Library Construction and Screening
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New York Science Journal 2016;9(10) 19 Gene Library Ma Hongbao Brookdale University Hospital A
New York Science Journal 2016;9(10) http://www.sciencepub.net/newyork Gene Library Ma Hongbao Brookdale University Hospital and Medical Center, Brooklyn, New York 11212, USA [email protected] Abstract: A gene library is a collection of gene clones that represents the genetic material of an organism. There are different types of gene libraries, including cDNA libraries, genomic libraries and randomized mutant libraries. The applications of these libraries depend on the source of the original DNA fragments. Generally in a gene library each DNA fragment is uniquely inserted into a cloning vector and the pool of recombinant DNA molecules is then transferred into a population of bacteria or yeast such that each organism contains on average one construct. As the population of organisms is grown in culture, the DNA molecules contained within them are copied and propagated. [Ma Hongbao. Gene Library. N Y Sci J 2016;9(10):19-23]. ISSN 1554-0200 (print); ISSN 2375-723X (online). http://www.sciencepub.net/newyork. 4. doi:10.7537/marsnys091016.04. Keywords: gene; library; clone; organism; DNA; molecule; copy A gene library is a collection of gene clones that cDNA libraries are useful in reverse genetics, but they represents the genetic material of an organism. In only represent a very small (less than 1%) portion of molecular biology, a library is a collection of DNA the overall genome in a given organism. The fragments stored and propagated in a population of applications of cDNA libraries include: (1) Discovery micro-organisms through the process of molecular of novel genes; (2) Cloning of full-length cDNA cloning. -
Proquesttm Pre-Made Cdna Libraries
Instruction Manual TM ProQuest Pre-made cDNA Libraries For detecting protein-protein interactions Version B December 12, 2002 25-0617 Table of Contents General Information ..............................................................2 Overview...............................................................................5 Using ProQuest™ Libraries....................................................8 pPC86.................................................................................13 pEXP-AD502.......................................................................15 Recipe.................................................................................17 Accessory Products ............................................................18 Purchaser Notification.........................................................19 Technical Service................................................................22 References..........................................................................24 1 General Information Contents 2 x 0.5 ml aliquots and Storage Each cDNA library is supplied in 80% SOB medium, 20% (v/v) glycerol. Store the library at -80°C. The cDNA library is stable for six months when stored properly. Titer of the Each library has greater than 5 x 109 cfu (colony Libraries forming units) derived from > 107 primary clones to ensure complete representation of rare sequences. ProQuest™ The following ProQuest™ Pre-made cDNA Libraries are Pre-made available from Invitrogen. For more information on cDNA preparing the library, see page -
In-Fusion Smarter Directional Cdna Library Construction Kit User Manual Table of Contents I
Takara Bio USA In-Fusion® SMARTer® Directional cDNA Library Construction Kit User Manual Cat. No. 634933 (050421) Takara Bio USA, Inc. 1290 Terra Bella Avenue, Mountain View, CA 94043, USA U.S. Technical Support: [email protected] United States/Canada Asia Pacific Europe Japan Page 1 of 40 800.662.2566 +1.650.919.7300 +33.(0)1.3904.6880 +81.(0)77.565.6999 In-Fusion SMARTer Directional cDNA Library Construction Kit User Manual Table of Contents I. List of Components .................................................................................................................................................. 4 II. Additional Materials Required .................................................................................................................................. 5 III. Introduction .......................................................................................................................................................... 6 IV. RNA Preparation & Handling ..............................................................................................................................11 A. Assessing the Quality of the RNA Template ........................................................................................................11 V. SMARTer cDNA Synthesis by LD-PCR .................................................................................................................13 A. Recommended Products ......................................................................................................................................13 -
