First Detection and Molecular Characterisation of Pseudocowpox Virus in a Cattle Herd in Zambia Maureen Wakwamba Ziba1* , Chanda Chitala1, Tirumala Bharani K

Total Page:16

File Type:pdf, Size:1020Kb

First Detection and Molecular Characterisation of Pseudocowpox Virus in a Cattle Herd in Zambia Maureen Wakwamba Ziba1* , Chanda Chitala1, Tirumala Bharani K Ziba et al. Virol J (2020) 17:152 https://doi.org/10.1186/s12985-020-01426-7 RESEARCH Open Access First detection and molecular characterisation of pseudocowpox virus in a cattle herd in Zambia Maureen Wakwamba Ziba1* , Chanda Chitala1, Tirumala Bharani K. Settypalli2, Malama Mumba1, Giovanni Cattoli2, Paul Fandamu1 and Charles Euloge Lamien2 Abstract Background: Pseudocowpox virus (PCPV) of the genus Parapoxvirus in the family Poxviridae causes pseudocowpox in cattle worldwide and presents a zoonotic concern. Most poxviruses produce diseases of similar clinical signs in afected animals, which are impossible to diferentiate clinically or by serology. It is, therefore, vital to use molecular assays to rapidly identify the causative agents of poxvirus infections. This study aimed to detect, diagnose, and char- acterize the causative agent of pox-like skin lesions in a cattle herd in Zambia, initially suspected to be infected with Lumpy Skin Disease virus. Methods: We used a High-Resolution Melting (HRM) analysis assay to detect the PCPV genome and sequenced the major envelope protein (B2L gene) for comparative sequence and phylogenetic analysis. Results: Our feld investigations showed cattle presenting atypical skin lesions and high morbidity within the herd. The laboratory diagnosis, based on the HRM assay revealed PCPV DNA in the samples. Phylogenetic and comparative sequence analyses confrmed PCPV in the samples and revealed genomic diferences between samples collected in 2017 and 2018 from the same farm. Conclusion: Our work is the frst documented report of PCPV in Zambia. It shows the strength of molecular methods to diagnose pox-like infections in cattle and discriminate between diseases causing similar clinical signs. This rapid and accurate diagnosis improves the response time for more accurate veterinary interventions. Keywords: Pseudocowpox virus, HRM assay, B2L gene, Parapoxvirus, Zambia Background genera Capripoxvirus and Orthopoxvirus, can also afect Pseudocowpox is a pox-like disease of cattle caused by cattle. pseudocowpox virus (PCPV) of the genus Parapoxvirus Parapoxviruses cause papules and erosions on the (PPV) within the family Poxviridae [1]. Tis genus also muzzle, oral mucosa, and udder [6] and may cause high includes bovine papular stomatitis virus (BPSV) of cat- morbidity and loss of productivity [7]. Parapoxvirus tle and orf virus (ORFV) of sheep and goats. Additional infections may also be asymptomatic [8], and can infect PPVs afect red deer of New Zealand (PVNZ), reindeers, humans working in close contact with infected animals seals, and musk ox [2–5]. Other poxviruses, within the [7, 9]. Parapoxvirus infections can be clinically diagnosed, however, clinical signs may overlap with other diseases *Correspondence: [email protected] 1 Department of Veterinary Services Ministry of Fisheries and Livestock, such as lumpy skin disease (LSD), bovine herpes virus Central Veterinary Research Institute, P.O Box 33980, Lusaka, Zambia (BoHV), BPSV, and orthopoxvirus. In Zambia, LSD has Full list of author information is available at the end of the article been documented since 1929, but information on PPVs © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Ziba et al. Virol J (2020) 17:152 Page 2 of 8 and orthopoxvirus infections of cattle are lacking. Typi- scabs from a herd of cattle, initially presumed to have cally, cases presenting with pox-like lesions are treated LSD infection. Te cattle were a Zebu-Boran cross- as LSD, BoHV, or other skin diseases of cattle. Samples breed, of mixed dairy and beef, from Chiyuni veteri- are