Genomic Organization of Borna Disease Virus

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Organization of Borna Disease Virus Proc. Natl. Acad. Sci. USA Vol. 91, pp. 4362-4366, May 1994 Neurobiology Genomic organization of Borna disease virus (central nervous system Infection/behavioral disorders/negative-strand RNA viruses) THOMAS BRIESE*t, ANETTE SCHNEEMANN*, ANN J. LEWIS*, YOO-SUN PARK*, SARA KIM*, HANNS LUDWIGt, AND W. IAN LIPKIN**§¶ Departments of *Neurology, *Anatomy and Neurobiology, and Microbiology and Molecular Genetics, University of California, Irvine, CA 92717; and tInstitute of Virology, Freie Universitit Berlin, Nordufer 20, D 13353 Berlin, Germany Communicated by Hilary Koprowski, January 27, 1994 ABSTRACT Borna disease virus is a neurotropic negative- RNA. The 5'-terminal sequence from each library was used strand RNA virus that infects a wide range ofvertebrate hosts, to design an oligonucleotide primer for construction of the causing disturbances in movement and behavior. We have next library. cloned and sequenced the 8910-nucleotide viral genome by DNA Sequencing and Sequence Analysis. Plasmid DNA was using RNA from Borna disease virus particles. The viral sequenced on both strands by the dideoxynucleotide chain- genome has complementary 3' and 5' termini and contains termination method (13) using a modified bacteriophage T7 antisense information for five open reading frames. Homology DNA polymerase (Sequenase version 2.0; United States to Filoviridae, Paramyxoviridae, and Rhabdoviridae is found Biochemical). Five to 10 independent clones from each in both cistronic and extracistronic regions. Northern analysis library were sequenced with overlap so that each region of indicates that the virus transcribes mono- and polycistronic the genomic RNA was covered by at least 2 clones. Four RNAs and uses terminatlon/polyadenylylation signals remi- libraries were analyzed, yielding =8.9 kb of continuous niscent ofthose observed in other negative-strand RNA viruses. sequence. Nucleic acid sequence was analyzed with a se- Borna disease virus is likely to represent a previously unrec- quence-analysis software package (Genetics Computer ognized genus, bornaviruses, or family, Bornaviridae, within Group, Madison, WI). Data base searches for related se- the order Mononegavirales. quences and multiple sequence alignments were performed with FASTA and PILEUP. Sequence Determination at the 3' and 5' Termine of BDV Borna disease virus (BDV) is a neurotropic virus that causes Genomic RNA. Genomic RNA from one virus particle prep- an immune-mediated syndrome resulting in disturbances in aration (1-2 x 108 cells) was treated with tobacco acid movement and behavior. Originally described as a natural pyrophosphatase (Epicentre Technologies, Madison, WI) infection of horses in southern Germany (1), Borna disease and circularized with T4 RNA ligase (New England Biolabs) has now been described in sheep (2), cats (3), and domestic (14). The ligated RNA was reverse transcribed with Super- fowl (4). Though natural infection has not been reported in Script II (GIBCO/BRL) using a primer, 5'-GCCTCCCCT- primates, subhuman primates can be infected experimentally TAGCGACACCCTGTA-3', complementary to a region 465 (5, 6). Antibodies to BDV proteins have been found in nt from the 5' terminus of the BDV genome. A 2-,ul aliquot patients with neuropsychiatric disorders (7-9), suggesting of the reverse transcription reaction was used to amplify the that BDV or a related agent may be pathogenic in humans. ligated region by the PCR using Stoffel fragment (Perkin- Because BDV grows only to low titer, it was difficult to Elmer/Cetus). Primers used in the first round of PCR were purify for analysis. However, the identification of BDV 5'-GCCTCCCCTTAGCGACACCCTGTA-3' and 5'-GAAA- cDNA clones by subtractive hybridization (10, 11) and, more CATATCGCGCCGTGAC-3', located 241 nt from the 3' recently, the advent of a method for isolation of virus terminus of the BDV genome. Amplified products were particles (12) led to partial characterization of BDV as a subjected to a second round of PCR using a nested set of negative-strand RNA virus which transcribes its RNA in the primers: 5'-TACGTTGGAGTTGTTAGGAAGC-3', 251 nt cell nucleus (12). We have now cloned and sequenced ge- from the 5' terminus, and 5'-GAGCTTAGGGAGGC- nomic RNA from virus particles. The genomic organization TCGCTG-3', 120 nt from the 3' terminus. PCR products were of BDV indicates that it is likely to represent a distinct virus cloned (15) and sequence