Borna Disease Virus Infection in Animals and Humans

Total Page:16

File Type:pdf, Size:1020Kb

Borna Disease Virus Infection in Animals and Humans Synopses Borna Disease Virus Infection in Animals and Humans Jürgen A. Richt,* Isolde Pfeuffer,* Matthias Christ,* Knut Frese,† Karl Bechter,‡ and Sibylle Herzog* *Institut für Virologie, Giessen, Germany; †Institut für Veterinär-Pathologie, Giessen, Germany; and ‡Universität Ulm, Günzburg, Germany The geographic distribution and host range of Borna disease (BD), a fatal neuro- logic disease of horses and sheep, are larger than previously thought. The etiologic agent, Borna disease virus (BDV), has been identified as an enveloped nonsegmented negative-strand RNA virus with unique properties of replication. Data indicate a high degree of genetic stability of BDV in its natural host, the horse. Studies in the Lewis rat have shown that BDV replication does not directly influence vital functions; rather, the disease is caused by a virus-induced T-cell–mediated immune reaction. Because antibodies reactive with BDV have been found in the sera of patients with neuro- psychiatric disorders, this review examines the possible link between BDV and such disorders. Seroepidemiologic and cerebrospinal fluid investigations of psychiatric patients suggest a causal role of BDV infection in human psychiatric disorders. In diagnostically unselected psychiatric patients, the distribution of psychiatric disorders was found to be similar in BDV seropositive and seronegative patients. In addition, BDV-seropositive neurologic patients became ill with lymphocytic meningoencephali- tis. In contrast to others, we found no evidence is reported for BDV RNA, BDV antigens, or infectious BDV in peripheral blood cells of psychiatric patients. Borna disease (BD), first described more predilection for the gray matter of the cerebral than 200 years ago in southern Germany as a hemispheres and the brain stem (8,19). In neu- fatal neurologic disease of horses and sheep, owes rons, sometimes in glia cells, acidophilic intra- its name to the town Borna in Saxony, Germany, nuclear inclusion bodies, called Joest-Degen inclu- where a large number of horses died during an sion bodies, are occasionally found. BD occurs epidemic in 1885. The virus etiology of BD was sporadically in Germany and Switzerland; its proven in the early 1900s when Zwick and co- presence in other countries has not yet been workers (1) in Giessen, Germany, successfully substantiated. Natural infections in other Equidae, transmitted brain homogenates from infected ruminants, rabbits, cats, and ostriches have also horses to experimental animals. Other milestones been described (19-21). in BD-related research were the demonstration This review discusses the etiology of Borna of virus growth in cell cultures (2-4); the finding disease, the natural and experimental infection that the pathogenesis of BD is caused by a T-cell– in various animal species, the pathogenesis of dependent immune mechanism (5-8); and most the disease in the experimental rat model, the recently, the molecular characterization of the genetic stability of BDV, and the possible link etiologic agent of BD, the highly neurotropic between BDV or a similar agent and human Borna disease virus (BDV) (9-17). neuropsychiatric disorders. BD is characterized by a disseminated nonpurulent meningoencephalomyelitis with infil- Etiology tration of mononuclear cells (1,8,18,19) and a The etiologic agent of BD, BDV, has been recently characterized as an enveloped, non- Address for correspondence: Jürgen A. Richt, Institut für segmented, negative-stranded RNA virus with a Virologie, Frankfurterstrasse 107, D-35392 Giessen, Germany; genomic size of approximately 9 kb and a nuclear fax: 49-641-99-38359; e-mail: [email protected] giessen.de. site for replication and transcription (14-17). The Vol. 3, No. 3, July–September 1997 343 Emerging Infectious Diseases Synopses genomic organization is similar to that of mem- depression, circular movement, standing in awk- bers of the Mononegavirales order; therefore, ward positions, collapsing, running into obstacles, BDV is the prototype of the new family and paralysis, result from nonpurulent menin- Bornaviridae within this order. The Mono- goencephalomyelitis. Clinical illness usually lasts 1 to negavirales also include Filoviridae (e.g., Marburg 3 weeks, and death rates for diseased horses are and Ebola viruses), Paramyxoviridae (e.g., 80% to 100% (18-20,37). In surviving animals, mumps, measles virus), and Rhabdoviridae (e.g., recurrent episodes are possible, especially after rabies, vesicular stomatitis virus). Six major stress (18). Clinical manifestations, however, may open reading frames (ORFs)(I,II,III, IV,V,x1) are vary among individual animals and various species. predicted in the genome sequence (16,17). Only BD tends to occur in spring and early summer five ORFs correspond to previously identified and is more frequent in some years than in proteins with molecular weights of 10 (ORF x1: others; therefore, arthropods have been discussed p10 BDV gene; 22), 18 (ORF III: gp18 BDV gene; as a potential vector. BDV, however, has never 23), 24 (ORF II: p24 BDV gene; 24), 38/39 (ORF I: been isolated from insects in Europe. In the Near p38 BDV gene; 25), and 94 (ORF IV: p57 BDV East, ticks have been associated with transmission gene; 26) or 84 (ORF IV: p57 BDV gene; 27, Richt of an equine encephalomyelitis similar to BD et al., unpub. obs.) kDa. (38). A definite virus reservoir for BDV has not been found; various rodents most likely represent Natural and Experimental Infection such a reservoir. In addition, since many sero- positive horses with subclinical infections have Natural Infection infectious virus or BDV-specific