Species Diversity and Plastid Dna Haplotype Distributions of Pinus Subsection Australes (Pinaceae) in Guerrero and Oaxaca

Total Page:16

File Type:pdf, Size:1020Kb

Species Diversity and Plastid Dna Haplotype Distributions of Pinus Subsection Australes (Pinaceae) in Guerrero and Oaxaca ARTÍCULO ORIGINAL D.R. © TIP Revista Especializada en Ciencias Químico-Biológicas, 19(2):92-101, 2016 SPECIES DIVERSITY AND PLASTID DNA HAPLOTYPE DISTRIBUTIONS OF PINUS SUBSECTION AUSTRALES (PINACEAE) IN GUERRERO AND OAXACA Alfredo Ortiz-Martíneza and David S. Gernandtb aInstituto Tecnológico de Cd. Altamirano, Av. Pungarabato Poniente s/n, Col. Morelos, Cd. Altamirano, C.P. 40660, Guerrero, México. bDepartamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Ciudad Universitaria, Deleg. Coyoacán, C.P. 04510, Ciudad de México, México. E-mail: [email protected] ABSTRACT Pinus subsection Australes is a group of North American hard pines comprising approximately 29 ecologically and economically important tree species distributed throughout North and Central America and the Caribbean Islands. Previous studies have shown that some species of this subsection share plastid DNA haplotypes, a pattern that is attributed to introgressive hybridization or the retention of ancestral polymorphisms. Here we describe the morphological and plastid haplotype diversity for this group of species in the states of Guerrero and Oaxaca, Mexico. Seven species of Pinus subsection Australes are recognized in the study area, one of which, P. patula, includes two varieties. Seven variable sites and nine haplotypes were found in an 840 b.p. fragment of the DNA coding region ycf1. Shared haplotypes were found for P. patula var. patula, P. patula var. longipedunculata, P. herrerae, and P. tecunumanii. Four of the nine haplotypes found were restricted to Oaxaca. Although plastid DNA genealogies are valuable for studying evolution in this group, greater sampling of individuals and the inclusion of more variable sites are needed to more accurately infer species relationships. Key Words:ELRGLYHUVLW\JHQHÀRZOLQHDJHVRUWLQJSLQHVVSHFLHVGHOLPLWDWLRQ Diversidad de especies y distribución de haplotipos de ADN del plastidio de Pinus subsección Australes(Pinaceae) en Guerrero y Oaxaca RESUMEN Pinus subsección Australes es un grupo de pinos duros de América del Norte que comprende