across the 5'/3' junction was genus or family within the order Mononegavirales. determined from five independent isolates. Northern Hybridization. Poly(A)+ RNA extracted from MATERIALS AND METHODS acutely infected rat brain by using the FastTrack system (Invitrogen) was size-fractionated in 0.22 M formalde- BDV cDNA Library Preparation and Screening. Genomic hyde/1% agarose gels (16), transferred to Zeta-Probe GT RNA template for library construction was obtained from an nylon membranes (Bio-Rad), and hybridized with random- oligodendrocyte cell line (Oligo/TL) acutely infected with primed 32P-labeled restriction fragments (17) representing BDV strain V (12). For the first genomic library, RNA from open reading frames (ORFs) across the BDV genome (see one virus particle preparation was polyadenylylated with Fig. 4b). RNA transfer, hybridization, and washing were poly(A) polymerase (GIBCO/BRL) to facilitate cloning from performed with the manufacturer's protocol (Bio-Rad). the 3' terminus by oligo(dT)-primed cDNA synthesis. Librar- ies were prepared in pSPORT with the SuperScript plasmid system (GIBCO/BRL). The first library was screened with RESULTS pAB5 and pAF4 radiolabeled restriction fragments (10). Sequencing of Genomic BDV RNA. Beginning from the 3' Subsequent libraries were screened with radiolabeled restric- terminus, a series of four overlapping cDNA libraries was tion fragments from locations progressively 5' on the genomic Abbreviations: BDV, Bornadisease virus; ORF, open reading frame. The publication costs of this article were defrayed in part by page charge ITo whom reprint requests should be addressed. payment. This article must therefore be hereby marked "advertisement" IlThe sequence reported in this paper has been deposited in the in accordance with 18 U.S.C. §1734 solely to indicate this fact. GenBank data base (accession no. U04608). 4362 Downloaded by guest on September 25, 2021 Neurobiology: Briese et al. Proc. Natl. Acad. Sci. USA 91 (1994) 4363 constructed by using BDV particle RNA (12) as template. three small ORFs, each with a coding capacity of <16 kDa Previous studies have shown that the genomic RNA is not (Fig. lb). polyadenylylated (18). Thus, to construct the first library, Homology Analysis of Coding Sequence. Predicted amino genomic RNA was polyadenylylated in vitro to facilitate acid sequence for the identified ORFs was used to examine oligo(dT)-primed cDNA synthesis. For the subsequent three data bases for similarity to other proteins. Previous analysis libraries, genome-complementary oligonucleotide primers of the ORF encoding p40 had revealed distant sequence were designed based on 5'-terminal sequence determined in similarity to L proteins of Paramyxoviridae and Rhabdovir- the previous round ofcloning. Each region ofthe genome was idae (19). FASTA analysis of translated sequence from ORFs sequenced by using a minimum of two independent clones. encoding p23, gpl8, and p57 showed no apparent similarity to To determine the sequences at the termini, genomic RNA other viral sequences; however, the p180 ORF sequence was circularized and sequenced across the junction by using consistently retrieved L polymerases of Paramyxo- and Rhabdoviridae. Alignment of the p180 ORF sequence with five independent clones. the sequences of RNA-dependent RNA polymerases of neg- The 8910-nt BDV genome contained antisense information ative-strand RNA viruses showed conservation of both se- for five major ORFs flanked by 53 nt of noncoding sequence quence and linear order of regions homologous among these at the 3' terminus and 91 nt of noncoding sequence at the 5' proteins. Extensive conservation was found in the four terminus (Fig. 1). In3'-5' order, the first two ORFs encoded characteristic motifs for L polymerases of negative-strand two previously described viral proteins, p40 (19) and p23(20). RNA viruses (A-D in Fig. 2) (22, 23). With the exception of The third, fourth, and fifth ORFs had coding capacities of 16 the glycine residue in motif B (position 322 of the alignment), kDa (gpl8), 57 kDa (p57), and 190 kDa (p180), respectively conservation was found for the individual amino acid resi- (Fig. la). Predicted amino acid sequence for the 16-kDa ORF dues postulated to participate in polymerase function (22). correlated with microsequence data for an 18-kDa BDV Conservation was also found for a motif (a in Fig. 2) proposed glycoprotein (S. Kliche, T.B., and W.I.L., unpublished to participate in template recognition (23, 24). The alignment data), originally described