rarely sent to the laboratory for further diagnosis due nary camp, Chief Chitanda area, Mundu, Chibombo to a lack of diferential diagnostic tools. Recent advance- District, Central Province of Zambia (Fig. 1). ments have produced molecular assays that are fast, sen- Te afected farm is designated under zone 3 of the sitive, and ofer a means to discriminate parapoxviruses East Coast fever (ECF) control strategy in Zambia [13]. from other agents producing similar cutaneous lesions Tis is an epidemic area for ECF, which causes high [10–12]. animal mortalities in Zambia. For the frst time, we report the diagnosis of pseudoc- Te samples initially tested negative by real-time Pol- owpox in Zambia from LSD suspected cases. Tis paper ymerase Chain Reaction (PCR) for capripoxviruses. Te describes the clinical presentation, molecular detec- extracted DNA was stored and subsequently analyzed tion, and molecular characterization of the index cases using a recently developed High Resolution Melting of PCPV from clinical samples and discusses the subse- (HRM) assay for the simultaneous detection and difer- quent feld investigation in a herd of cattle. entiation of eight poxviruses of medical and veterinary importance [12]. Te results prompted a follow-up trip Methods to the farm in April 2018 to clinically examine the ani- Clinical and epidemiological investigations mals and obtain additional history and samples. In December 2017, the Central Veterinary Research Institute (CVRI) received samples of skin nodules and Fig. 1 Outbreak and sample collection site Ziba et al. Virol J (2020) 17:152 Page 3 of 8 Sample collection and DNA extraction Te reaction contained 200 nM of each primer Skin nodules were collected from eight cattle showing (Table 2), 1 X SsoFast™ EvaGreen® Supermix (Bio- recent fresh lesions (Table 1) and were transferred to the Rad, USA), and 2 µl of the template. Each run included CVRI laboratory on ice in a coolbox. Te nodules were positive control plasmids representing each of the ground, and 50 mg was homogenized in 2 ml phosphate- eight pathogens, and a negative control composed of bufered saline and centrifuged at 2500 rpm for 10 min nuclease-free water. Capripoxviruses (GTPV-Deni- at 4 °C. 200 µl of the supernatant was added to 800 µl of zli, SPPV-Denizli, and LSDV-Ismalia), orthopoxvi- lysis bufer RLT Plus (QIAGEN, Germany) and the total ruses (CMLV- Hadow/01/2012 and CPXV-72/93), and nucleic acid extracted using the RNeasy mini kit (QIA- parapoxviruses (ORFV- DZ C-1, PCPV- 2200/12 and GEN, Germany) as previously described [14]. BPSV- Stamm M1) were used to produce positive con- trol plasmids [12]. Te PCR reactions and melting curve Genetic identifcation using the HRM assay analysis were performed on a real-time PCR machine We tested the extracted DNA using the HRM assay for (CFX96™ Real-Time PCR Detection System, Bio-Rad, the simultaneous detection and diferentiation of eight USA), following the conditions previously described [12] poxviruses.[12]. Te method can diferentially detect with slight modifcations. Briefy, an initial denaturation members of three diferent genera of poxviruses; Capri- step at 95 °C for 4 min was followed by 40 cycles of 95 °C poxvirus, Orthopoxvirus, and Parapoxvirus, and addi- for 1 s, 59 °C for 5 s and 70 °C for 5 s. Te PCR prod- tionally discriminate the viruses within each of the ucts were then denatured at 95 °C for 30 s, cooled down three genera: cowpox virus (CPXV) and camelpox virus to 65 °C for 60 s, then melted from 65 to 85 °C with an (CMLV) [genus Orthopoxvirus]; goatpox virus (GTPV), 0.2 °C increments every ten seconds with continuous sheeppox virus (SPPV) and lumpy skin disease virus data acquisition. Data was analyzed using the CFX Man- (LSDV) [genus Capripoxvirus]; orf virus (ORFV), pseu- ager Software (Bio-Rad, USA), and the Precision Melt docowpox virus (PCPV) and bovine papular stomatitis Analysis Software (Bio-Rad, USA). virus (BPSV) [genus