RNA in various Extensive epizootiologic studies in horses secretions, they can be potential sources of have shown that BD is rare but occurs all over infection for other animals and humans (29,36). Germany, extending beyond the classic disease- endemic regions (28-30). Furthermore, BDV- Experimental Infection specific antibodies were detected in horses in BDV can be experimentally transmitted to a several European countries, Israel (28,29), Japan wide variety of animal species, from chickens to (31), Iran (32), and the United States (33). Since nonhuman primates (1,8,19,20,37). Incubation BDV-specific antibodies are frequently found in periods, clinical signs, and severity of the disease clinically healthy horses (20,28,29), natural infec- depend on the animal species and the virus tions in horses seem to remain subclinical in most variants. Rabbits, Lewis rats, and guinea pigs cases. Unknown exogenous and endogenous fac- are highly susceptible, whereas chickens, tors might influence the genesis of the disease (20). monkeys, cattle, and tree shrews (Tupaia glis;39) In addition to its predominant natural host, are less susceptible (8,19). Some animals (ham- the horse, other Equidae, sheep, cattle, rabbits, sters, black-hooded rats, mice, ferrets, pigeons, goats, deer, alpacas, llamas, cats, pigmy hippo- and dogs), however, do not develop disease potamus, sloth, vari monkeys (memur variegatus), despite being persistently infected with BDV and ostriches have become naturally infected (1,8,18,19). The pathohistologic picture after with BDV (8,19,20,34,35). In sheep flocks, experimental infections resembles that of clinical BD can affect large numbers of animals; natural infections. Most experimentally infected however, in horse stables, usually only a few animals develop perivascular and parenchymal animals show clinical signs. The virus is assumed central nervous system (CNS) infiltrations and to be transmitted through salival, nasal, or have infectious virus in the brain tissue. conjunctival secretions because BDV-specific Frequently, the clinical picture in experimentally RNA has been found in these secretions infected animals does not differ from that of (20,28,29,36). Animals become infected by direct spontaneously infected natural hosts. contact with these secretions or by exposure to The result of BDV infection in rats depends contaminated food or water. A minimum incu- on the inbred rat strain and the virus isolate used bation period of 4 weeks is estimated for horses for infection. Black-hooded rats do not show and sheep with nonspecific signs such as hyper- clinical signs after BDV infection with BDV thermia, anorexia, colic, and constipation in the isolates despite persistent virus infection and initial phase of the disease. During the acute mononuclear infiltration of the CNS (40). Lewis phase of disease, neurologic signs such as ataxia, rats, however, are highly susceptible and are Emerging Infectious Diseases 344 Vol. 3, No. 3, July–September 1997 Synopses therefore used extensively for studies of BD infections in rats depends on the rat strain and the pathogenesis (see below; 5,8,19). When infected passage history of the virus (see above; 19,40). with various BDV variants, Lewis rats exhibited Despite productive virus replication in the clinical manifestations such as behavioral dis- CNS, immunocompromised animals (immuno- orders, paralytic disease, or obesity, in addi- logically incompetent newborn and athymic rats) tion to fertility problems (8,19), which indi- and immunosuppressed (by cyclophosphamide or cates that BDV can form virus variants with cyclosporine A) animals do not become ill with different biologic properties. BD or encephalitis, as do immunocompetent animals (5-8,29,44,46,47). The hypothesis of a Pathogenesis virus-induced cell-mediated immunopathologic BDV is a highly neurotropic agent that gains basis of BD was confirmed in adoptive transfer
Recommended publications
  • Multiple Origins of Viral Capsid Proteins from Cellular Ancestors
    Multiple origins of viral capsid proteins from PNAS PLUS cellular ancestors Mart Krupovica,1 and Eugene V. Kooninb,1 aInstitut Pasteur, Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and bNational Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 Contributed by Eugene V. Koonin, February 3, 2017 (sent for review December 21, 2016; reviewed by C. Martin Lawrence and Kenneth Stedman) Viruses are the most abundant biological entities on earth and show genome replication. Understanding the origin of any virus group is remarkable diversity of genome sequences, replication and expres- possible only if the provenances of both components are elucidated sion strategies, and virion structures. Evolutionary genomics of (11). Given that viral replication proteins often have no closely viruses revealed many unexpected connections but the general related homologs in known cellular organisms (6, 12), it has been scenario(s) for the evolution of the virosphere remains a matter of suggested that many of these proteins evolved in the precellular intense debate among proponents of the cellular regression, escaped world (4, 6) or in primordial, now extinct, cellular lineages (5, 10, genes, and primordial virus world hypotheses. A comprehensive 13). The ability to transfer the genetic information encased within sequence and structure analysis of major virion proteins indicates capsids—the protective proteinaceous shells that comprise the that they evolved on about 20 independent occasions, and in some of cores of virus particles (virions)—is unique to bona fide viruses and these cases likely ancestors are identifiable among the proteins of distinguishes them from other types of selfish genetic elements cellular organisms.