Construction of Small-Insert Genomic DNA Libraries Highly Enriched
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3419-3423, April 1992 Genetics Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences (marker-selected libraries/CA repeats/sequence-tagged sites/genetic mapping/dog genome) ELAINE A. OSTRANDER*tt, PAM M. JONG*t, JASPER RINE*t, AND GEOFFREY DUYKt§ *Department of Molecular and Cellular Biology, 401 Barker Hall, University of California, Berkeley, CA 94720; tHuman Genome Center, Lawrence Berkeley Laboratory, 1 Cyclotron Road, 74-157, Berkeley, CA 94720; and §Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 Communicated by Philip Leder, January 8, 1992 ABSTRACT We describe an efficient method for the con- Generation of a high-density map of markers for an entire struction of small-insert genomic libraries enriched for highly genome or a single chromosome requires the isolation and polymorphic, simple sequence repeats. With this approach, characterization of hundreds of markers such as microsatel- libraries in which 40-50% of the members contain (CA). lite repeats (10, 11). Two simple yet tedious approaches have repeats are produced, representing an =50-fold enrichment generally been used for this task. One approach is to screen over conventional small-insert genomic DNA libraries. Briefly, a large-insert genomic library with an end-labeled (CA),, or a genomic library with an average insert size of less than 500 (TG),, oligonucleotide (n > 15). Clones that hybridize to the base pairs was constructed in a phagemid vector. Ampliflcation probe are purified and divided into subclones, which are of this library in a dut ung strain ofEscherchia coli allowed the screened by hybridization for a fragment containing the recovery of the library as closed circular single-stranded DNA repeat. -
Global Tissue-Specific Transcriptome Analysis of Citrus Sinensis
www.nature.com/scientificdata opeN Global tissue-specifc transcriptome Data DeScrIpTor analysis of Citrus sinensis fruit across six developmental stages Received: 9 May 2019 Guizhi Feng, Juxun Wu & Hualin Yi Accepted: 23 July 2019 Published: xx xx xxxx Citrus sinensis fruit is a type of nonclimacteric fruit that mainly consists of four tissues: the epicarp, albedo, segment membrane and juice sac. The fruit quality is determined by the characteristics of these four tissues. However, our knowledge of the molecular processes that occur in these four tissues during citrus fruit development and ripening is limited. Tissue-specifc transcriptomes provide a comprehensive and detailed molecular regulatory network of citrus fruit development and ripening. In our study, we collected four types of tissue from C. sinensis fruits at six developmental stages. A total of 72 libraries were constructed from 24 samples (each sample had three replicates), and the transcriptomes were sequenced by an Illumina HiSeq 4000. The comprehensive analyses of the transcriptomes from the four tissues and six developmental stages presented here provide a valuable resource for the discovery of the molecular networks underlying citrus fruit development and ripening. Background & Summary Citrus, a nonclimacteric fruit, is widely cultivated worldwide. Citrus is mainly composed of the inedible epicarp (EP) and albedo (AL) and the edible segment membrane (SM) and juice sac (JS). Te development and ripening of citrus fruit is a complex and sophisticated regulatory process that can be divided into three stages: cell division stage; expansion stage involving cell enlargement and water, sugar accumulation; and ripening stage1. At present, most studies investigating citrus fruit development and ripening are based on the organ-wide or mixed-tissue level, which inevitably obscures many tissue-specifc phenomena. -
Multiplexed Microbial Library Preparation Using Smrtbell
Technical Overview: Multiplexed Microbial Library Preparation Using SMRTbell Express Template Prep Kit 2.0 Sequel System ICS v8.0 / Sequel Chemistry 3.0 / SMRT Link v9.0 Sequel II System ICS v9.0 / Sequel II Chemistry 2.0 / SMRT Link v9.0 Sequel IIe System ICS v10.0 / Sequel II Chemistry 2.0 / SMRT Link v10.0 For Research Use Only. Not for use in diagnostic procedures. © Copyright 2021 by Pacific Biosciences of California, Inc. All rights reserved. PN 101-742-600 Ver 2021-02-01-A (February 2021) Multiplexed Microbial Library Preparation Using SMRTbell Express Template Prep Kit 2.0 1. Multiplexed Microbial Sample Preparation Workflow Overview 2. Multiplexed Microbial Sample Preparation Workflow Details 3. Multiplexed Microbial Sequencing Workflow Details 4. Multiplexed Microbial Data Analysis Workflow Details 5. Multiplexed Microbial Library Example Performance Data 6. Technical Documentation & Applications Support Resources 7. Appendix: General Recommendations for High-Molecular Weight gDNA QC and Handling for Multiplexed Microbial SMRTbell Library Construction MULTIPLEXED MICROBIAL SEQUENCING: HOW TO GET STARTED Application-Specific Application-Specific Application Consumable Library Construction, Best Practices Guide Procedure & Checklist Bundle Purchasing Guide Sequencing & Analysis gDNA QC & Shearing ≥1 µg Input gDNA / Microbial Sample 10 kb – 15 kb Target DNA Shear Size Library Construction Multiplex Up To 48 Microbial Samples with the Sequel II and IIe Systems using Barcoded Overhang Adapters (BOA) SMRT Sequencing Use the Sequel, -