as the Borna disease-associated produced by the Genetics Computer Group's PILEUP pro- 14.5-kDa protein (21). The first three ORFs showed no gram placed the p180 ORF sequence between polymerases of overlap and were in frame with the fifth ORF (Fig. lb). The Paramyxo- and Rhabdoviridae. This intermediate position is 57-kDa ORF was in a +1/-2 frame relative to the other four reflected by the presence of conserved amino acids which are ORFs and overlapped the adjacent ORF for gpl8 by 28 in agreement with either the rhabdo- or the paramyxovirus codons and ORF p180 by 34 codons. All ORFs were located sequences (* or x, respectively; Fig. 2). The distance on the positive strand, complementary to the genomic RNA. between conserved motifs a and A was found to be short in ORF analysis of the genomic (negative) strand showed only BDV as it is in rhabdoviruses, whereas this region is highly variable in length and sequence among paramyxoviruses (23). a p40 p23 gpl8 (p57) (p180) The PILEUP-generated dendrogram, obtained by using com- [1110) [603] [426] [1509] [5175] plete p180 ORF and L-protein sequences, indicated that the 3' 5' putative BDV polymerase was more closely related to L polymerases of Rhabdoviridae than to those of Paramyxo- 53 79 10 55 viridae (data not shown).
Recommended publications
  • Multiple Origins of Viral Capsid Proteins from Cellular Ancestors
    Multiple origins of viral capsid proteins from PNAS PLUS cellular ancestors Mart Krupovica,1 and Eugene V. Kooninb,1 aInstitut Pasteur, Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and bNational Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 Contributed by Eugene V. Koonin, February 3, 2017 (sent for review December 21, 2016; reviewed by C. Martin Lawrence and Kenneth Stedman) Viruses are the most abundant biological entities on earth and show genome replication. Understanding the origin of any virus group is remarkable diversity of genome sequences, replication and expres- possible only if the provenances of both components are elucidated sion strategies, and virion structures. Evolutionary genomics of (11). Given that viral replication proteins often have no closely viruses revealed many unexpected connections but the general related homologs in known cellular organisms (6, 12), it has been scenario(s) for the evolution of the virosphere remains a matter of suggested that many of these proteins evolved in the precellular intense debate among proponents of the cellular regression, escaped world (4, 6) or in primordial, now extinct, cellular lineages (5, 10, genes, and primordial virus world hypotheses. A comprehensive 13). The ability to transfer the genetic information encased within sequence and structure analysis of major virion proteins indicates capsids—the protective proteinaceous shells that comprise the that they evolved on about 20 independent occasions, and in some of cores of virus particles (virions)—is unique to bona fide viruses and these cases likely ancestors are identifiable among the proteins of distinguishes them from other types of selfish genetic elements cellular organisms.
    [Show full text]
  • A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses
    A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, Corinne Maufrais, Valérie Caro, Hervé Bourhy To cite this version: Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, et al.. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.. PLoS ONE, Public Library of Science, 2014, 9 (1), pp.e87194. 10.1371/journal.pone.0087194.s006. pasteur-01430485 HAL Id: pasteur-01430485 https://hal-pasteur.archives-ouvertes.fr/pasteur-01430485 Submitted on 9 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses Laurent Dacheux1*, Minerva Cervantes-Gonzalez1,
    [Show full text]
  • Virus Replication
    Introduction • Encompasses > 150 viruses Rhabdoviridae •Rabies –only important human Brian Wells pathogen • One of the most lethal of all infectious diseases History History • Adapted from Latin meaning “to rage” • 1885 – Louis Pasteur – rabies vaccine • Greeks – lyssa – “frenzy” – Attenuated form of virus produced by inoculation of rabbit spinal cord • Rabies represents one of the oldest and most feared diseases • Occurs throughout the world except in Australia, Japan, Great Britain, • Recognized in Egypt before 2300 B.C. and islands such as Hawaii • Well described by Aristotle • “Reportable” disease • Iliad – “canine madness” Taxonomy Viral Structure • 3 Genera – Ephemerovirus, Lyssavirus, • 170 nm x 70 nm Vesiculovirus • Bullet-shaped enveloped