The Neuropathology of Fatal Encephalomyelitis in Human Borna Virus Infection

Total Page:16

File Type:pdf, Size:1020Kb

The Neuropathology of Fatal Encephalomyelitis in Human Borna Virus Infection Acta Neuropathologica (2019) 138:653–665 https://doi.org/10.1007/s00401-019-02047-3 ORIGINAL PAPER The neuropathology of fatal encephalomyelitis in human Borna virus infection Friederike Liesche1 · Viktoria Ruf2 · Saida Zoubaa3 · Gwendolyn Kaletka1 · Marco Rosati4 · Dennis Rubbenstroth5 · Christiane Herden6 · Lutz Goehring7 · Silke Wunderlich8 · Miguel Frederic Wachter9 · Georg Rieder10 · Ines Lichtmannegger11 · Willibald Permanetter12 · Josef G. Heckmann13 · Klemens Angstwurm14 · Bernhard Neumann14 · Bruno Märkl15 · Stefan Haschka16 · Hans‑Helmut Niller17 · Barbara Schmidt17 · Jonathan Jantsch17 · Christoph Brochhausen18 · Kore Schlottau5 · Arnt Ebinger5 · Bernhard Hemmer8,19 · Markus J. Riemenschneider3 · Jochen Herms2,19 · Martin Beer5 · Kaspar Matiasek4 · Jürgen Schlegel1 Received: 4 June 2019 / Revised: 18 July 2019 / Accepted: 19 July 2019 / Published online: 26 July 2019 © The Author(s) 2019 Abstract After many years of controversy, there is now recent and solid evidence that classical Borna disease virus 1 (BoDV-1) can infect humans. On the basis of six brain autopsies, we provide the frst systematic overview on BoDV-1 tissue distribution and the lesion pattern in fatal BoDV-1-induced encephalitis. All brains revealed a non-purulent, lymphocytic sclerosing panencephalomyelitis with detection of BoDV-1-typical eosinophilic, spherical intranuclear Joest–Degen inclusion bodies. While the composition of histopathological changes was constant, the infammatory distribution pattern varied interindividu- ally, afecting predominantly the basal nuclei in two patients, hippocampus in one patient, whereas two patients showed a more difuse distribution. By immunohistochemistry and RNA in situ hybridization, BoDV-1 was detected in all examined brain tissue samples. Furthermore, infection of the peripheral nervous system was observed. This study aims at raising awareness to human bornavirus encephalitis as diferential diagnosis in lymphocytic sclerosing panencephalomyelitis. A higher attention to human BoDV-1 infection by health professionals may likely increase the detection of more cases and foster a clearer picture of the disease. Keywords Virus · Bornavirus · Borna disease virus (BoDV-1) · Zoonosis · Encephalitis Introduction organism via the olfactory network and spreads through the limbic system to nearly all cortical areas, brainstem, cer- The classical Borna disease virus 1 (BoDV-1; species Mam- ebellum, and spinal cord [9]. In contrast to dead-end hosts, malian 1 orthobornavirus) can lead to lethal infections in a reservoir hosts feature a disseminated virus distribution to broad range of mammals. The virus is endemically present nearly every organ with shedding of infectious virus [24]. in white-toothed bicolored shrews (Crocidura leucodon) [1, Other animals, including rats and bank voles, can be infected 7, 16], while horses and sheep are main accidental dead- experimentally via diferent routes [10, 19]. Until recently, end hosts [9]. Historically, a severe neurological disorder no report on confrmed human bornavirus infection existed. (Borna disease) due to an encephalomyelitis lymphocytaria In 2015, the frst human infections with another orthobor- non-purulenta with loss of neurons had been described for navirus (variegated squirrel 1 bornavirus [VSBV-1]; spe- accidental hosts [18]. It is assumed that the virus enters the cies Mammalian 2 orthobornavirus) were described, which resulted in lethal encephalitis of three breeders of variegated squirrels (Sciurus variegatoides). All three patients showed Friederike Liesche, Viktoria Ruf and Saida Zoubaa contributed similar central nervous system (CNS) symptoms with equally to the manuscript. lesions in