    [Show full text]
  • A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses
    A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, Corinne Maufrais, Valérie Caro, Hervé Bourhy To cite this version: Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, et al.. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.. PLoS ONE, Public Library of Science, 2014, 9 (1), pp.e87194. 10.1371/journal.pone.0087194.s006. pasteur-01430485 HAL Id: pasteur-01430485 https://hal-pasteur.archives-ouvertes.fr/pasteur-01430485 Submitted on 9 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses Laurent Dacheux1*, Minerva Cervantes-Gonzalez1,
    [Show full text]
  • Virus Replication
    Introduction • Encompasses > 150 viruses Rhabdoviridae •Rabies –only important human Brian Wells pathogen • One of the most lethal of all infectious diseases History History • Adapted from Latin meaning “to rage” • 1885 – Louis Pasteur – rabies vaccine • Greeks – lyssa – “frenzy” – Attenuated form of virus produced by inoculation of rabbit spinal cord • Rabies represents one of the oldest and most feared diseases • Occurs throughout the world except in Australia, Japan, Great Britain, • Recognized in Egypt before 2300 B.C. and islands such as Hawaii • Well described by Aristotle • “Reportable” disease • Iliad – “canine madness” Taxonomy Viral Structure • 3 Genera – Ephemerovirus, Lyssavirus, • 170 nm x 70 nm Vesiculovirus • Bullet-shaped enveloped virion • Infect vertebrates, invertebrates, and – Glycoprotein peplomers & matrix protein plants under envelope • Genus Lyssavirus comprises rabies • Helical symmetry virus and 3 rabies-like viruses • Linear minus sense ssRNA – 11-12 kb • Each capable of causing rabies-like • Glycoprotein spikes in outer membrane disease in humans bilayer 1 Virus Replication • Receptor-mediated endocytosis • Uncoat and release nucleocapsid into cytoplasm • Production of 5 monocistronic mRNA species - N, P (NS), M, G, L – by L+P viral transcriptase • Each mRNA capped and poly-A’ed • dsRNA replicative intermediate Virus Replication Virus Replication • N+P+L and (-) ssRNA form core • M forms matrix around core • Virus buds from glycoprotein area of plasma membrane and thus acquires its envelope Transmission • Unstable
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Mented, Negative-Strand RNA Virus
    ウ イ ル ス 45(2),165-174,1995 特集 ネガテ ィブ鎖RNAウ イルス 4. The atypical strategies used for gene expression of Borna disease virus, a nonseg- mented, negative-strand RNA virus. ANETTE SCHNEEMANN,* PATRICK A. SCHNEIDER,*•˜ and W. IAN LIPKIN*•˜ *Laboratory for Neurovirology , Department of Neurology, Department of Anatomy and Neurobiology, § Department of Microbiology and Molecular Genetics , University of California-Irvine, Irvine, CA 92717 $ To whom correspondence should be addressed . FAX : (714) 824-2132. Email : ilipkin @ uci. edu al., 1992), has opened the fields of BDV biology and Abstract pathogenesis for rigorous investigation. BDV has Borna disease virus (BDV) is a neurotropic agent now been defined as an enveloped, nonsegmented that causes disturbances in movement and behavior negative-strand RNA virus (Briese et al., 1992 ; in vertebrate host species ranging from birds to Compans et al., 1994 Zimmermann et al., 1994) and primates. Although the virus has not been isolated its sequence has been determined independently in from human subjects, there is indirect evidence to two laboratories (Briese et al., 1994 ; Cubitt et al., suggest that humans with neuropsychiatric dis- 1994b). Although aspects of gene organization and orders may be infected with BDV. Recently, virus deduced protein sequence suggest relatedness to particles have been isolated and the viral genomic members of the order Mononegavirales (paramyx- RNA has been cloned. This analysis revealed that oviruses, rhabdoviruses and filoviruses), BDV BDV is a nonsegmented, negative-strand RNA shows unusual features such as RNA splicing virus. Unusual features such as RNA splicing, over- (Schneider et al., 1994 ; Cubitt et al. 1994c) and lap of transcription units and transcription signals, overlap of transcription units and transcription as well as sequence dissimilarity for four of five signals (Schneemann et al., 1994).