virion • Infect vertebrates, invertebrates, and – Glycoprotein peplomers & matrix protein plants under envelope • Genus Lyssavirus comprises rabies • Helical symmetry virus and 3 rabies-like viruses • Linear minus sense ssRNA – 11-12 kb • Each capable of causing rabies-like • Glycoprotein spikes in outer membrane disease in humans bilayer 1 Virus Replication • Receptor-mediated endocytosis • Uncoat and release nucleocapsid into cytoplasm • Production of 5 monocistronic mRNA species - N, P (NS), M, G, L – by L+P viral transcriptase • Each mRNA capped and poly-A’ed • dsRNA replicative intermediate Virus Replication Virus Replication • N+P+L and (-) ssRNA form core • M forms matrix around core • Virus buds from glycoprotein area of plasma membrane and thus acquires its envelope Transmission • Unstable
    [Show full text]
  • New York Science Journal 2016;9(10) 19 Gene Library Ma Hongbao Brookdale University Hospital A
    New York Science Journal 2016;9(10) http://www.sciencepub.net/newyork Gene Library Ma Hongbao Brookdale University Hospital and Medical Center, Brooklyn, New York 11212, USA [email protected] Abstract: A gene library is a collection of gene clones that represents the genetic material of an organism. There are different types of gene libraries, including cDNA libraries, genomic libraries and randomized mutant libraries. The applications of these libraries depend on the source of the original DNA fragments. Generally in a gene library each DNA fragment is uniquely inserted into a cloning vector and the pool of recombinant DNA molecules is then transferred into a population of bacteria or yeast such that each organism contains on average one construct. As the population of organisms is grown in culture, the DNA molecules contained within them are copied and propagated. [Ma Hongbao. Gene Library. N Y Sci J 2016;9(10):19-23]. ISSN 1554-0200 (print); ISSN 2375-723X (online). http://www.sciencepub.net/newyork. 4. doi:10.7537/marsnys091016.04. Keywords: gene; library; clone; organism; DNA; molecule; copy A gene library is a collection of gene clones that cDNA libraries are useful in reverse genetics, but they represents the genetic material of an organism. In only represent a very small (less than 1%) portion of molecular biology, a library is a collection of DNA the overall genome in a given organism. The fragments stored and propagated in a population of applications of cDNA libraries include: (1) Discovery micro-organisms through the process of molecular of novel genes; (2) Cloning of full-length cDNA cloning.
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Mented, Negative-Strand RNA Virus
    ウ イ ル ス 45(2),165-174,1995 特集 ネガテ ィブ鎖RNAウ イルス 4. The atypical strategies used for gene expression of Borna disease virus, a nonseg- mented, negative-strand RNA virus. ANETTE SCHNEEMANN,* PATRICK A. SCHNEIDER,*•˜ and W. IAN LIPKIN*•˜ *Laboratory for Neurovirology , Department of Neurology, Department of Anatomy and Neurobiology, § Department of Microbiology and Molecular Genetics , University of California-Irvine, Irvine, CA 92717 $ To whom correspondence should be addressed . FAX : (714) 824-2132. Email : ilipkin @ uci. edu al., 1992), has opened the fields of BDV biology and Abstract pathogenesis for rigorous investigation. BDV has Borna disease virus (BDV) is a neurotropic agent now been defined as an enveloped, nonsegmented that causes disturbances in movement and behavior negative-strand RNA virus (Briese et al., 1992 ; in vertebrate host species ranging from birds to Compans et al., 1994 Zimmermann et al., 1994) and primates. Although the virus has not been isolated its sequence has been determined independently in from human subjects, there is indirect evidence to two laboratories (Briese et al., 1994 ; Cubitt et al., suggest that humans with neuropsychiatric dis- 1994b). Although aspects of gene organization and orders may be infected with BDV. Recently, virus deduced protein sequence suggest relatedness to particles have been isolated and the viral genomic members of the order Mononegavirales (paramyx- RNA has been cloned. This analysis revealed that oviruses, rhabdoviruses and filoviruses), BDV BDV is a nonsegmented, negative-strand RNA shows unusual features such as RNA splicing virus. Unusual features such as RNA splicing, over- (Schneider et al., 1994 ; Cubitt et al. 1994c) and lap of transcription units and transcription signals, overlap of transcription units and transcription as well as sequence dissimilarity for four of five signals (Schneemann et al., 1994).