The Human Genome Project
TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences. -
Combinatorial Cdna Library by Complementation of an Auxotrophic Escherichia Coli: Antibodies for Orotate Decarboxylation JEFFREY A
Proc. Natd. Acad. Sci. USA Vol. 91, pp. 8319-8323, August 1994 Biochemistry Selection of catalytic antibodies for a biosynthetic reaction from a combinatorial cDNA library by complementation of an auxotrophic Escherichia coli: Antibodies for orotate decarboxylation JEFFREY A. SMILEY AND STEPHEN J. BENKOVIC* Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 Contributed by Stephen J. Benkovic, May 23, 1994 ABSTRACT Antibodies capable of decarboxylating oro- tate were sought by immunization with a hapten designed to elicit antibodies with combining sites that resemble the orotate- binding and catalytic portion of the active site of the enzyme OPRTase ODCase orotidine 5'-monophosphate (OMP) decarboxylase (orotidine- 0 '00 \\ 5'-monophosphate carboxy-lyase, EC 4.1.1.23). Active recom- binant antibody fragments (Fabs) were selected from a com- HN 'PO4 binatorial cDNA library by complementation of a pyrF strain UMP ofEscherichia cofl and growth ofthe library-expressing cells on pyrimidine-free medium. In this biological screen, a suffi- H " 0 ciently active antibody from the library would decarboxylate Antibody \ Urasi orotate to produce uracil, a pyrimidine source for the aux- Catalysis PRTase otroph, and would provide the cells with a growth advantage compared to cells without an active antibody. Six recombinant AN Fabs yielded identifiable colonies in a screen of 16,000 trans- H formants. To enhance its stability and expression level, one of the six positive fragments was converted into single-chain form. FIG. 1. Pathways for UMP biosynthesis. Upper route involves In this form, the antibody a naturally occurring enzymes orotate phosphoribosyltransferase fragment conferred definite growth (OPRTase) and OMP decarboxylase (ODCase). -
Cdna Libraries and Expression Libraries
Solutions for Practice Problems for Recombinant DNA, Session 4: cDNA Libraries and Expression Libraries Question 1 In a hypothetical scenario you wake up one morning to your roommate exclaiming about her sudden hair growth. She has been supplementing her diet with a strange new fungus purchased at the local farmer’s market. You take samples of the fungus to your lab and you find that this fungus does indeed make a protein (the harE protein) that stimulates hair growth. You construct a fungal genomic DNA library in E. Coli with the hope of cloning the harE gene. If you succeed you will be a billionaire! You obtain DNA from the fungus, digest it with a restriction enzyme, and clone it into a vector. a) What features must be present on your plasmid that will allow you to use this as a cloning vector to make fungal genomic DNA library. Your vector would certainly need to have a unique restriction enzyme site, a selectable marker such as the ampicillin resistance gene, and a bacterial origin of replication. Other features may be required depending upon how you plan to use this library. b) You clone your digested genomic DNA into this vector. The E. coli (bacteria) cells that you will transform to create your library will have what phenotype prior to transformation? Prior to transformation, the E. coli cells that you will transform will be sensitive to antibiotic. This allows you to select for cells that obtained a plasmid. c) How do you distinguish bacterial cells that carry a vector from those that do not? Cells that obtained a vector will have obtained the selectable marker (one example is the ampicillin resistance gene). -
Bacterial Artificial Chromosomes (Bacs) Became the Most Broadly Used Resource for Several Reasons