Parapoxvirus]. Sequencing of the B2L gene fragment Te primers used to amplify a fragment of the B2L gene Table 1 List of PCPV samples and animals from which of parapoxviruses [15] are indicated in Table 2. Te posi- specimens were collected for this study in Zambia, 2017– tive PCR products (1210 base pairs) were purifed using 2018 the Wizard® SV Gel and PCR Clean-Up System (Pro- Animal Name Age Sex Collection date Host mega, USA) and sequenced in both directions by LGC number Biosearch Technologies (Germany), using standard 1 Lungu 2 years M 20.12.17 Cattle Sanger sequencing methods. Te sequences were edited 2 Mary 2 years 2 mo F 20.12.17 Cattle and assembled using Vector NTI 11.5 software (Invitro- 3 Mazete 3 years F 20.12.17 Cattle gen). All sequences were submitted to GenBank under 4 Beenzu 5 years F 24.04.18 Cattle accession numbers MT448677 to MT448684. 5 Mary 2 years 6 mo F 24.04.18 Cattle 6 Mazuba 1 years M 24.04.18 Cattle Phylogenetic analysis 7 Mercy 5 years F 24.04.18
Recommended publications
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
    www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs.
    [Show full text]
  • ICD-9 Diagnosis Codes Effective 10/1/2011 (V29.0) Source: Centers for Medicare and Medicaid Services
    ICD-9 Diagnosis Codes effective 10/1/2011 (v29.0) Source: Centers for Medicare and Medicaid Services 0010 Cholera d/t vib cholerae 00801 Int inf e coli entrpath 01086 Prim prg TB NEC-oth test 0011 Cholera d/t vib el tor 00802 Int inf e coli entrtoxgn 01090 Primary TB NOS-unspec 0019 Cholera NOS 00803 Int inf e coli entrnvsv 01091 Primary TB NOS-no exam 0020 Typhoid fever 00804 Int inf e coli entrhmrg 01092 Primary TB NOS-exam unkn 0021 Paratyphoid fever a 00809 Int inf e coli spcf NEC 01093 Primary TB NOS-micro dx 0022 Paratyphoid fever b 0081 Arizona enteritis 01094 Primary TB NOS-cult dx 0023 Paratyphoid fever c 0082 Aerobacter enteritis 01095 Primary TB NOS-histo dx 0029 Paratyphoid fever NOS 0083 Proteus enteritis 01096 Primary TB NOS-oth test 0030 Salmonella enteritis 00841 Staphylococc enteritis 01100 TB lung infiltr-unspec 0031 Salmonella septicemia 00842 Pseudomonas enteritis 01101 TB lung infiltr-no exam 00320 Local salmonella inf NOS 00843 Int infec campylobacter 01102 TB lung infiltr-exm unkn 00321 Salmonella meningitis 00844 Int inf yrsnia entrcltca 01103 TB lung infiltr-micro dx 00322 Salmonella pneumonia 00845 Int inf clstrdium dfcile 01104 TB lung infiltr-cult dx 00323 Salmonella arthritis 00846 Intes infec oth anerobes 01105 TB lung infiltr-histo dx 00324 Salmonella osteomyelitis 00847 Int inf oth grm neg bctr 01106 TB lung infiltr-oth test 00329 Local salmonella inf NEC 00849 Bacterial enteritis NEC 01110 TB lung nodular-unspec 0038 Salmonella infection NEC 0085 Bacterial enteritis NOS 01111 TB lung nodular-no exam 0039
    [Show full text]
  • List of Codes Used to Identify Measures Reported in the QDFC
    List of Codes Used to Identify Measures Reported in the Quarterly Dialysis Facility Compare Reports July 2018 List of Codes Used to Identify Measures Reported in the Quarterly Dialysis Facility Compare Reports Table of Contents Table 1a: Transfusion Summary for Medicare Dialysis Patients, Codes Used for Exclusions 3 CARCINOMA 3 COAGULATION 5 HEAD/NECK CANCER 5 HEMOLYTIC OR APLASTIC ANEMIA 9 LEUKEMIA 11 LYMPHOMA 15 METASTATIC 27 MYELOMA, ETC. 29 OTHER CANCER 30 SICKLE CELL 34 SOLID ORGAN CANCER 34 Table 1b: Transfusion Summary for Medicare Dialysis Patients, Codes Used to Identify Transfusion Events .................................................................................................................. 45 REVENUE CENTER CODES 45 PROCEDURE CODES 45 VALUE CODES 46 HCPCS CODE 46 Table 2a: Vascular Access Measures (SFR and Long-Term Catheter) for Medicare Dialysis Patients Based on Medicare Claims, Codes Used for Exclusions ........................................... 