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Characterization of Farmington Virus, a Novel Virus from Birds That Is Distantly Related to Members of the Family Rhabdoviridae
    Palacios et al. Virology Journal 2013, 10:219 http://www.virologyj.com/content/10/1/219 RESEARCH Open Access Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae Gustavo Palacios1†, Naomi L Forrester2,3,4†, Nazir Savji5,7†, Amelia P A Travassos da Rosa2, Hilda Guzman2, Kelly DeToy5, Vsevolod L Popov2,4, Peter J Walker6, W Ian Lipkin5, Nikos Vasilakis2,3,4 and Robert B Tesh2,4* Abstract Background: Farmington virus (FARV) is a rhabdovirus that was isolated from a wild bird during an outbreak of epizootic eastern equine encephalitis on a pheasant farm in Connecticut, USA. Findings: Analysis of the nearly complete genome sequence of the prototype CT AN 114 strain indicates that it encodes the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (> 180 nt) in the N and G genes. Phenotypic and genetic characterization of FARV has confirmed that it is a novel rhabdovirus and probably represents a new species within the family Rhabdoviridae. Conclusions: In sum, our analysis indicates that FARV represents a new species within the family Rhabdoviridae. Keywords: Farmington virus (FARV), Family Rhabdoviridae, Next generation sequencing, Phylogeny Background Results Therhabdovirusesarealargeanddiversegroupofsingle- Growth characteristics stranded, negative sense RNA viruses that infect a wide Three litters of newborn (1–2 day old) ICR mice with aver- range of vertebrates, invertebrates and plants [1]. The family agesizeof10pupswereinoculated intracerebrally (ic) with Rhabdoviridae is currently divided into nine approved ge- 15–20 μl, intraperitoneally (ip) with 100 μlorsubcutane- nera (Vesiculovirus, Perhavirus, Ephemerovirus, Lyssavirus, ously (sc) with 100 μlofastockofVero-grownFARV(CT Tibrovirus, Sigmavirus, Nucleorhabdovirus, Cytorhabdovirus AN 114) virus containing approximately 107 plaque and Novirhabdovirus);however,alargenumberofanimal forming units (PFU) per ml.
    [Show full text]
  • And Giant Guitarfish (Rhynchobatus Djiddensis)
    VIRAL DISCOVERY IN BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS) AND GIANT GUITARFISH (RHYNCHOBATUS DJIDDENSIS) BY HISTOPATHOLOGY EVALUATION, METAGENOMIC ANALYSIS AND NEXT GENERATION SEQUENCING by JENNIFER ANNE DILL (Under the Direction of Alvin Camus) ABSTRACT The rapid growth of aquaculture production and international trade in live fish has led to the emergence of many new diseases. The introduction of novel disease agents can result in significant economic losses, as well as threats to vulnerable wild fish populations. Losses are often exacerbated by a lack of agent identification, delay in the development of diagnostic tools and poor knowledge of host range and susceptibility. Examples in bluegill sunfish (Lepomis macrochirus) and the giant guitarfish (Rhynchobatus djiddensis) will be discussed here. Bluegill are popular freshwater game fish, native to eastern North America, living in shallow lakes, ponds, and slow moving waterways. Bluegill experiencing epizootics of proliferative lip and skin lesions, characterized by epidermal hyperplasia, papillomas, and rarely squamous cell carcinoma, were investigated in two isolated poopulations. Next generation genomic sequencing revealed partial DNA sequences of an endogenous retrovirus and the entire circular genome of a novel hepadnavirus. Giant Guitarfish, a rajiform elasmobranch listed as ‘vulnerable’ on the IUCN Red List, are found in the tropical Western Indian Ocean. Proliferative skin lesions were observed on the ventrum and caudal fin of a juvenile male quarantined at a public aquarium following international shipment. Histologically, lesions consisted of papillomatous epidermal hyperplasia with myriad large, amphophilic, intranuclear inclusions. Deep sequencing and metagenomic analysis produced the complete genomes of two novel DNA viruses, a typical polyomavirus and a second unclassified virus with a 20 kb genome tentatively named Colossomavirus.