cerebral cortex, basal nuclei, and brainstem, but without involvement of the spinal cord [17]. Subsequently, * Friederike Liesche [email protected] two more VSBV-1-induced human encephalitis cases occurred, whereof one was lethal [32, 33]. The frst evidence Extended author information available on the last page of the article Vol.:(0123456789)1 3 654 Acta Neuropathologica (2019) 138:653–665 for human infections with the “classical” BoDV-1 was pub- hematoxylin and eosin (H&E) stain, Grocott’s methena- lished by two simultaneous reports just recently in 2018. A mine silver stain, and periodic acid-Schif (PAS) stain. We group of three recipients of solid organ transplants from the conducted an established avidin–biotin complex technique same donor developed severe encephalitis of preliminary for immunohistochemistry (IHC) using the monoclonal unknown origin, which was later convincingly demonstrated Bo18 antibody, which is directed against the nucleoprotein to be BoDV-1-associated [28]. Furthermore, BoDV-1 infec- (N) of BoDV-1 [11], as described previously in animals tion led to the death of a previously healthy 25-year-old man [15, 35]. Furthermore, BoDV-1 RNA in situ hybridization [21]. Shortly afterwards, a report on a sporadic BoDV-1 (V-BoDV1-G targeting 2-969 of NC_001607-1:2236-3747, infection with initial symptoms mimicking a Guillain–Barré RNAscope®, Advanced Cell Diagnostics, Inc., USA) was syndrome was reported [5]. All fve patients sufered a mas- performed as described previously [34]. For patients 1, 2, 3, sive non-purulent encephalitis leading to death in four of the and 5, infltrating infammatory cells were characterized by cases [5, 21, 28]. One of the deceased immunocompromised IHC using antibodies directed against CD3 (Cell Marque, transplant recipients was autopsied and provided full insight The Netherlands; monoclonal, rabbit, dilution 1:500), CD20 into CNS and peripheral nerve pathology (patient 1). This (Dako Denmark A/S, Denmark; monoclonal, mouse, dilu- incident triggered a broad research on post mortem cases tion 1:500), CD4 (Ventana Roche, Switzerland; monoclonal, with yet non-classifed encephalitis. Our screening revealed rabbit, ready-to-use), CD8 (Ventana Roche, Switzerland; autoptic material of fve additional cases of fatal human monoclonal, rabbit, ready-to-use), CD68 (Dako Denmark BoDV-1. All patients had appeared completely healthy prior A/S, Denmark; monoclonal, mouse, dilution 1:15,000), to the neurologic disease. CD138 (Cell Marque, The Netherlands; monoclonal, mouse, With these six cases, our study provides the frst com- dilution 1:50), and Iba1 (abcam, USA; polyclonal, rabbit, prehensive description of the neuropathology of human dilution 1:500). These stainings were performed using BoDV-1 infection with focus on infammatory lesions and a fully-automated staining system (Ventana BenchMark virus distribution patterns at a systemic and cellular level. ULTRA; Ventana Medical Systems; Tucson; USA). Briefy, the slides were exposed to heat-induced epitope uncover- ing in pH 8.4 bufer at 95 °C for 40 min. After incubating Materials and methods with H2O2, the slides were incubated with the primary anti- bodies indicated above, followed by visualization using the This retrospective study was approved by the local ethi- 3,3′-diaminobenzidine-(DAB-)based OptiView DAB IHC cal committee of the Technical University Munich. The Detection Kit (Ventana Medical Systems). families of patients 1, 2, and 6 gave informed consent to To characterize the cellular distribution of the infection, complete autopsy, whereas the families of patients 3, 4, immunolabelling with Bo18 antibody was combined with and 5 agreed to brain autopsy only. For patients 1, 2, and cell markers Iba1 (abcam, USA; polyclonal rabbit, dilution 6, macroscopic evaluation of the thoracic and abdominal 1:500), GFAP (Dako Denmark A/S, Denmark; rabbit poly- cavity, including