46 Produced by The University of Michigan Kidney Epidemiology and Cost Center Page 1 of 135 List of Codes Used to Identify Measures Reported in the Quarterly Dialysis Facility Compare Reports July 2018 COMA 46 END STAGE LIVER DISEASE 48 METASTATIC CANCER 48 Table 2b: Standardized Fistulae Rate (SFR) for Medicare Dialysis Patients Based on Medicare Claims, Codes Used for Prevalent Comorbidities Adjusted in Model .................................... 50 ANEMIA 50 CORONARY ARTERY DISEASE 52 CONGESTIVE HEART FAILURE 55 CEREBROVASCULAR DISEASE 56 CHRONIC OBSTRUCTIVE PULMONARY DISEASE 68 DIABETES 69 DRUG DEPENDENCE 79 INFECTIONS (NON-VASCULAR ACCESS-RELATED): 93 PERIPHERAL VASCULAR DISEASE (INCLUDES ARTERIAL, VENOUS AND NONSPECIFIC DISEASES) 124 Table 3: Dialysis Adequacy ...................................................................................................
    [Show full text]
  • Client Services Manual Public Health Laboratory
    CLIENT SERVICES MANUAL PUBLIC HEALTH LABORATORY COUNTY OF SANTA CLARA 2220 MOORPARK AVE, 2ND FLOOR SAN JOSE, CA 95128 (P) 408.885.4272 | (F) 408.885.4275 http://www.sccgov.org/sites /sccphd/en-us/HealthProviders/Lab Patricia Dadone, Public Health Laboratory Director Sara H. Cody, MD, Health Officer and Public Health Director Table of Contents 1 GENERAL INFORMATION ............................................................................................... 1.1 ROLE .............................................................................................................................................................. 1.1 MISSION STATEMENT ..................................................................................................................................... 1.1 ABBREVIATIONS.............................................................................................................................................. 1.2 LABORATORY CERTIFICATIONS ........................................................................................................................ 1.4 CLIENT SERVICES ............................................................................................................................................ 1.5 Hours of Operation: .............................................................................................................................. 1.5 Supplies ..................................................................................................................................................
    [Show full text]
  • Modulation of NF-Κb Signalling by Microbial Pathogens
    REVIEWS Modulation of NF‑κB signalling by microbial pathogens Masmudur M. Rahman and Grant McFadden Abstract | The nuclear factor-κB (NF‑κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF‑κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF‑κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF‑κB signalling circuitry to favour the continued survival of the pathogen. The nuclear factor-κB (NF-κB) family of transcription Signalling targets upstream of NF‑κB factors regulates the expression of hundreds of genes that NF-κB proteins are tightly regulated in both the cyto- are associated with diverse cellular processes, such as pro- plasm and the nucleus6. Under normal physiological liferation, differentiation and death, as well as innate and conditions, NF‑κB complexes remain inactive in the adaptive immune responses. The mammalian NF‑κB cytoplasm through a direct interaction with proteins proteins are members of the Rel domain-containing pro- of the inhibitor of NF-κB (IκB) family, including IκBα, tein family: RELA (also known as p65), RELB, c‑REL, IκBβ and IκBε (also known as NF-κBIα, NF-κBIβ and the NF-κB p105 subunit (also known as NF‑κB1; which NF-κBIε, respectively); IκB proteins mask the nuclear is cleaved into the p50 subunit) and the NF-κB p100 localization domains in the NF‑κB complex, thus subunit (also known as NF‑κB2; which is cleaved into retaining the transcription complex in the cytoplasm.