    [Show full text]
  • Library Construction and Screening
    Library construction and screening • A gene library is a collection of different DNA sequences from an organism, • which has beenAlso called genomic libraries or gene banks. • cloned into a vector for ease of purification, storage and analysis. Uses of gene libraries • To obtain the sequences of genes for analysis, amplification, cloning, and expression. • Once the sequence is known probes, primers, etc. can be synthesized for further diagnostic work using, for example, hybridization reactions, blots and PCR. • Knowledge of a gene sequence also offers the possibility of gene therapy. • Also, gene expression can be used to synthesize a product in particular host cells, e.g. synthesis of human gene products in prokaryotic cells. two types of gene library depending upon the source of the DNA used. 1.genomic library. 2.cDNA library Types of GENE library: • genomic library contains DNA fragments representing the entire genome of an organism. • cDNA library contains only complementary DNA molecules synthesized from mRNA molecules in a cell. Genomic Library : • Made from nuclear DNA of an organism or species. • DNA is cut into clonable size pieces as randomly possible using restriction endonuclease • Genomic libraries contain whole genomic fragments including gene exons and introns, gene promoters, intragenic DNA,origins of replication, etc Construction of Genomic Libraries 1. Isolation of genomic DNA and vector. 2.Cleavage of Genomic DNA and vector by Restriction Endonucleases. 3.Ligation of fragmented DNA with the vector. 4.Transformation of
    [Show full text]
  • Phylogenetic Analysis and Transmission Cycle of Tick-Borne Encephalitis Virus Isolated in Hokkaido
    Title Phylogenetic analysis and transmission cycle of tick-borne encephalitis virus isolated in Hokkaido Author(s) HAYASAKA, Daisuke Citation Japanese Journal of Veterinary Research, 46(2-3), 159-160 Issue Date 1998-11-30 Doc URL http://hdl.handle.net/2115/2711 Type bulletin (article) File Information KJ00003408044.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP lPn. l. Vet. Res. 46(2-3), (1998) Information 159 Establishment of monoclonal antibodies against Borna disease virus p40 protein and the application to a serological diagnostic method Kouji Tsujimura Laboratory of Public Health, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicene, Hokkaido University, Sapporo 060-0818, Japan Borna disease causes polioencephalomyelitis protein of BDV were obtained using recombinant of horses and sheep. The disease has been p40 protein as the immunogen. These MAbs known to be endemic in Central Europe. Re­ were confirmed to be reactive to native p40 centely, seroepidemiological survey of the causa­ protein by Immunofluorescent antibody assay tive agent (Borna disease virus, BDV) suggests (IF A) using MDCK cells persistently infected that the virus distributes in wide areas among with BDV. differernt spicies of animals and is also suspected 2. The MAbs were separated into three groups to be associated with human psychiatric dis­ from reactivity to p40 in Western blot analysis. orders. It is important to search the reservoir B9 and E7 of group 1 can detect the virus antigen animal, however there is no standard seological in persistently infected rat brain. These two diagnostic method for BDV infection and the MAbs recognized different epitopes.
    [Show full text]
  • Construction of Small-Insert Genomic DNA Libraries Highly Enriched
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3419-3423, April 1992 Genetics Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences (marker-selected libraries/CA repeats/sequence-tagged sites/genetic mapping/dog genome) ELAINE A. OSTRANDER*tt, PAM M. JONG*t, JASPER RINE*t, AND GEOFFREY DUYKt§ *Department of Molecular and Cellular Biology, 401 Barker Hall, University of California, Berkeley, CA 94720; tHuman Genome Center, Lawrence Berkeley Laboratory, 1 Cyclotron Road, 74-157, Berkeley, CA 94720; and §Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 Communicated by Philip Leder, January 8, 1992 ABSTRACT We describe an efficient method for the con- Generation of a high-density map of markers for an entire struction of small-insert genomic libraries enriched for highly genome or a single chromosome requires the isolation and polymorphic, simple sequence repeats. With this approach, characterization of hundreds of markers such as microsatel- libraries in which 40-50% of the members contain (CA). lite repeats (10, 11). Two simple yet tedious approaches have repeats are produced, representing an =50-fold enrichment generally been used for this task. One approach is to screen over conventional small-insert genomic DNA libraries. Briefly, a large-insert genomic library with an end-labeled (CA),, or a genomic library with an average insert size of less than 500 (TG),, oligonucleotide (n > 15). Clones that hybridize to the base pairs was constructed in a phagemid vector. Ampliflcation probe are purified and divided into subclones, which are of this library in a dut ung strain ofEscherchia coli allowed the screened by hybridization for a fragment containing the recovery of the library as closed circular single-stranded DNA repeat.
    [Show full text]