to produce easy-care cotton fabrics; application of leuco vat dyes to polyester and nylon substrates; cosmetic chemistry, especially in terms of hair dyeing and bleaching; security printing; 3-D printing from ink-jet systems; and durable flame proofing cotton with formaldehyde-free systems.
    [Show full text]
  • Tub Dyeing Basics Step by Step Instructions on the Next Page G with Fiber Reactive Dyes
    tub dyeing basics Step by step instructions on the next page g with Fiber Reactive Dyes Use this method to dye fabric or clothing, made of natural fibers one uniform or solid color. Also called Garment Dyeing or Vat Dyeing, this method can also be done in a washing machine. Fiber Reactive Dye is the dye of choice for all cellulose (plant) fibers, like cotton, Rayon, hemp, linen, Tencel®, Modal®, bamboo, etc. (For dyeing silk, wool and other protein fibers, see Dyeing Wool and Silk with Fiber Reactive Dyes on our website) The chemical bond of these dyes is permanent, so once all the excess dye is washed out an infant can chew on the fabric and it will not come off! Fiber Reactive Dyes work in lukewarm water so these directions can also be used to dye batik (waxed) fabrics in successive colors without fear of melting the wax. WHAT You’ll need: SALT & SODA ASH REQUIREMENTS • Fiber Reactive Dye • A bucket large enough The amount of Non-Iodized Salt and Soda Ash are for your item to move a function of the amount of water used. For each • Soda Ash around in, or a top pound of dry fabric you will need about 3 gallons of • Non-Iodized Salt loading washing machine warm water. The water must cover the fabric with • Urea (optional) • Pitcher & cup enough room for thorough, tangle-free stirring; oth- erwise you get uneven dyeing and streaks. For each • Calsolene Oil (optional) • Measuring cups 1½ gallons of water use 1½ cups of Non-Iodized • Synthrapol • Spoons Salt and 1/6 cup of Soda Ash.
    [Show full text]
  • In-Situ Fabric Coloration with Indigo Synthesized in Flow
    This is a repository copy of In-situ fabric coloration with indigo synthesized in flow. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/137959/ Version: Accepted Version Article: Haaf, MP, Piemonte, KM, McQuade, DT et al. (2 more authors) (2019) In-situ fabric coloration with indigo synthesized in flow. Coloration Technology, 135 (2). pp. 127-132. ISSN 1472-3581 https://doi.org/10.1111/cote.12383 © 2018 The Authors. Coloration Technology © 2018 Society of Dyers and Colourists. This is an author produced version of a paper published in Coloration Technology. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ In-situ fabric coloration with indigo synthesized in flow Michael P. Haaf,a* Katrina M. Piemonte,a D. Tyler McQuade,b Lucy Cotton,c Richard S. Blackburnc aIthaca College Department of Chemistry, Ithaca, NY 14850, USA; *Tel: +1 607-274-7978; E-mail: [email protected]; bVirginia Commonwealth University Department of Chemical and Life Science Engineering, Richmond, VA 23285, USA; cSchool of Design, University of Leeds, Leeds LS2 9JT, United Kingdom.
    [Show full text]
  • Using PRO MX Reactive Dye Please Read Directions Carefully Before Starting
    BATIK using PRO MX Reactive Dye Please read directions carefully before starting. Batik is an ancient form of resist dyeing. Unwaxed areas of the fabric absorb dye while the waxed areas resist the dye, preserving the original color of the fabric. More wax is added to dyed areas preserving the new color and the fabric is dipped in another color of dye. Repeat this process until the design is completed then remove the wax. Designs may involve only one or many colors depending upon the number of times the hot wax is applied and the cloth is dipped into different colored dye baths. For additional information visit our web site at www.prochemicalanddye.com. Always use proper ventilation in your work area. Create a local exhaust system by putting a portable exhaust fan in a window, so it pulls air from the room to the outside. Heated wax releases irritating chemicals including acrolein and aldehydes. There is no approved MSHA/NIOSH filter for acrolein. A respirator is not a substitute for good ventilation. Heat wax to the lowest temperature at which it remains liquid. Do not leave hot wax unattended, as it is a fire hazard. Keep water away from the wax pot, as it will splatter. Always make sure you have a fire extinguisher or bucket of sand nearby in case of fire. Wax forms potentially hazardous vapors at high temperatures and may ignite. Do not use open flames, such as a gas or propane burner, instead use a crock pot or electric fry pan with temperature control. Make sure your hair is tied back and sleeves are rolled up when using heating equipment.