evaluation of all organs, was conducted clonal, dilution 1:500), S-100 (Dako Denmark A/S, Den- by two pathologists. For microscopic analysis, representa- mark; rabbit polyclonal, 1:500) and synaptophysin (Synaptic tive samples from peripheral organs, including heart, lung, Systems, Germany; rabbit polyclonal, dilution 1:200) using liver, kidney, trachea, esophagus, stomach, intestine, and an antibody removal agent (LinBlock, Linaris, Germany) others were obtained. Brain dissection was carried out by and a green second chromogen (Histogreen®, Linaris, two neuropathologists after routine formalin-fxation of the Germany). undissected brain. For microscopic analysis, representative In the same vein, RNA in situ hybridization of BoDV-1 samples from multiple selected regions of the brain and RNA (V-BoDV1-G targeting 2-969 of NC_001607-1:2236- spinal cord were retrieved from following areas: frontal, 3747, RNAscope®, Advanced Cell Diagnostics, Inc., USA) parietal and occipital cortex, hippocampus, basal ganglia, was performed, followed by immunohistochemical coun- mesencephalon, pons, medulla oblongata, cerebellum, as terstaining with glial fbrillary acidic protein (GFAP; Dako well as cervical, thoracic and lumbar parts of the spinal Denmark A/S, Denmark; monoclonal, mouse, dilution cord. From patients 1 and 6, peripheral nerves including 1:500), S-100 (Agilent, USA; polyclonal, rabbit, dilution the sciatic nerve and brachial plexus from patient 1, and 1:6000), myelin basic protein (MBP; Cell Marque Corpora- sural and femoral nerve as well as brachial and sacral plexus tion, USA; polyclonal, rabbit, ready-to-use, dilution 1:2), from patient 6 were sampled in addition to the autonomic neuroflament (NFpan; Dako Denmark A/S, Denmark; mon- nerve branches attached to visceral organs and tissues. All oclonal, mouse, dilution 1:200), Iba1 (abcam, USA; poly- tissue samples were further fxed in 10% bufered formalin clonal, rabbit,
Recommended publications
  • Mented, Negative-Strand RNA Virus
    ウ イ ル ス 45(2),165-174,1995 特集 ネガテ ィブ鎖RNAウ イルス 4. The atypical strategies used for gene expression of Borna disease virus, a nonseg- mented, negative-strand RNA virus. ANETTE SCHNEEMANN,* PATRICK A. SCHNEIDER,*•˜ and W. IAN LIPKIN*•˜ *Laboratory for Neurovirology , Department of Neurology, Department of Anatomy and Neurobiology, § Department of Microbiology and Molecular Genetics , University of California-Irvine, Irvine, CA 92717 $ To whom correspondence should be addressed . FAX : (714) 824-2132. Email : ilipkin @ uci. edu al., 1992), has opened the fields of BDV biology and Abstract pathogenesis for rigorous investigation. BDV has Borna disease virus (BDV) is a neurotropic agent now been defined as an enveloped, nonsegmented that causes disturbances in movement and behavior negative-strand RNA virus (Briese et al., 1992 ; in vertebrate host species ranging from birds to Compans et al., 1994 Zimmermann et al., 1994) and primates. Although the virus has not been isolated its sequence has been determined independently in from human subjects, there is indirect evidence to two laboratories (Briese et al., 1994 ; Cubitt et al., suggest that humans with neuropsychiatric dis- 1994b). Although aspects of gene organization and orders may be infected with BDV. Recently, virus deduced protein sequence suggest relatedness to particles have been isolated and the viral genomic members of the order Mononegavirales (paramyx- RNA has been cloned. This analysis revealed that oviruses, rhabdoviruses and filoviruses), BDV BDV is a nonsegmented, negative-strand RNA shows unusual features such as RNA splicing virus. Unusual features such as RNA splicing, over- (Schneider et al., 1994 ; Cubitt et al. 1994c) and lap of transcription units and transcription signals, overlap of transcription units and transcription as well as sequence dissimilarity for four of five signals (Schneemann et al., 1994).