    [Show full text]
  • Specimen Type, Collection Methods, and Diagnostic Assays Available For
    Specimen type, collection methods, and diagnostic assays available for the detection of poxviruses from human specimens by the Poxvirus and Rabies Branch, Centers for Disease Control and Prevention1. Specimen Orthopoxvirus Parapoxvirus Yatapoxvirus Molluscipoxvirus Specimen type collection method PCR6 Culture EM8 IHC9,10 Serology11 PCR12 EM8 IHC9,10 PCR13 EM8 PCR EM8 Lesion material Fresh or frozen Swab 5 Lesion material [dry or in media ] [vesicle / pustule Formalin fixed skin, scab / crust, etc.] Paraffin block Fixed slide(s) Container Lesion fluid Swab [vesicle / pustule [dry or in media5] fluid, etc.] Touch prep slide Blood EDTA2 EDTA tube 7 Spun or aliquoted Serum before shipment Spun or aliquoted Plasma before shipment CSF3,4 Sterile 1. The detection of poxviruses by electron microscopy (EM) and immunohistochemical staining (IHC) is performed by the Infectious Disease Pathology Branch of the CDC. 2. EDTA — Ethylenediaminetetraacetic acid. 3. CSF — Cerebrospinal fluid. 4. In order to accurately interpret test results generated from CSF specimens, paired serum must also be submitted. 5. If media is used to store and transport specimens a minimal amount should be used to ensure as little dilution of DNA as possible. 6. Orthopoxvirus generic real-time polymerase chain reaction (PCR) assays will amplify DNA from numerous species of virus within the Orthopoxvirus genus. Species-specific real-time PCR assays are available for selective detection of DNA from variola virus, vaccinia virus, monkeypox virus, and cowpox virus. 7. Blood is not ideal for the detection of orthopoxviruses by PCR as the period of viremia has often passed before sampling occurs. 8. EM can reveal the presence of a poxvirus in clinical specimens or from virus culture, but this technique cannot differentiate between virus species within the same genus.
    [Show full text]
  • Treatment of Metastatic Disease Through Natural Killer Cell Modulation by Infected Cell Vaccines
    viruses Review Treatment of Metastatic Disease through Natural Killer Cell Modulation by Infected Cell Vaccines Seyedeh Raheleh Niavarani 1, Christine Lawson 1 and Lee-Hwa Tai 1,2,* 1 Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke QC J1E 4K8, Canada; [email protected] (S.R.N.); [email protected] (C.L.) 2 Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke QC J1E 4K8, Canada * Correspondence: [email protected]; Tel.: +1-819-821-8000 (ext. 71199) Received: 26 March 2019; Accepted: 10 May 2019; Published: 11 May 2019 Abstract: Oncolytic viruses (OVs) are a form of immunotherapy that release tumor antigens in the context of highly immunogenic viral signals following tumor-targeted infection and destruction. Emerging preclinical and clinical evidence suggests that this in situ vaccine effect is critical for successful viro-immunotherapy. In this review, we discuss the application of OV as an infected cell vaccine (ICV) as one method of enhancing the potency and breadth of anti-tumoral immunity. We focus on understanding and manipulating the critical role of natural killer (NK) cells and their interactions with other immune cells to promote a clinical outcome. With a synergistic tumor killing and immune activating mechanism, ICVs represent a valuable new addition to the cancer fighting toolbox with the potential to treat malignant disease. Keywords: immunotherapy; oncolytic virus; autologous cancer vaccines; infected cell vaccines; natural killer cells; immunomonitoring 1. Introduction While the field of oncology has seen great advances in treating primary solid cancers, malignant cancers that have spread to multiple sites of the body have rarely been cured.