aproximadamente 29 especies de árboles importantes económicamente y ecológicamente distribuidos a lo largo de toda América del Norte y Central y las Islas Caribeñas. Estudios previos han mostrado que las especies de esta subsección a menudo comparten haplotipos de ADN de plastidio, un patrón que es atribuido a la hibridación LQWURJUHVLYD\ODUHWHQFLyQGHSROLPRUÀVPRVDQFHVWUDOHV$TXtGHVFULELPRVODGLYHUVLGDGGHKDSORWLSRVGH SODVWLGLR\ODPRUIRORJtDSDUDHVWHJUXSRGHHVSHFLHVHQORVHVWDGRVGH*XHUUHUR\2D[DFD0p[LFR6LHWH especies de Pinus subsección Australes son reconocidas en el área de estudio, una de las cuales, P. patula LQFOX\HGRVYDULHGDGHV6LHWHVLWLRVYDULDEOHV\QXHYHKDSORWLSRVIXHURQHQFRQWUDGRVDPSOLÀFDQGRXQIUDJPHQWR GHSEGH$'1GHODUHJLyQFRGLÀFDQWHycf1. Se encontraron haplotipos compartidos para P. patula var. patula, P. patula var. longipedunculata, P. herrerae y P. tecunumanii. Cuatro de los nueve haplotipos HQFRQWUDGRVHVWiQUHVWULQJLGRVD2D[DFD$XQTXHODVJHQHDORJtDVGHJHQHVVRQYDOLRVDVSDUDHVWXGLDUOD evolución de este grupo, se requieren mayor muestreo de individuos y más sitios variables para la inferencia de relaciones entre las especies. Palabras Clave:ELRGLYHUVLGDGÀXMRJpQLFRVRUWHRGHOLQDMHVSLQRVGHOLPLWDFLyQGHHVSHFLHV Nota: Artículo recibido el 14 de septiembre de 2015 y aceptado el 27 de abril de 2016. agosto, 2016 Ortiz-Martínez, A. & Gernandt, D.S.: Pines of Guerrero and Oaxaca 93 INTRODUCTION 3ODVWLG HJFKORURSODVW '1$KDVEHHQZLGHO\VWXGLHGLQSLQHV inus 3LQDFHDH DUJXDEO\WKHPRVWHFRORJLFDOO\DQG ,QFRQWUDVWWRDQJLRVSHUPVSODVWLG'1$LVSDWHUQDOO\LQKHULWHG HFRQRPLFDOO\ LPSRUWDQW WUHH JHQXV LQ WKH ZRUOG1, LQFRQLIHUV25,WH[KLELWVORZJHQHWLFGL൵HUHQWLDWLRQLQFRQLIHU P FRPSULVHV DSSUR[LPDWHO\ VSHFLHV GLVWULEXWHG SRSXODWLRQVDQGVSHFLHVUHODWLYHWRPLWRFKRQGULDORUQXFOHDU QDWXUDOO\LQWHUUHVWULDOHQYLURQPHQWVWKURXJKRXWWKH '1$WKLVLVEHFDXVHSODVWLGJHQHÀRZLVPHGLDWHGE\ERWK 1RUWKHUQ+HPLVSKHUH2-53LQHVDUHHDVLO\UHFRJQL]HGE\WKHLU VHHGDQGSROOHQLQFRQLIHUV262QHUHVXOWLVWKDWVSHFLHVWDNHD QHHGOHOLNHOHDYHVDUUDQJHGLQIDVFLFOHVRI± DOWKRXJKP. ORQJWLPHWREHFRPH¿[HGIRUDVLQJOHSODVWLG'1$OLQHDJH monophylla7RUU )UpPDQGP. californiarum '.