Neurotropic Virus Infections As the Cause of Immediate and Delayed Neuropathology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Everything You Always Wanted to Know About Rabies Virus ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ (But Were Afraid to Ask) Benjamin M
ANNUAL REVIEWS Further Click here to view this article's online features: t%PXOMPBEmHVSFTBT115TMJEFT t/BWJHBUFMJOLFESFGFSFODFT t%PXOMPBEDJUBUJPOT Everything You Always Wanted t&YQMPSFSFMBUFEBSUJDMFT t4FBSDILFZXPSET to Know About Rabies Virus (But Were Afraid to Ask) Benjamin M. Davis,1 Glenn F. Rall,2 and Matthias J. Schnell1,2,3 1Department of Microbiology and Immunology and 3Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; email: [email protected] 2Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Annu. Rev. Virol. 2015. 2:451–71 Keywords First published online as a Review in Advance on rabies virus, lyssaviruses, neurotropic virus, neuroinvasive virus, viral June 24, 2015 transport The Annual Review of Virology is online at virology.annualreviews.org Abstract This article’s doi: The cultural impact of rabies, the fatal neurological disease caused by in- 10.1146/annurev-virology-100114-055157 fection with rabies virus, registers throughout recorded history. Although Copyright c 2015 by Annual Reviews. ⃝ rabies has been the subject of large-scale public health interventions, chiefly All rights reserved through vaccination efforts, the disease continues to take the lives of about 40,000–70,000 people per year, roughly 40% of whom are children. Most of Access provided by Thomas Jefferson University on 11/13/15. For personal use only. Annual Review of Virology 2015.2:451-471. Downloaded from www.annualreviews.org these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, al- though the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is cur- rently no effective treatment that will save the life of a symptomatic rabies patient. -
Phylogenetic Analysis and Transmission Cycle of Tick-Borne Encephalitis Virus Isolated in Hokkaido
Title Phylogenetic analysis and transmission cycle of tick-borne encephalitis virus isolated in Hokkaido Author(s) HAYASAKA, Daisuke Citation Japanese Journal of Veterinary Research, 46(2-3), 159-160 Issue Date 1998-11-30 Doc URL http://hdl.handle.net/2115/2711 Type bulletin (article) File Information KJ00003408044.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP lPn. l. Vet. Res. 46(2-3), (1998) Information 159 Establishment of monoclonal antibodies against Borna disease virus p40 protein and the application to a serological diagnostic method Kouji Tsujimura Laboratory of Public Health, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicene, Hokkaido University, Sapporo 060-0818, Japan Borna disease causes polioencephalomyelitis protein of BDV were obtained using recombinant of horses and sheep. The disease has been p40 protein as the immunogen. These MAbs known to be endemic in Central Europe. Re were confirmed to be reactive to native p40 centely, seroepidemiological survey of the causa protein by Immunofluorescent antibody assay tive agent (Borna disease virus, BDV) suggests (IF A) using MDCK cells persistently infected that the virus distributes in wide areas among with BDV. differernt spicies of animals and is also suspected 2. The MAbs were separated into three groups to be associated with human psychiatric dis from reactivity to p40 in Western blot analysis. orders. It is important to search the reservoir B9 and E7 of group 1 can detect the virus antigen animal, however there is no standard seological in persistently infected rat brain. These two diagnostic method for BDV infection and the MAbs recognized different epitopes. -
An Epidemic of Acute Encephalitis in Young Children
Arch Dis Child: first published as 10.1136/adc.9.51.153 on 1 June 1934. Downloaded from AN EPIDEMIC OF ACUTE ENCEPHALITIS IN YOUNG CHILDREN BY AGNES R. MACGREGOR, M.B., F.R.C.P.E., AND W. S. CRAIG, B.Sc., M.D., M.R.C.P.E. (From the Departments of Pathology and Child Life and Health, Univer- sity of Edinburgh, and the Western General Hospital, Edinburgh.) This paper is concerned with a small outbreak of illness of an unusual nature occurring in the Children's Unit of the Western General Hospital, Edinburgh. In addition to the clinical interest of the cases, there are features of considerable pathological and epidemiological importance con- nected with the outbreak. Clinical Records. Case 1. I.M.S., female, aged 1 year 7 months, was admitted to the Western General Hospital in March, 1933, at the age of 1 year 3 months. - At this time http://adc.bmj.com/ she was noted as being slightly undersized but well nourished and the liver showed moderate enlargement. Prior to admission she had been treated elsewhere for gonococcal vaginitis: during the three succeeding months her health was good and progress uninterrupted, but a positive Wassermann reaction, present on admission, persisted. On the evening of July 22, 1933, the patient was noticed to be less active than usual and generally ' out of sorts ': her conditiQn remained unchanged throughout the rest of the day, and on the 23rd she was 'Ptill quieter and less responsive to all forms of attention and refused food. By the afternoon on October 2, 2021 by guest. -