    [Show full text]
  • DNA and Peptide Aptamer Selection for Diagnostic Applications
    DNA and Peptide Aptamer Selection for Diagnostic Applications vorgelegt von Diplom-Ingenieurin Janine Michel aus Berlin Von der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Ingenieurwissenschaften -Dr.-Ing.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Leif-A. Garbe Berichter: Prof. Dr. Jens Kurreck Berichter: PD Dr. Andreas Nitsche Tag der wissenschaftlichen Aussprache: 27.09.2013 Berlin 2013 D83 To Olaf and my loving family, especially to grandpa Bernd. I miss you! I Acknowledgments This work would have been impossible to complete without the help of many persons, including colleagues, family, and friends. Since there are so many of them I cannot acknowledge every single contribution by name, but I would like to thank everyone who helped me through this demanding and challenging but interesting time, regardless of the type of support. Above all, I would like to thank Andreas Nitsche for giving me the opportunity to do my PhD project and for the continuous support. Many thanks go to my dear colleagues Lilija Miller and Daniel Stern who helped me especially in the beginning of this project. Thank you for introducing me to the basics of phage display and aptamers and for the fruitful and valuable scientific discussions and for frequent encouragement. I am grateful to Lilija Miller who helped me with phage display selections and subsequent peptide characterizations. Further, I would like to thank all members of the ZBS1 group for the friendly atmosphere and the company during lunch. A considerable contribution was made by students I supervised during my PhD project. Carolin Ulbricht, Daniel John and Alina Sobiech contributed to the “DNA aptamer selection and characterization project” during their bachelor’s thesis, internships, and master’s thesis, respectively.
    [Show full text]
  • Risk Groups: Viruses (C) 1988, American Biological Safety Association
    Rev.: 1.0 Risk Groups: Viruses (c) 1988, American Biological Safety Association BL RG RG RG RG RG LCDC-96 Belgium-97 ID Name Viral group Comments BMBL-93 CDC NIH rDNA-97 EU-96 Australia-95 HP AP (Canada) Annex VIII Flaviviridae/ Flavivirus (Grp 2 Absettarov, TBE 4 4 4 implied 3 3 4 + B Arbovirus) Acute haemorrhagic taxonomy 2, Enterovirus 3 conjunctivitis virus Picornaviridae 2 + different 70 (AHC) Adenovirus 4 Adenoviridae 2 2 (incl animal) 2 2 + (human,all types) 5 Aino X-Arboviruses 6 Akabane X-Arboviruses 7 Alastrim Poxviridae Restricted 4 4, Foot-and- 8 Aphthovirus Picornaviridae 2 mouth disease + viruses 9 Araguari X-Arboviruses (feces of children 10 Astroviridae Astroviridae 2 2 + + and lambs) Avian leukosis virus 11 Viral vector/Animal retrovirus 1 3 (wild strain) + (ALV) 3, (Rous 12 Avian sarcoma virus Viral vector/Animal retrovirus 1 sarcoma virus, + RSV wild strain) 13 Baculovirus Viral vector/Animal virus 1 + Togaviridae/ Alphavirus (Grp 14 Barmah Forest 2 A Arbovirus) 15 Batama X-Arboviruses 16 Batken X-Arboviruses Togaviridae/ Alphavirus (Grp 17 Bebaru virus 2 2 2 2 + A Arbovirus) 18 Bhanja X-Arboviruses 19 Bimbo X-Arboviruses Blood-borne hepatitis 20 viruses not yet Unclassified viruses 2 implied 2 implied 3 (**)D 3 + identified 21 Bluetongue X-Arboviruses 22 Bobaya X-Arboviruses 23 Bobia X-Arboviruses Bovine 24 immunodeficiency Viral vector/Animal retrovirus 3 (wild strain) + virus (BIV) 3, Bovine Bovine leukemia 25 Viral vector/Animal retrovirus 1 lymphosarcoma + virus (BLV) virus wild strain Bovine papilloma Papovavirus/