%DLOH\ DQGVKDULQJRISODVWLGOLQHDJHVE\FORVHO\UHODWHGVSHFLHVLV KDYHVROLWDU\QHHGOHV DQGZRRG\VHHGFRQHVZLWKWKLFNHQHG RIWHQREVHUYHG VFDOH DSLFHV DQG D GRUVDO RU WHUPLQDO XPER D VSHFLDOL]HG UDLVHGUHJLRQUHVXOWLQJIURPPRUHWKDQRQHVHDVRQRIJURZWK :HFKRVHDVRXUVWXG\DUHDWKHSROLWLFDOERXQGDULHVPDUNHGE\ 0H[LFRLVWKHFHQWHURIVSHFLHVGLYHUVLW\IRUSLQHVZLWKPRUH *XHUUHURDQG2D[DFD7KHVHVWDWHVDUHORFDWHGRQWKHVRXWKHUQ WKDQRIWKHZRUOG¶VVSHFLHVRFFXUULQJQDWXUDOO\ZLWKLQLWV 3DFL¿FFRDVWRI0H[LFR*XHUUHURRFFXSLHVNP2DQGLV borders2-77KHQXPEHURIVSHFLHVUHFRJQL]HGIRUWKHFRXQWU\ WKHIRXUWHHQWKODUJHVWVWDWHLQWKHFRXQWU\DQG2D[DFDRFFXSLHV KDVYDULHGDPRQJUHFHQWDXWKRUV(FNHQZDOGHU2UHFRJQL]HG NP2DQGLVWKH¿IWKODUJHVW7KHSULQFLSDOPRXQWDLQ VSHFLHV)DUMRQUHFRJQL]HGDQG*HUQDQGWDQG3pUH]GHOD UDQJHLQWKHVHVWDWHVLVWKH6LHUUD0DGUHGHO6XUZKLFKH[WHQGV 5RVD7UHFRJQL]HG WKURXJK -DOLVFR &ROLPD VRXWKHUQ 0LFKRDFiQ WKH 6WDWH RI 0H[LFR0RUHORV3XHEOD*XHUUHURDQG2D[DFDDQGLVERUGHUHG Pinus LV FODVVL¿HG LQ WZR VXEJHQHUD IRXU VHFWLRQV DQG WRWKHQRUWKE\WKH7UDQVYHUVH0H[LFDQ9ROFDQLF%HOW%RWK VXEVHFWLRQVPinusVXEVHFWLRQ AustralesLVWKHPRVWVSHFLHVULFK *XHUUHURDQG2D[DFDDUHKLJKO\GLYHUVHLQVSHFLHV)RUH[DPSOH FRPSULVLQJDSSUR[LPDWHO\VSHFLHVGLVWULEXWHGWKURXJKRXW VSHFLHVRISODQWVKDYHEHHQUHSRUWHGIRU2D[DFDPRUH 1RUWK DQG &HQWUDO$PHULFD DQG WKH ZHVWHUQPRVW LVODQGV RI WKDQDQ\RWKHUVWDWHLQWKHFRXQWU\)RXUWHHQSLQHVSHFLHVKDYH WKH&DULEEHDQH[FHSW-DPDLFD,WLQFOXGHVWKHVRXWKHUQ\HOORZ EHHQUHFRJQL]HGIRU*XHUUHURDQGIRU2D[DFD6HYHQRI SLQHV WKH HJJFRQH SLQHV DQG WKH &DOLIRUQLD FORVHGFRQH WKHVHVSHFLHVEHORQJWRPinusVXEVHFWLRQAustrales SLQHVDQGLVFODVVL¿HGWRJHWKHUZLWKVXEVHFWLRQVContortae, DQGPonderosae in PinusVXEJHQXVPinusVHFWLRQTrifoliaeD 7KLVLVWKH¿UVWFRPSDUDWLYHVWXG\WRLQWHJUDWHPRUSKRORJLFDO JURXSNQRZQLQIRUPDOO\DVWKH1RUWK$PHULFDQKDUGSLQHV DQDWRPLFDODQGPROHFXODUFKDUDFWHUVLQSLQHVRI*XHUUHURDQG $OOVSHFLHVRIPinusVXEVHFWLRQAustralesKDYHWZRYDVFXODU 2D[DFD0H[LFR2XUREMHFWLYHVDUHWREHWWHUXQGHUVWDQGWKH EXQGOHVLQWKHLUOHDYHVDQGPRVWKDYHSHUVLVWHQWIDVFLFOHVKHDWKV PRUSKRORJLFDOGLYHUVLW\RIPinusVXEVHFWLRQAustralesLQWKHVH $OOKDYHZRRG\VHHGFRQHVDQGVRPHKDYHVWURQJO\GHYHORSHG WZRVWDWHVDQGWRIXUWKHUGRFXPHQWZKLFKVSHFLHVLQWKLVJURXS FRQHVFDOHDSRSK\VHVDQGXPERVRIWHQZLWKDPXFUR7KHLU VKDUHSODVWLG'1$KDSORW\SHV VHHGVKDYHDQDUWLFXODWHZLQJDQGDUHSULPDULO\ZLQGGLVSHUVHG MATERIALS AND METHODS 1XPHURXVWD[RQRPLFZRUNVKDYHWUHDWHG PinusLQFOXGLQJ 'ULHGVSHFLPHQVZHUHREWDLQHGIURPWKH,QYHQWDULR1DFLRQDO UHJLRQDOÀRUDVWKDWLQFOXGH0H[LFR0RUSKRORJ\DORQHKDV )RUHVWDO DQG WKH 1DWLRQDO +HUEDULXP 0(;8 1LQHW\ QRWEHHQVX൶FLHQWWRUHVROYHWKHWD[RQRPLFTXHVWLRQVVXUURXQGLQJ LQGLYLGXDOV ZHUH H[DPLQHG PRUSKRORJLFDOO\ )LJXUH WKHJHQXV'1$VHTXHQFHVKDYHEHHQYHU\H൵HFWLYHDWFRQ¿UPLQJ $SSHQGL[ 0RUSKRORJLFDO PHDVXUHPHQWV