Progressive Multifocal Leukoencephalopathy and the Spectrum of JC Virus-Related Disease
REVIEWS Progressive multifocal leukoencephalopathy and the spectrum of JC virus- related disease Irene Cortese 1 ✉ , Daniel S. Reich 2 and Avindra Nath3 Abstract | Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV- related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. Progressive multifocal leukoencephalopathy (PML) is for multiple sclerosis. Taken together, HIV, lymphopro- a rare, debilitating and often fatal disease of the CNS liferative disease and multiple sclerosis account for the caused by JC virus (JCV). -
Congenital Cytomegalovirus Infection Alters Olfaction Before Hearing Deterioration in Mice
10424 • The Journal of Neuroscience, December 5, 2018 • 38(49):10424–10437 Development/Plasticity/Repair Congenital Cytomegalovirus Infection Alters Olfaction Before Hearing Deterioration In Mice X Franc¸oise Lazarini,1,2 Lida Katsimpardi,1,2* Sarah Levivien,1,2,3*Se´bastien Wagner,1,2 XPierre Gressens,3,4,5 Natacha Teissier,3,4,6† and Pierre-Marie Lledo1,2† 1Institut Pasteur, Perception and Memory Unit, F-75015 Paris, France, 2Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 3571, F-75015 Paris, France, 3PROTECT, INSERM, Unite´ 1141, F-75019 Paris, France, 4Paris Diderot University, Sorbonne Paris Cite´, F-75018 Paris, France, 5Center for Developing Brain, King’s College, London, WC2R2LS United Kingdom, and 6Pediatric Otorhinolaryngology Department, Robert Debre´ Hospital, Assistance Publique–Hoˆpitaux de Paris, F-75019 Paris, France In developed countries, cytomegalovirus (CMV)-infected newborns are at high risk of developing sensorineural handicaps such as hearing loss, requiring extensive follow-up. However, early prognostic tools for auditory damage in children are not yet available. In the fetus, CMV infection leads to early olfactory bulb (OB) damage, suggesting that olfaction might represent a valuable prognosis for neurological outcome of this viral infection. Here, we demonstrate that in utero CMV inoculation causes fetal infection and growth retardation in mice of both sexes. It disrupts OB normal development, leading to disproportionate OB cell layers and rapid major olfactory deficits. Olfaction is impaired as early as day 6 after birth in both sexes, long before the emergence of auditory deficits. Olfactometry in males reveals a long-lasting alteration in olfactory perception and discrimination, particularly in binary mixtures of monomolecular odorants. -
Borna Disease Virus Infection in Animals and Humans
Synopses Borna Disease Virus Infection in Animals and Humans Jürgen A. Richt,* Isolde Pfeuffer,* Matthias Christ,* Knut Frese,† Karl Bechter,‡ and Sibylle Herzog* *Institut für Virologie, Giessen, Germany; †Institut für Veterinär-Pathologie, Giessen, Germany; and ‡Universität Ulm, Günzburg, Germany The geographic distribution and host range of Borna disease (BD), a fatal neuro- logic disease of horses and sheep, are larger than previously thought. The etiologic agent, Borna disease virus (BDV), has been identified as an enveloped nonsegmented negative-strand RNA virus with unique properties of replication. Data indicate a high degree of genetic stability of BDV in its natural host, the horse. Studies in the Lewis rat have shown that BDV replication does not directly influence vital functions; rather, the disease is caused by a virus-induced T-cell–mediated immune reaction. Because antibodies reactive with BDV have been found in the sera of patients with neuro- psychiatric disorders, this review examines the possible link between BDV and such disorders. Seroepidemiologic and cerebrospinal fluid investigations of psychiatric patients suggest a causal role of BDV infection in human psychiatric disorders. In diagnostically unselected psychiatric patients, the distribution of psychiatric disorders was found to be similar in BDV seropositive and seronegative patients. In addition, BDV-seropositive neurologic patients became ill with lymphocytic meningoencephali- tis. In contrast to others, we found no evidence is reported for BDV RNA, BDV antigens, or infectious BDV in peripheral blood cells of psychiatric patients. Borna disease (BD), first described more predilection for the gray matter of the cerebral than 200 years ago in southern Germany as a hemispheres and the brain stem (8,19). -