    [Show full text]
  • Dyeing and Colour Fastness of Natural Dye from Citrus Aurantium on Lyocell Fabric DOI: 10.35530/IT.071.04.1686
    Dyeing and colour fastness of natural dye from Citrus aurantium on Lyocell fabric DOI: 10.35530/IT.071.04.1686 NAVEED TAYYAB AWAN ASHRAF JAVEED RASHDI YASEEN SAYED ABBAS MUDASSAR REHMAN FAISAL FRAZ AHMAD WEI WANG AWAIS MUHAMMAD ABSTRACT – REZUMAT Dyeing and colour fastness of natural dye from Citrus aurantium on Lyocell fabric The use of natural dyes for textiles has attained attention due to their ecology, minimum impact on the environment and pollution. Therefore the objective of this study is to dye Lyocell fabric with natural dye extracted from orange peel for comparative analysis of colour efficiencies (K/S), CIE L*a*b* values and the colour fastness properties. The mordants applied were ferrous (II) sulphate and copper (II) sulphate. For the extraction of the dye, the aqueous extraction method was used. The pre-mordanting method was used and the dyeing effect on Lyocell fabric was analyzed at concentrations of 2% and 4%. It was observed that the mordant type employed had an influence on the colour efficiency and the colour coordinates of fabric dyed with Citrus aurantium dye. The colour efficiency (K/S: 4) and colour fastness to washing, light, rubbing and perspiration in all the dyed samples were better and excellent (grade 4–5) at 4% concentration. In overall results, the pre-mordanting method at 4% concentration gives the best results of colour efficiency and colour fastness properties. The performance analysis of colour fastness was also statistically significant at the 0.05 level. Keywords: natural dyes, orange peel, Lyocell, extraction, mordant, colour fastness Vopsirea și rezistența culorii colorantului natural din Citrus aurantium pe țesătura din Lyocell Utilizarea coloranților naturali pentru materialele textile a atras atenția datorită aspectelor legate de ecologie, impactul minim asupra mediului și poluare.
    [Show full text]
  • Fundamentals of Natural Dyes and Its Application on Textile Substrates Virendra Kumar Gupta
    Chapter Fundamentals of Natural Dyes and Its Application on Textile Substrates Virendra Kumar Gupta Abstract The meticulous environmental standards in textiles and garments imposed by countries cautious about nature and health protection are reviving interest in the application of natural dyes in dyeing of textile materials. The toxic and allergic reactions of synthetic dyes are compelling the people to think about natural dyes. Natural dyes are renewable source of colouring materials. Besides textiles it has application in colouration of foods, medicine and in handicraft items. Though natural dyes are ecofriendly, protective to skin and pleasing colour to eyes, they are having very poor bonding with textile fibre materials, which necessitate mordant- ing with metallic mordants, some of which are not eco friendly, for fixation of natural dyes on textile fibres. So the supremacy of natural dyes is somewhat sub- dued. This necessitates newer research on application of natural dyes on different natural fibres for completely eco friendly textiles. The fundamentals of natural dyes chemistry and some of the important research work are therefore discussed in this review article. Keywords: colour fastness, dyeing, extraction of natural dyes, natural dyes 1. Introduction After the advent of mauveine by Henry Perkin in 1856 and subsequent commer- cialization of synthetic dyes had replaced natural dyes, and since then consumption and application of natural dyes for textiles got reduced substantially. In present scenario environmental consciousness of people about natural products, renewable nature of materials, less environmental damage and sustainability of the natural products has further revived the use of natural dyes in dyeing of textile materials.
    [Show full text]
  • Extraction and Application of Avocado Dyes on Eco- Friendly Fabrics Using Batik Technique
    Report of the Minor Research Project Sponsored by UGC Principle Investigator: Dr. S. KAUVERY BAI Project Fellow: Pavitra S Associate Professor, Department of Textiles and Clothing Smt. VHD Central Institute of Home Science, (Autonomous) Seshadri Road, Bengaluru Extraction and Application of Avocado Dyes on Eco- Friendly Fabrics Using Batik Technique. Introduction Colour Attracts and holds attention.....humans have been attracted to colour and have devised ways to add colour to all things, and this has evolved into a science long before chemical dyes were discovered. Natural dyes have been used in early cave paintings as the first form of documented expression or communication. Later these dyes were applied as tattoos; permanent and temporary before showing up on textiles. All the murals depicting textiles in painting found in the caves at Ajanta and Ellora as well as the various paintings documenting the past, show coloured garments. A wide variety of natural materials were used in combination to get different colours, not only were these dyes, ‘clean colours’ but also were bright and fast when used on all kinds of natural fabrics. India is a country famous for its textiles especially dyed, printed, embroidered and intricately woven fabrics. When studying Natural dyes, it is seen that certain colours were automatically considered those of the privileged class, as they were available only at a high cost since the natural sources itself were found in limited quantities, e.g. Tyrian purple. Natural dyes are colours obtained from plant, animal or mineral sources. These natural matters are made to undergo various processes to extract colour from them.