RI QHHGOHV RUUHMHFWLQJWKHPDMRUSLQHOLQHDJHVWKDWZHUHRULJLQDOO\SURSRVHG VHFRQGDU\OHDYHV IDVFLFOHVKHDWKVVHHGFRQHVDQGSHGXQFOHV EDVHGSULPDULO\RQPRUSKRORJ\DUWL¿FLDOFURVVHVDQGELRFKHPLFDO ZHUHWDNHQIURPGULHGFROOHFWLRQV$OOPHDVXUHPHQWVZHUH VWXGLHV +RZHYHU QDWXUDO DQG DUWL¿FLDO K\EULGL]DWLRQ DUH PDGHZLWKDUXOHUDQGH[SUHVVHGLQFP)RUQHHGOHDQGIDVFLFOH UHODWLYHO\ZHOOGRFXPHQWHGLQSLQHV16%RWKK\EULGL]DWLRQDQG VKHDWK PHDVXUHPHQWV DUELWUDULO\ FKRVHQ IDVFLFOHV ZHUH UHWHQWLRQ RI DQFHVWUDO DOOHOHV KDYH REVFXUHG WKH SK\ORJHQHWLF PHDVXUHG6HHGFRQHDQGSHGXQFOHPHDVXUHPHQWVZHUHEDVHG UHODWLRQVKLSVDPRQJFORVHO\UHODWHGVSHFLHV RQDVLQJOHPDWXUHFRQHSHULQGLYLGXDO )LJXUH 7UDQVYHUVH VHFWLRQVZHUHPDGHIURPWKHPHGLDOSDUWRIOHDYHV¿[HGLQ ,QPRVWRUJDQLVPVVSHFLDWLRQERWKJHQHUDWHVELRORJLFDOGLYHUVLW\ IRUPDOGHK\GHDFHWLFDFLGDOFRKRO )$$ DQGH[DPLQHGZLWK DQGJLYHVULVHWRJHQHJHQHDORJLHVWKDWUHÀHFWWKHKLVWRU\RI DQ2O\PSXVVWHUHRPLFURVFRSH7KHQXPEHUVRIVWRPDWDOOLQHV GLYHUJHQFHRIWKHRUJDQLVPVLQZKLFKWKHJHQHVDUHIRXQG7KHVH RQWKHDED[LDODQGDGD[LDOOHDIVXUIDFHVZHUHFRXQWHGDQG KLVWRULHVFDQEHUHFRQVWUXFWHGXVLQJSK\ORJHQHWLFDQDO\VLVDQG REVHUYDWLRQV ZHUH PDGH RI WKH GHUPDO WLVVXHV PHVRSK\OO XVHGWRLQIHUWKHSK\ORJHQHWLFUHODWLRQVKLSVDPRQJVSHFLHV,Q DQGHQGRGHUPLV SLQHVK\EULGL]DWLRQDQGLQFRPSOHWHOLQHDJHVRUWLQJFDXVHD UHPDUNDEOHGLVFRQQHFWLRQEHWZHHQLQGLYLGXDOJHQHWUHHVDQG 6WDWLVWLFDO DQDO\VHV ZHUH SHUIRUPHG LQ 5 YHU 1LQH VSHFLHVUHODWLRQVKLSV$VDUHVXOWPDQ\JHQHWUHHVQHHGWR YDULDEOHVZHUHDQDO\]HGLQLQGLYLGXDOVIRUZKLFKZHFRXOG EHFRQVLGHUHGVHSDUDWHO\ DOWKRXJKQRWLQLVRODWLRQ WRIRUP REWDLQDFRPSOHWHVHWRIPHDVXUHPHQWVVKHDWKOHQJWKQXPEHU K\SRWKHVHVUHJDUGLQJVSHFLHVUHODWLRQVKLSV RIDED[LDOVWRPDWDQXPEHURIDGD[LDOVWRPDWDQHHGOHOHQJWK 9 4 TIP Rev.Esp.Cienc.Quím.Biol. Vol. 19, No. 2 Figure 1. The collection localities for the individuals included in this study. QHHGOHQXPEHUFRQHOHQJWKFRQHZLGWKFRQHSHGXQFOHOHQJWK 7KH¿UVWSODVWLGJHQRPHRUSODVWRPHUHSRUWHGIRUDSLQHZDV DQGFRQHSHGXQFOHZLGWK)RXULQGLYLGXDOVZLWKVHVVLOHFRQHV WKDWRIP. thunbergii 3DUOLWZDVESDQGFRPSRVHG ZHUHDVVLJQHGDSHGXQFOHOHQJWKRIWRDYRLGXVLQJ]HURV RISURWHLQFRGLQJJHQHVULERVRPDO51$JHQHVW51$ 2QHZD\ $129$V ZHUH SHUIRUPHG WR WHVW IRU VLJQL¿FDQW JHQHVDQGQXPHURXVLQWURQVDQGLQWHUJHQLFVSDFHUV9DULDEOH GL൵HUHQFHVDPRQJVSHFLHVIRUHDFKRIWKHQLQHYDULDEOHV:KHQ VLWHV DUH QRW GLVWULEXWHG HTXDOO\ WKURXJKRXW WKH JHQRPH ,Q VLJQL¿FDQW RXWFRPHV ZHUH REWDLQHGWKH7XNH\ PHWKRG ZDV DGGLWLRQWRGL൵HUHQFHVEHWZHHQSURWHLQDQG51$FRGLQJUHJLRQV