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Characterization of Farmington Virus, a Novel Virus from Birds That Is Distantly Related to Members of the Family Rhabdoviridae
    Palacios et al. Virology Journal 2013, 10:219 http://www.virologyj.com/content/10/1/219 RESEARCH Open Access Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae Gustavo Palacios1†, Naomi L Forrester2,3,4†, Nazir Savji5,7†, Amelia P A Travassos da Rosa2, Hilda Guzman2, Kelly DeToy5, Vsevolod L Popov2,4, Peter J Walker6, W Ian Lipkin5, Nikos Vasilakis2,3,4 and Robert B Tesh2,4* Abstract Background: Farmington virus (FARV) is a rhabdovirus that was isolated from a wild bird during an outbreak of epizootic eastern equine encephalitis on a pheasant farm in Connecticut, USA. Findings: Analysis of the nearly complete genome sequence of the prototype CT AN 114 strain indicates that it encodes the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (> 180 nt) in the N and G genes. Phenotypic and genetic characterization of FARV has confirmed that it is a novel rhabdovirus and probably represents a new species within the family Rhabdoviridae. Conclusions: In sum, our analysis indicates that FARV represents a new species within the family Rhabdoviridae. Keywords: Farmington virus (FARV), Family Rhabdoviridae, Next generation sequencing, Phylogeny Background Results Therhabdovirusesarealargeanddiversegroupofsingle- Growth characteristics stranded, negative sense RNA viruses that infect a wide Three litters of newborn (1–2 day old) ICR mice with aver- range of vertebrates, invertebrates and plants [1]. The family agesizeof10pupswereinoculated intracerebrally (ic) with Rhabdoviridae is currently divided into nine approved ge- 15–20 μl, intraperitoneally (ip) with 100 μlorsubcutane- nera (Vesiculovirus, Perhavirus, Ephemerovirus, Lyssavirus, ously (sc) with 100 μlofastockofVero-grownFARV(CT Tibrovirus, Sigmavirus, Nucleorhabdovirus, Cytorhabdovirus AN 114) virus containing approximately 107 plaque and Novirhabdovirus);however,alargenumberofanimal forming units (PFU) per ml.
    [Show full text]
  • And Giant Guitarfish (Rhynchobatus Djiddensis)
    VIRAL DISCOVERY IN BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS) AND GIANT GUITARFISH (RHYNCHOBATUS DJIDDENSIS) BY HISTOPATHOLOGY EVALUATION, METAGENOMIC ANALYSIS AND NEXT GENERATION SEQUENCING by JENNIFER ANNE DILL (Under the Direction of Alvin Camus) ABSTRACT The rapid growth of aquaculture production and international trade in live fish has led to the emergence of many new diseases. The introduction of novel disease agents can result in significant economic losses, as well as threats to vulnerable wild fish populations. Losses are often exacerbated by a lack of agent identification, delay in the development of diagnostic tools and poor knowledge of host range and susceptibility. Examples in bluegill sunfish (Lepomis macrochirus) and the giant guitarfish (Rhynchobatus djiddensis) will be discussed here. Bluegill are popular freshwater game fish, native to eastern North America, living in shallow lakes, ponds, and slow moving waterways. Bluegill experiencing epizootics of proliferative lip and skin lesions, characterized by epidermal hyperplasia, papillomas, and rarely squamous cell carcinoma, were investigated in two isolated poopulations. Next generation genomic sequencing revealed partial DNA sequences of an endogenous retrovirus and the entire circular genome of a novel hepadnavirus. Giant Guitarfish, a rajiform elasmobranch listed as ‘vulnerable’ on the IUCN Red List, are found in the tropical Western Indian Ocean. Proliferative skin lesions were observed on the ventrum and caudal fin of a juvenile male quarantined at a public aquarium following international shipment. Histologically, lesions consisted of papillomatous epidermal hyperplasia with myriad large, amphophilic, intranuclear inclusions. Deep sequencing and metagenomic analysis produced the complete genomes of two novel DNA viruses, a typical polyomavirus and a second unclassified virus with a 20 kb genome tentatively named Colossomavirus.