    [Show full text]
  • Comparative Study of Fastness Properties and Color Absorbance Criteria of Conventional and Avitera Reactive Dyeing on Cotton Knit Fabric
    European Scientific Journal May 2016 edition vol.12, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Comparative Study Of Fastness Properties And Color Absorbance Criteria Of Conventional And Avitera Reactive Dyeing On Cotton Knit Fabric Md. Abu Sufian B.Sc. in Textile Engineering,University of Chittagong, Bangladesh Md.Abdul Hannan M.Sc. in Textile Technology, University of Boras, Sweden Md. Masud Rana Muhmmad Zanibul Huq M.Sc. in Textile Engineering, Bangladesh University of Textiles, Bangladesh doi: 10.19044/esj.2016.v12n15p352 URL:http://dx.doi.org/10.19044/esj.2016.v12n15p352 Abstract 160 GSM Single Jersey cotton knitted fabric was dyed with conventional Remazol reactive dye and latest Avitera reactive dye (Huntsman). Detailed comparison of the process parameters and fastness properties of these dyed fabrics were studied. Investigation exposed that Avitera delivered better dyeing performance including fastness to washing, perspiration, rubbing than conventionally dyed fabrics. Concerning process parameters Avitera dye required less soda, salt and no addition of other auxiliaries. Also this new Avitera reactive dye is more eco-friendly, cost effective and energy saving than conventional Remazol reactive dye. CMC DE and Da* color deviation were significantly higher between the dyed samples. Again K/S value of Avitera dyed sample was superior to that of Remazol dyed samples as because of enhanced dye uptake. Sequentially reflectance and relative indicators of the latest reactive dyed samples were also experimented. Keywords: Avitera reactive dye, Remazol reactive dye, Color Fastness, Energy saving, K/S value, CMC DE, Reflectance. Introduction: The best dyes to apply on cotton fabric and other cellulose fibers are reactive dyes.
    [Show full text]
  • Improving the Colour Fastness of the Selected Natural Dyes on Cotton (Improving the Sunlight Fastness and Washfastness of the Eucalyptus Bark Dye on Cotton)
    IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE) e-ISSN: 2348-019X, p-ISSN: 2348-0181, Volume 1, Issue 4 (Sep-Oct. 2014), PP 27-30 www.iosrjournals.org Improving the Colour Fastness of the Selected Natural Dyes on Cotton (Improving the sunlight fastness and washfastness of the eucalyptus bark dye on cotton) R.Prabhavathi1, Dr.A.Sharada Devi2 & Dr. D. Anitha3 Department of Apparel and Textiles, College of Home Science, Acharya N.G Ranga Agricultural University (ANGRAU)Saifabad, Hyderabad -30, India. Part-V Abstract: This paper reports the improving the colourfastness of the natural dye with dye fixing agents, extraction of the colourants from natural sources; effects of different mordants and mordanting methods; selection of fixing agents; dyeing variables; post-treatment process and analysis of colour improvement parameters with fixing agents for cotton dyed with natural dye; assessed colour improvement with colourfastness test. Key words: Eucalyptus Bark natural dye, fixing agents, coloufastness, shade variations with dye fixing agents I. Introduction: In India, dyes from natural sources have ancient history and can trace their route to antiquity. It is interesting to note that India is one of the few civilizations to perfect the art of fixing natural dye to the cloth. Indian textiles were greatly valued and sought after for their colours and enduring qualities. Like most ancient Indian arts and crafts, part of the knowledge and expertise of natural dyes has traditionally passed down from the master crafts man to his disciples. Even though scientists have paid considerable attention in the post independence period to study the plants in relation to their pharmaceutical use, very little attention was paid to study the plants as sources of dyes and colourants.
    [Show full text]
  • Reactive Dyes… General Structure Has a Reactive Group Which Are Adsorbed on to the Cellulose and Than Reacted with the Fiber to Form Covalent Bonds
    Reactive Chemistry TECHNICAL INFORMATION Murat ŞAHİNLİ 12.11.2015 Cellulose… Cellulose structure Reactive dyes… General structure has a reactive group which are adsorbed on to the cellulose and than reacted with the fiber to form covalent bonds. Chromophore Bridging RG Reactive group Functional groups Reactive dyes… General structure has a reactive group which are adsorbed on to the cellulose and than reacted with the fiber to form covalent bonds. Chromophore Bridging RG Functional groups Shade Fastness Fastness Dischargeability Levelness Fixation Substantivity Application temperature Solubility Application temperature Reactive dyes… General reaction When put fabric and dye into the water; Cellulose: Cell-OH Cell-O¯ Electrostatic repulsion because of Dye: the negative charges HO3S-Dye-X X-Dye-SO3¯ With addition of salt: Cell-O¯ ⁺ Na Reduce the repulsion X-Dye-SO3¯ ⁺ Na Reactive dyes… General reaction After addition alkaline and linking with covalent bond; Thanks to covalent bond X-Dye-SO3¯ ⁺ Na + Na ⁺ ¯O-Cell Linking much more resistant to the usual conditions of use than the ( Soda ash, caustic …) physicochemical bond between direct dyes and cellulose. Na ⁺ ¯O3S – Dye –O-Cell + NaX Bond type App. Relative strength Covalent 30.0 Ionic 7.0 Hydrogene 3.0 Other 1.0 Intermolecular Reactive dyes… Description of dyeing mechanism Exhaustion of dye in presence of electrolyte by adsorption Fixation under the influence of alkali Wash off the unfixed dye from material surface T1: Addition of alkali and start of the fixation Reactive dyes… Exhaustion The reactive dyes is adsorbed onto the cellulose surface and than diffuses into the fiber. This phase is fully reversible.
    [Show full text]