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Phylogenetic Analysis and Transmission Cycle of Tick-Borne Encephalitis Virus Isolated in Hokkaido
    Title Phylogenetic analysis and transmission cycle of tick-borne encephalitis virus isolated in Hokkaido Author(s) HAYASAKA, Daisuke Citation Japanese Journal of Veterinary Research, 46(2-3), 159-160 Issue Date 1998-11-30 Doc URL http://hdl.handle.net/2115/2711 Type bulletin (article) File Information KJ00003408044.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP lPn. l. Vet. Res. 46(2-3), (1998) Information 159 Establishment of monoclonal antibodies against Borna disease virus p40 protein and the application to a serological diagnostic method Kouji Tsujimura Laboratory of Public Health, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicene, Hokkaido University, Sapporo 060-0818, Japan Borna disease causes polioencephalomyelitis protein of BDV were obtained using recombinant of horses and sheep. The disease has been p40 protein as the immunogen. These MAbs known to be endemic in Central Europe. Re­ were confirmed to be reactive to native p40 centely, seroepidemiological survey of the causa­ protein by Immunofluorescent antibody assay tive agent (Borna disease virus, BDV) suggests (IF A) using MDCK cells persistently infected that the virus distributes in wide areas among with BDV. differernt spicies of animals and is also suspected 2. The MAbs were separated into three groups to be associated with human psychiatric dis­ from reactivity to p40 in Western blot analysis. orders. It is important to search the reservoir B9 and E7 of group 1 can detect the virus antigen animal, however there is no standard seological in persistently infected rat brain. These two diagnostic method for BDV infection and the MAbs recognized different epitopes.
    [Show full text]
  • Borna Disease Virus Infection in Animals and Humans
    Synopses Borna Disease Virus Infection in Animals and Humans Jürgen A. Richt,* Isolde Pfeuffer,* Matthias Christ,* Knut Frese,† Karl Bechter,‡ and Sibylle Herzog* *Institut für Virologie, Giessen, Germany; †Institut für Veterinär-Pathologie, Giessen, Germany; and ‡Universität Ulm, Günzburg, Germany The geographic distribution and host range of Borna disease (BD), a fatal neuro- logic disease of horses and sheep, are larger than previously thought. The etiologic agent, Borna disease virus (BDV), has been identified as an enveloped nonsegmented negative-strand RNA virus with unique properties of replication. Data indicate a high degree of genetic stability of BDV in its natural host, the horse. Studies in the Lewis rat have shown that BDV replication does not directly influence vital functions; rather, the disease is caused by a virus-induced T-cell–mediated immune reaction. Because antibodies reactive with BDV have been found in the sera of patients with neuro- psychiatric disorders, this review examines the possible link between BDV and such disorders. Seroepidemiologic and cerebrospinal fluid investigations of psychiatric patients suggest a causal role of BDV infection in human psychiatric disorders. In diagnostically unselected psychiatric patients, the distribution of psychiatric disorders was found to be similar in BDV seropositive and seronegative patients. In addition, BDV-seropositive neurologic patients became ill with lymphocytic meningoencephali- tis. In contrast to others, we found no evidence is reported for BDV RNA, BDV antigens, or infectious BDV in peripheral blood cells of psychiatric patients. Borna disease (BD), first described more predilection for the gray matter of the cerebral than 200 years ago in southern Germany as a hemispheres and the brain stem (8,19).