Eastern Equine Encephalitis Virus Rapidly Infects And
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423836; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Title: Eastern Equine Encephalitis Virus Rapidly Infects and 2 Disseminates in the Brain and Spinal Cord of Infected 3 Cynomolgus Macaques Following Aerosol Challenge 4 Janice A Williams1*, Simon Y Long1*, Xiankun Zeng1, Kathleen Kuehl1, April M 5 Babka1, Neil M Davis1, Jun Liu1, John C Trefry2, Sharon Daye1, Paul R 6 Facemire1, Patrick L Iversen3, Sina Bavari4, Margaret L Pitt2, 4#, Farooq Nasar2# 7 8 1Pathology Division, United States Army Medical Research Institute of Infectious 9 Diseases, 1425 Porter Street, Frederick, Maryland, USA 10 11 2Virology Division, United States Army Medical Research Institute of Infectious 12 Diseases, 1425 Porter Street, Frederick, Maryland, USA 13 14 3Therapeutics Division, United States Army Medical Research Institute of 15 Infectious Diseases, 1425 Porter Street, Frederick, Maryland, USA 16 17 4Office of the Commander, United States Army Medical Research Institute of 18 Infectious Diseases, 1425 Porter Street, Frederick, Maryland, USA 19 20 21 *J.A.W. and S.Y.L. contributed equally to this work. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423836; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Encephalitis Lethargica
flra/n (1987), 110, 19-33 ENCEPHALITIS LETHARGICA A REPORT OF FOUR RECENT CASES Downloaded from https://academic.oup.com/brain/article/110/1/19/273787 by guest on 01 October 2021 by R. s. HOWARD and A. J. LEES (From The National Hospital for Nervous Diseases, Queen Square, London) SUMMARY Four patients are described with an encephalitic illness identical to that described by von Economo. Electroencephalographic, evoked potential and autopsy data suggest that involvement of the cerebral cortex is more extensive than has been generally recognized. Serological tests and viral cultures failed to reveal the infectious agent but the presence of oligoclonal IgG banding in the cerebrospinal fluid in 3 of the patients during the acute phase of the illness would be in keeping with a viral aetiology. INTRODUCTION Accounts of febrile somnolent illnesses with residual apathy, ophthalmoplegia, chorea and weakness abound in the early literature. The Schlafkrankheit of 1580, Sydenham's febris comatosa of 1672-1675 in which hiccough was a prominent symptom, febre lethargica of 1695, coma somnolentium of 1780, Gerlier's vertige paralysante of 1887 and the dreaded Italian nona of 1889-1890, in which sleepiness, cranial nerve palsies and tremor occurred, are some examples of what may be a recur- ring plague caused by the same aetiological agent (Wilson, 1940; Sacks, 1982). Despite these historical forerunners, the sleeping sickness pandemic of 1916-1927 burst forth spontaneously in several different European cities unrecognized and then relentlessly spread around the world leaving an estimated half a million people dead or disabled. Constantin von Economo, however, relying in part on recollec- tions of his parents' descriptions of nona, was able to show that what appeared as a series of unrelated polymorphous outbreaks was in fact a disease caused by a single transmissible factor. -
West Nile Virus Infection of Horses Javier Castillo-Olivares, James Wood
West Nile virus infection of horses Javier Castillo-Olivares, James Wood To cite this version: Javier Castillo-Olivares, James Wood. West Nile virus infection of horses. Veterinary Research, BioMed Central, 2004, 35 (4), pp.467-483. 10.1051/vetres:2004022. hal-00902791 HAL Id: hal-00902791 https://hal.archives-ouvertes.fr/hal-00902791 Submitted on 1 Jan 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. 35 (2004) 467–483 467 © INRA, EDP Sciences, 2004 DOI: 10.1051/vetres:2004022 Review article West Nile virus infection of horses Javier CASTILLO-OLIVARES*, James WOOD Centre for Preventive Medicine, Animal Health Trust, Newmarket, Suffolk CB8 7UU, United Kingdom (Received 26 January 2004; accepted 1 March 2004) Abstract – West Nile virus (WNV) is a flavivirus closely related to Japanese encephalitis and St. Louis encephalitis viruses that is primarily maintained in nature by transmission cycles between mosquitoes and birds. Occasionally, WNV infects and causes disease in other vertebrates, including humans and horses. West Nile virus has re-emerged as an important pathogen as several recent outbreaks of encephalomyelitis have been reported from different parts of Europe in addition to the large epidemic that has swept across North America. -