    [Show full text]
  • Phylogenetic Analysis and Transmission Cycle of Tick-Borne Encephalitis Virus Isolated in Hokkaido
    Title Phylogenetic analysis and transmission cycle of tick-borne encephalitis virus isolated in Hokkaido Author(s) HAYASAKA, Daisuke Citation Japanese Journal of Veterinary Research, 46(2-3), 159-160 Issue Date 1998-11-30 Doc URL http://hdl.handle.net/2115/2711 Type bulletin (article) File Information KJ00003408044.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP lPn. l. Vet. Res. 46(2-3), (1998) Information 159 Establishment of monoclonal antibodies against Borna disease virus p40 protein and the application to a serological diagnostic method Kouji Tsujimura Laboratory of Public Health, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicene, Hokkaido University, Sapporo 060-0818, Japan Borna disease causes polioencephalomyelitis protein of BDV were obtained using recombinant of horses and sheep. The disease has been p40 protein as the immunogen. These MAbs known to be endemic in Central Europe. Re­ were confirmed to be reactive to native p40 centely, seroepidemiological survey of the causa­ protein by Immunofluorescent antibody assay tive agent (Borna disease virus, BDV) suggests (IF A) using MDCK cells persistently infected that the virus distributes in wide areas among with BDV. differernt spicies of animals and is also suspected 2. The MAbs were separated into three groups to be associated with human psychiatric dis­ from reactivity to p40 in Western blot analysis. orders. It is important to search the reservoir B9 and E7 of group 1 can detect the virus antigen animal, however there is no standard seological in persistently infected rat brain. These two diagnostic method for BDV infection and the MAbs recognized different epitopes.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • And Filoviruses Asit K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Veterinary and Biomedical Science Veterinary and Biomedical Sciences, Department of 2016 Overview of Rhabdo- and Filoviruses Asit K. Pattnaik University of Nebraska-Lincoln, [email protected] Michael A. Whitt University of Tennessee Health Science Center, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons Pattnaik, Asit K. and Whitt, Michael A., "Overview of Rhabdo- and Filoviruses" (2016). Papers in Veterinary and Biomedical Science. 229. http://digitalcommons.unl.edu/vetscipapers/229 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Biology and Pathogenesis of Rhabdo- and Filoviruses (2016), edited by Asit K Pattnaik and Michael A Whitt. Copyright © 2016 World Scientific Publishing Co Pte Ltd. Used by permission. digitalcommons.unl.edu CHAPTER 1 Overview of Rhabdo- and Filoviruses Asit K. Pattnaik1 and Michael A. Whitt2 1 School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583 2 Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 The authors contributed equally to this work. Emails: [email protected] ; [email protected] Summary Enveloped viruses with a negative-sense, single-stranded monopartite RNA genome have been classified into the orderMononegavirales .
    [Show full text]
  • Eastern Equine Encephalitis Virus Rapidly Infects And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423836; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Title: Eastern Equine Encephalitis Virus Rapidly Infects and 2 Disseminates in the Brain and Spinal Cord of Infected 3 Cynomolgus Macaques Following Aerosol Challenge 4 Janice A Williams1*, Simon Y Long1*, Xiankun Zeng1, Kathleen Kuehl1, April M 5 Babka1, Neil M Davis1, Jun Liu1, John C Trefry2, Sharon Daye1, Paul R 6 Facemire1, Patrick L Iversen3, Sina Bavari4, Margaret L Pitt2, 4#, Farooq Nasar2# 7 8 1Pathology Division, United States Army Medical Research Institute of Infectious 9 Diseases, 1425 Porter Street, Frederick, Maryland, USA 10 11 2Virology Division, United States Army Medical Research Institute of Infectious 12 Diseases, 1425 Porter Street, Frederick, Maryland, USA 13 14 3Therapeutics Division, United States Army Medical Research Institute of 15 Infectious Diseases, 1425 Porter Street, Frederick, Maryland, USA 16 17 4Office of the Commander, United States Army Medical Research Institute of 18 Infectious Diseases, 1425 Porter Street, Frederick, Maryland, USA 19 20 21 *J.A.W. and S.Y.L. contributed equally to this work. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423836; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]