    [Show full text]
  • Eastern Equine Encephalitis Virus Rapidly Infects And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423836; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Title: Eastern Equine Encephalitis Virus Rapidly Infects and 2 Disseminates in the Brain and Spinal Cord of Infected 3 Cynomolgus Macaques Following Aerosol Challenge 4 Janice A Williams1*, Simon Y Long1*, Xiankun Zeng1, Kathleen Kuehl1, April M 5 Babka1, Neil M Davis1, Jun Liu1, John C Trefry2, Sharon Daye1, Paul R 6 Facemire1, Patrick L Iversen3, Sina Bavari4, Margaret L Pitt2, 4#, Farooq Nasar2# 7 8 1Pathology Division, United States Army Medical Research Institute of Infectious 9 Diseases, 1425 Porter Street, Frederick, Maryland, USA 10 11 2Virology Division, United States Army Medical Research Institute of Infectious 12 Diseases, 1425 Porter Street, Frederick, Maryland, USA 13 14 3Therapeutics Division, United States Army Medical Research Institute of 15 Infectious Diseases, 1425 Porter Street, Frederick, Maryland, USA 16 17 4Office of the Commander, United States Army Medical Research Institute of 18 Infectious Diseases, 1425 Porter Street, Frederick, Maryland, USA 19 20 21 *J.A.W. and S.Y.L. contributed equally to this work. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423836; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • West Nile Virus Infection of Horses Javier Castillo-Olivares, James Wood
    West Nile virus infection of horses Javier Castillo-Olivares, James Wood To cite this version: Javier Castillo-Olivares, James Wood. West Nile virus infection of horses. Veterinary Research, BioMed Central, 2004, 35 (4), pp.467-483. 10.1051/vetres:2004022. hal-00902791 HAL Id: hal-00902791 https://hal.archives-ouvertes.fr/hal-00902791 Submitted on 1 Jan 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. 35 (2004) 467–483 467 © INRA, EDP Sciences, 2004 DOI: 10.1051/vetres:2004022 Review article West Nile virus infection of horses Javier CASTILLO-OLIVARES*, James WOOD Centre for Preventive Medicine, Animal Health Trust, Newmarket, Suffolk CB8 7UU, United Kingdom (Received 26 January 2004; accepted 1 March 2004) Abstract – West Nile virus (WNV) is a flavivirus closely related to Japanese encephalitis and St. Louis encephalitis viruses that is primarily maintained in nature by transmission cycles between mosquitoes and birds. Occasionally, WNV infects and causes disease in other vertebrates, including humans and horses. West Nile virus has re-emerged as an important pathogen as several recent outbreaks of encephalomyelitis have been reported from different parts of Europe in addition to the large epidemic that has swept across North America.
    [Show full text]
  • Borna Disease Virus
    APPENDIX 2 Borna Disease Virus At-Risk Populations: • Unknown Disease Agent: Vector and Reservoir Involved: • Borna disease virus (BDV) • Sporadic enzootic disease of horses and sheep Disease Agent Characteristics: although host range is wide; however, mode of trans- • Family: Bornaviridae; Genus: Bornavirus mission and reservoir is unknown. • Virion morphology and size: Enveloped, helical • Neonatal rats experimentally infected with BDV nucleocapsid symmetry, spherical, 90-100 nm or develop viral persistence, so rodents are a theoretical larger in diameter reservoir and vector, although naturally infected • Nucleic acid: Linear, nonsegmented, negative-sense, rodents have not been found. single-stranded RNA, 8.9 kb in size • Physicochemical properties: Cell-free virion infectiv- Blood Phase: ity is inactivated by heating at 56°C for 0.5-3 hours but • Unknown, but transcripts and proteins detected more stable in tissues or in the presence of serum; in PBMC from patients with acute or chronic under in vitro conditions, virions are relatively stable psychiatric disease; cross-contamination not ruled when stored at 37°C, with minimal loss of infectivity out after 24 hours in the presence of serum; stable after drying and for at least 3 months at 4°C; tolerant of Survival/Persistence in Blood Products: alkaline pH but inactivated below pH 4; virions are • Unknown sensitive to treatment with organic solvents and detergents, and infectivity is reduced after exposure Transmission by Blood Transfusion: to ultraviolet light and irradiation. • Never
    [Show full text]
  • The Equine Species As Trojan Horse for Borna Disease Virus-1?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Veterinary Quarterly ISSN: 0165-2176 (Print) 1875-5941 (Online) Journal homepage: https://www.tandfonline.com/loi/tveq20 The equine species as Trojan horse for Borna Disease Virus-1? J.H. van der Kolk To cite this article: J.H. van der Kolk (2018) The equine species as Trojan horse for Borna Disease Virus-1?, Veterinary Quarterly, 38:1, 126-128, DOI: 10.1080/01652176.2019.1551172 To link to this article: https://doi.org/10.1080/01652176.2019.1551172 © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 18 Feb 2019. Submit your article to this journal Article views: 29 | downloaded: 4.12.2019 View Crossmark data https://doi.org/10.7892/boris.131197 source: Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tveq20 VETERINARY QUARTERLY 2018, VOL. 38, NO. 1, 126–128 https://doi.org/10.1080/01652176.2019.1551172 EDITORIAL The equine species as Trojan horse for Borna Disease Virus-1? Dear reader, disease (Ludwig et al. 1988). In man, herpes simplex The recent report on a veterinarian bitten by a horse virus type 1 (HSV-1), human herpesvirus 6 (HHV-6), seropositive to Borna Disease Virus-1 (BoDV-1) in the Borna disease virus, rabies virus and influenza A virus Netherlands (Sloet van Oldruitenborgh-Oosterbaan have also been shown to take the olfactory route for et al.