Bacterial Artificial Chromosomes STC Production on Human BACs Archive Provided for Historical Purposes Home STC Project History 1995 Meeting Articles Contacts Links HGP Sequences HGP Research Several types of DNA library resources were sponsored by the DOE before and during the Human Genome Program (HGP). These included both prokaryotic and eukaryotic vector systems, and clone libraries representing single chromosomes. Bacterial Artificial Chromosomes (BACs) became the most broadly used resource for several reasons. The large size was a good match for capabilities of high throughput sequencing centers. As contrasted to some earlier resources, chimerism (having gene segments from multiple chromosome sites combined in one clone) is substantially if not completely absent. With some interesting exceptions , the BACS are stable in their bacterial hosts. In support of the functional analysis of genes, the BACs are very useful for making transgenic animals with segments of human DNAs. A brief history of BAC development is available in a preface to a 2003 issue of Methods in Molecular Biology , wherein details of BAC related protocols reside. One particular BAC project was crucial to the timely completion of human genome sequencing. (See history .) In a 1996 initiative, the DOE Office of Biological and Environmental Research sponsored the production of sequence tag connectors (STCs) for the BACs being used in human genome sequencing. (STCs are sequence reads at the ends of cloned DNA segments; they mark the boundaries of the cloned DNA.) This publicly available resource has served both the international public collaboration and Celera Genomics Inc . in the generation of the human genome sequence. The BACs representing a genome can together serve as a scaffold on which much shorter DNA sequence assemblies can be located. -
Efficient PCR Approach for the Selection of Cdnas Encoded In
Proc. Nati. Acad. Sci. USA Vol. 88, pp. 9623-9627, November 1991 Genetics cDNA selection: Efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments (yeast artificial chromosomes/cosmids/major histocompatibility complex) SATISH PARIMOO*t, SANKHAVARAM R. PATANJALI*, HRIDAYABHIRANJAN SHUKLA*, DAVID D. CHAPLIN*, AND SHERMAN M. WEISSMAN* *Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510; and tDepartment of Internal Medicine and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110 Contributed by Sherman M. Weissman, July 24, 1991 ABSTRACT Identification of coding segments in large B30H3, isolated by one of us (D.D.C.; ref. 20), encompasses fragments of genomic DNA is a recurrent problem in genome a 320-kilobase (kb) region from the human major histocom- mapping and positional cloning studies. We have developed a patibility complex (MHC) class I HLA-A locus. Yeast chro- rapid and efficient protocol to achieve this goal, based on mosomes from agarose plugs were fractionated by 1% aga- hybridization of cDNA fragments to immobilized DNA and rose contour-clamped homogeneous electric field gel elec- recovery of the selected cDNAs by the PCR. The procedure trophoresis (21) in 0.5x TBE (45 mM Tris HCl, pH 8.3/45 permits rapid cloning of cDNA fragments encoded by large mM boric acid/0.2 mM EDTA) at 14'C for 45 hr at 150 V/cm genomic DNA fragments, groups of yeast artificial chromo- with a switching interval of 30 sec in an LKB Pulsaphor somes, or cosmids and has the potential to directly enrich apparatus. -
Genomic Organization of Borna Disease Virus
Proc. Natl. Acad. Sci. USA Vol. 91, pp. 4362-4366, May 1994 Neurobiology Genomic organization of Borna disease virus (central nervous system Infection/behavioral disorders/negative-strand RNA viruses) THOMAS BRIESE*t, ANETTE SCHNEEMANN*, ANN J. LEWIS*, YOO-SUN PARK*, SARA KIM*, HANNS LUDWIGt, AND W. IAN LIPKIN**§¶ Departments of *Neurology, *Anatomy and Neurobiology, and Microbiology and Molecular Genetics, University of California, Irvine, CA 92717; and tInstitute of Virology, Freie Universitit Berlin, Nordufer 20, D 13353 Berlin, Germany Communicated by Hilary Koprowski, January 27, 1994 ABSTRACT Borna disease virus is a neurotropic negative- RNA. The 5'-terminal sequence from each library was used strand RNA virus that infects a wide range ofvertebrate hosts, to design an oligonucleotide primer for construction of the causing disturbances in movement and behavior. We have next library. cloned and sequenced the 8910-nucleotide viral genome by DNA Sequencing and Sequence Analysis. Plasmid DNA was using RNA from Borna disease virus particles. The viral sequenced on both strands by the dideoxynucleotide chain- genome has complementary 3' and 5' termini and contains termination method (13) using a modified bacteriophage T7 antisense information for five open reading frames. Homology DNA polymerase (Sequenase version 2.0; United States to Filoviridae, Paramyxoviridae, and Rhabdoviridae is found Biochemical). Five to 10 independent clones from each in both cistronic and extracistronic regions. Northern analysis library were sequenced with overlap so that each region of indicates that the virus transcribes mono- and polycistronic the genomic RNA was covered by at least 2 clones. Four RNAs and uses terminatlon/polyadenylylation signals remi- libraries were analyzed, yielding =8.9 kb of continuous niscent ofthose observed in other negative-strand RNA viruses.