The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System
International Journal of Molecular Sciences Review The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System Raquel Bello-Morales 1,2,* , Sabina Andreu 1,2 and José Antonio López-Guerrero 1,2 1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; [email protected] (S.A.); [email protected] (J.A.L.-G.) 2 Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] Received: 30 June 2020; Accepted: 15 July 2020; Published: 16 July 2020 Abstract: Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes. -
Borna Disease Virus
APPENDIX 2 Borna Disease Virus At-Risk Populations: • Unknown Disease Agent: Vector and Reservoir Involved: • Borna disease virus (BDV) • Sporadic enzootic disease of horses and sheep Disease Agent Characteristics: although host range is wide; however, mode of trans- • Family: Bornaviridae; Genus: Bornavirus mission and reservoir is unknown. • Virion morphology and size: Enveloped, helical • Neonatal rats experimentally infected with BDV nucleocapsid symmetry, spherical, 90-100 nm or develop viral persistence, so rodents are a theoretical larger in diameter reservoir and vector, although naturally infected • Nucleic acid: Linear, nonsegmented, negative-sense, rodents have not been found. single-stranded RNA, 8.9 kb in size • Physicochemical properties: Cell-free virion infectiv- Blood Phase: ity is inactivated by heating at 56°C for 0.5-3 hours but • Unknown, but transcripts and proteins detected more stable in tissues or in the presence of serum; in PBMC from patients with acute or chronic under in vitro conditions, virions are relatively stable psychiatric disease; cross-contamination not ruled when stored at 37°C, with minimal loss of infectivity out after 24 hours in the presence of serum; stable after drying and for at least 3 months at 4°C; tolerant of Survival/Persistence in Blood Products: alkaline pH but inactivated below pH 4; virions are • Unknown sensitive to treatment with organic solvents and detergents, and infectivity is reduced after exposure Transmission by Blood Transfusion: to ultraviolet light and irradiation. • Never -
Intrathecal Antibody Production Against Epstein-Barr, Herpes Simplex, and Other Neurotropic Viruses in Autoimmune Encephalitis
ARTICLE OPEN ACCESS Intrathecal Antibody Production Against Epstein-Barr, Herpes Simplex, and Other Neurotropic Viruses in Autoimmune Encephalitis Philipp Schwenkenbecher, MD, Thomas Skripuletz, MD, Peter Lange, Marc Durr,¨ MD, Felix F. Konen, MD, Correspondence Nora Mohn,¨ MD, Marius Ringelstein, MD, Til Menge, MD, Manuel A. Friese, MD, Nico Melzer, MD, Dr. Schwenkenbecher schwenkenbecher.philipp@ ¨ Michael P. Malter, MD, Martin Hausler, MD, Franziska S. Thaler, MD, Martin Stangel, MD, Jan Lewerenz, MD, mh-hannover.de and Kurt-Wolfram Suhs,¨ MD, on behalf of the German Network for Research on Autoimmune Encephalitis Neurol Neuroimmunol Neuroinflamm 2021;8:e1062. doi:10.1212/NXI.0000000000001062 Abstract Background and Objectives Neurotropic viruses are suspected to play a role in the pathogenesis of autoimmune diseases of the CNS such as the association between the Epstein-Barr virus (EBV) and multiple sclerosis (MS). A group of autoimmune encephalitis (AE) is linked to antibodies against neuronal cell surface proteins. Because CNS infection with the herpes simplex virus can trigger anti–NMDA receptor (NMDAR) encephalitis, a similar mechanism for EBV and other neurotropic viruses could be postulated. To investigate for previous viral infections of the CNS, intrathecally produced virus-specific antibody synthesis was determined in patients with AE. Methods Antibody-specific indices (AIs) against EBV and measles, rubella, varicella zoster, herpes simplex virus, and cytomegalovirus were determined in 27 patients having AE (anti-NMDAR encephalitis, n = 21, and LGI1 encephalitis, n = 6) and in 2 control groups comprising of 30 patients with MS and 21 patients with noninflammatory CNS diseases (NIND), which were sex and age matched. Results An intrathecal synthesis of antibodies against EBV was found in 5/27 (19%) patients with AE and 2/30 (7%) of the patients with MS.