    [Show full text]
  • West Nile Virus in Brazil
    pathogens Article West Nile Virus in Brazil Érica Azevedo Costa 1,†, Marta Giovanetti 2,3,† , Lilian Silva Catenacci 4,† , Vagner Fonseca 3,5,6,† , Flávia Figueira Aburjaile 3,† , Flávia L. L. Chalhoub 2, Joilson Xavier 3 , Felipe Campos de Melo Iani 7 , Marcelo Adriano da Cunha e Silva Vieira 8, Danielle Freitas Henriques 9, Daniele Barbosa de Almeida Medeiros 9, Maria Isabel Maldonado Coelho Guedes 1 , Beatriz Senra Álvares da Silva Santos 1 , Aila Solimar Gonçalves Silva 1, Renata de Pino Albuquerque Maranhão 10, Nieli Rodrigues da Costa Faria 2, Renata Farinelli de Siqueira 11 , Tulio de Oliveira 5, Karina Ribeiro Leite Jardim Cavalcante 12, Noely Fabiana Oliveira de Moura 12, Alessandro Pecego Martins Romano 12, Carlos F. Campelo de Albuquerque 13, Lauro César Soares Feitosa 14 , José Joffre Martins Bayeux 15 , Raffaella Bertoni Cavalcanti Teixeira 16 , Osmaikon Lisboa Lobato 17 , Silvokleio da Costa Silva 17 , Ana Maria Bispo de Filippis 2, Rivaldo Venâncio da Cunha 18, José Lourenço 19 and Luiz Carlos Junior Alcantara 2,3,* 1 Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; [email protected] (É.A.C.); [email protected] (M.I.M.C.G.); [email protected] (B.S.Á.d.S.S.); [email protected] (A.S.G.S.) 2 Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; [email protected] (M.G.); fl[email protected] (F.L.L.C.); [email protected] (N.R.d.C.F.); ana.bispo@ioc.fiocruz.br
    [Show full text]
  • Borna Disease Virus, a Negative-Strand RNA Virus
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 11486-11489, December 1992 Neurobiology Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells (central nervous system infection/behavioral disorders) THOMAS BRIESE*t, JUAN CARLOS DE LA TORREt, ANN LEWIS§, HANNS LUDWIG*, AND W. IAN LIPKIN§¶ *Institute of Virology, Free University of Berlin, Nordufer 20, D 1000 Berlin 65, Federal Republic of Germany; tDepartment of Neuropharmacology, Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037; and IDepartments of Anatomy and Neurobiology, Neurology, and Microbiology and Molecular Genetics, University of California, Irvine, CA 92717 Communicated by D. Carleton Gajdusek, September 1, 1992 (receivedfor review April 22, 1992) ABSTRACT Borna disease virus, an uncas ied Infec- 100,000 x g for 1 hr at 200C, resuspended in 20 mM Tris HCl, tious agent, causes immune-mediated neurologic disease in a pH 7.4/125 mM MgCl2 (Tris-Mg,2 buffer), and treated with wide variety of animal hosts and may be involved in patho- DNase (Boehringer Mannheim) at 50 Ag/ml and RNase genesis of selected neuropsychiatric diseases in man. 1nitial (Boehringer Mannheim) at 50 ,ug/ml for 1 hr at 3TC. Virus reports suggested that Borna disease virus is a singlesranded particles were pelleted at 100,000 x g for 1 hr at 40C and RNA virus. We describe here a method for isolatin of viral resuspended in Tris-Mg,25 buffer for virus titration or nucleic particles that has allowed definitive identification ofthe genome acid extraction. as containg a negative-polarity RNA. Further, we show that Extraction of RNAs from Virus Partickles.