    [Show full text]
  • Supporting Information
    Supporting Information Rosenberg et al. 10.1073/pnas.1307243110 SI Results and Discussion domestic ungulates (horses, cows, sheep, goats, camels, and pigs) Of the 83 arboviruses, nonhuman vertebrate hosts have been and rodents in both groups might be a consequence of spatial identified for 70 (84%); the remaining 13 are presumed to be proximity to humans. Sentinel monkeys were often used in pro- zoonoses because there is no indication they can be transmitted cedures to isolate arboviruses, which might account for their directly between humans by vectors (Table S1). Animal hosts have higher representation among arboviruses. In contrast, there are been identified for at least 57 (44%) of the 130 nonarboviruses; an few published records of bats being routinely sampled during additional 5 (8%) are presumed on epidemiological evidence to arbovirus studies, and only two arboviruses (3%) have been iso- have nonhuman reservoirs (Table S1). A number of viruses infect lated from bats. The reason a much larger number of arbovirus more than one nonhuman vertebrate host species and it is likely species (n = 16) have been isolated from birds than have that the variety of hosts is wider than has been recorded. The nonarbovirus species (n = 1) might, however, be characteristic of predominant host groups for arboviruses (n = 70) are nonhuman the pathogenicity of the togaviruses and flaviviruses, which are primates (31%), rodents (29%), ungulates (26%), and birds (23%); much more common among the arboviruses. The most prominent for the nonarboviruses (n = 57), they are rodents (30%), ungu- vectors of arboviruses were mosquitoes (67%), ticks (19%), and lates (26%), bats (23%), and primates (16%).
    [Show full text]
  • Disease of Aquatic Organisms 70:261
    DISEASES OF AQUATIC ORGANISMS Vol. 70: 261–279, 2006 Published June 23 Dis Aquat Org COMBINED AUTHOR AND TITLE INDEX (Volumes 61 to 70, 2004–2006) A Antoniadou C, see Rayyan A et al. (2006) 70:251–254 Aoki M, Kondo M, Kawai K, Oshima SI (2005) Experimental Aas-Eng A, see Shivappa RB et al. (2004) 61:23–32 bath infection with Flavobacterium psychrophilum, indu- Abollo E, Novoa B, Figueras A (2005) SSU rDNA analysis of cing typical signs of rainbow trout Oncorhynchus mykiss Kudoa rosenbuschi (Myxosporea) from the Argentinean fry syndrome. 67:73–79 hake Merluccius hubbsi. 64:135–139 Aoki T, see Supungul P et al. (2004) 61:123–135 Abraham M, see Azad IS et al. (2005) 63:113–118 Aragort W, Alvarez MF, Leiro JL, Sanmartín ML (2005) Blood Adams A, see McCarthy Ú et al. (2005) 64:107–119 protozoans in elasmobranchs of the family Rajidae from Adams A, see Morris DJ et al. (2005) 66:221–226 Galicia (NW Spain). 65:63–68 Adams AM, see Golléty C et al. (2005) 65:69–74 Aragort W, see Álvarez MF et al. (2006) 70:93–100 Adams MB, see Morrison RN et al. (2005) 66:135–144 Arana S, see Adriano EA et al. (2005) 64:229–235 Adriano EA, Arana S, Cordeiro NS (2005) Histology, ultra- Aranguren F, see Nunan LM et al. (2004) 62:255–264 structure and prevalence of Henneguya piaractus (Myx- Archakunakorn S, see Sritunyalucksana K et al. (2005) 63: osporea) infecting the gills of Piaractus mesopotamicus 89–94 (Characidae) cultivated in Brazil.
    [Show full text]