    [Show full text]
  • Bornaviridae
    1 Bornaviridae Taxonomy Riboviria › Orthornavirae › Negarnaviricota › Haploviricotina › Monjiviricetes › Mononegavirales › Born aviridae Derivation of name Borna refers to the city of Borna in Saxony, Germany, where many horses died in 1885 during an epidemic of a neurological disease, designated as Borna disease (BD), caused by the infectious agent presently known as Borna disease virus (BDV). Genus Bornavirus Type species Borna disease virus Virion properties Morphology Electron microscopy studies of negatively stained infectious particles of an isolate of Borna disease virus (BDV) have shown that virions have a spherical morphology with a diameter of 90±10 nm containing an internal electron-dense core (50–60 nm). Physicochemical and physical properties Virion Molecular weight not known. Virus infectivity is rapidly lost by heat treatment at 56 °C. Virions are relatively stable at 37 °C, and only minimal infectivity loss is observed after 24 hrs incubation at 37 °C in the presence of serum. Virions are inactivated below pH 5.0, as well as by treatment with organic solvents, detergents, and exposure to UV radiation. Infectivity is completely and rapidly destroyed by chlorine-containing disinfectants or formaldehyde treatment. Nucleic acid The genome consists of a single molecule of a linear, negative sense ssRNA about 8.9 kb in size and Mr of about 3×106). The RNA genome is not polyadenylated. Extracistronic sequences are found at the 3′ (leader) and 5′ (trailer) ends of the BDV genome. The ends of the BDV genome RNA exhibit partial Prepared By : Dr. Vandana Gupta 2 inverted complementarity. Full-length plus-strand (antigenomic) RNAs are present in infected cells and in viral ribonucleoproteins.
    [Show full text]
  • Ribavirin Inhibits West Nile Virus Replication and Cytopathic Effect in Neural Cells
    1214 CONCISE COMMUNICATION Ribavirin Inhibits West Nile Virus Replication and Cytopathic Effect in Neural Cells Ingo Jordan,1 Thomas Briese,1 Nicole Fischer,1 1Emerging Diseases Laboratory, Departments of Microbiology Johnson Yiu-Nam Lau,2 and W. Ian Lipkin1 and Molecular Genetics, Neurology, and Anatomy and Neurobiology, University of California, Irvine, and 2ICN Pharmaceuticals, Costa Mesa, California West Nile virus (WNV) is an emerging mosquito-borne pathogen that was reported for the ®rst time in the Western hemisphere in August 1999, when an encephalitis outbreak in New York City resulted in 62 clinical cases and 7 deaths. WNV, for which no antiviral therapy has been described, was recently recovered from a pool of mosquitoes collected in New York City. In anticipation of the recurrence of WNV during the summer of 2000, an analysis was made of the ef®cacy of the nucleoside analogue ribavirin, a broad-spectrum antiviral compound with activity against several RNA viruses, for treatment of WNV infection. High doses of ribavirin were found to inhibit WNV replication and cytopathogenicity in human neural cells in vitro. The Flaviviridae, a family of enveloped positive-strand RNA substantial [3]. Genetic analysis of the envelope protein se- viruses, include West Nile virus (WNV), as well as other sig- quence indicated that the viral strain most closely resembled ni®cant human pathogens, such as hepatitis C, yellow fever, an isolate from a goose in Israel in 1998, demonstrating the dengue, Japanese encephalitis, and St. Louis encephalitis vi- wide geographic distribution of this emerging pathogen [4, 5]. ruses [1]. Whereas hepatitis C virus (genus Hepacivirus) may Antiviral therapy for hepatitis C has been described [6]; how- be transmitted by blood products or sexual activity, most mem- ever, no speci®c treatment has been reported for WNV or other bers of the Flavivirus genus, including WNV, are transmitted ¯avivirus infections.
    [Show full text]