XVHGDVDSRVWKRFWHVWWRLGHQWLI\ZKLFKVSHFLHVKDGVLJQL¿FDQW DQGLQWURQVDQGLQWHUJHQLFVSDFHUVQRQFRGLQJUHJLRQVWKHUHLV GL൵HUHQFHVEHWZHHQWKHLUPHDQV3ULQFLSDOFRPSRQHQWVDQDO\VLV YDULDWLRQLQVXEVWLWXWLRQUDWHVDPRQJWKHGL൵HUHQWFRGLQJUHJLRQV 3&$ ZDVXVHGWRH[SORUHWKHUHODWLYHLPSRUWDQFHRIWKHOHDI 7KHWZRPRVWYDULDEOHH[RQVLQSLQHSODVWRPHVDUHFDOOHGycf1 DQGFRQHYDULDEOHVIRUH[SODLQLQJRYHUDOOYDULDQFHLQWKHGDWD DQGycf2ERWKKDYHDQHOHYDWHGQRQV\QRQ\PRXVVXEVWLWXWLRQ
Recommended publications
  • Universidad Nacional Agraria De La Selva
    UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA FACULTAD DE RECURSOS NATURALES RENOVABLES ESCUELA PROFESIONAL DE INGENIERÍA FORESTAL EFECTO DE SUSTRATOS Y ABONOS ORGÁNICOS EN LA GERMINACIÓN Y CRECIMIENTO INICIAL DE Pinus tecunumanii Eguiluz & J. P. Perry “PINO ROJO” EN CONDICIONES DE LABORATORIO Y VIVEROS TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO FORESTAL PRESENTADO POR: ELVIS GREGORIO LUQUE QUILLA 2019 UNIVERS量DAD NAC霊ONAL AGRARIA DE LA SELVA Tingo Maria - Per血 ACULTAD DE RECURSOS NATURALES RENOVABLES ‾ 二∴∵‾ AC丁A DE SUSTENTAC漢ON DE TES看S Los que suscriben, Miembros deI Jurado de Tesis, reunidos con fecha 23 de Octub「e de 2019’a ho「as 12‥10 p・m. en Ia Saia del Gabinete de Meteorologia y ClimatoIogfa de Ia Facultad de Recursos Naturales Renovables, Para Ca輔car la Tesis tituIada: EFECTO DE SUSTRA丁OS Y ABONOS ORGÅNICOS EN LA GERMINACION Y CRECIM8EN丁O IN!CiAL DE P血us fecunuman〃 & J.P。 Perry “P音NO ROJO,, EN COND営ClONES DE LABORATORIO Y VIVERO" Presentado por ei Bachi看ie「, E漢vis Grego「io LUQUE QU!LLA, despues de haber escuchado la sustentaci6n y las respuestas a las interrogantes fo「muIadas PO「 ei Jurado, Se deciara APROBADA con el ca晒cativo de傭MUY BUENO,, En consecuencia, el sustentante queda apto para opta「 ei Titulo de INGENIERO FORESTAL, que Sera aPrObado po「 el Consejo de Facultad言ramitandoio ai Consejo Unive「sitario pa「a e看otorgamiento del Tituio co「respondiente, Tingo Maria, 08 e Noviembre de 2019 lng. MSc。 RiC CUYA Dr. LU ANRIQUE DE LARA SUAREZ VO CAL ing. MSc。 n。, F触v弧 ASESOR UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA FACULTAD DE RECURSOS NATURALES RENOVABLES ESCUELA PROFESIONAL DE INGENIERÍA FORESTAL EFECTO DE SUSTRATOS Y ABONOS ORGÁNICOS EN LA GERMINACIÓN Y CRECIMIENTO INICIAL DE Pinus tecunumanii Eguiluz & J.
    [Show full text]
  • The Tolerance of Pinus Patula 3 Pinus Tecunumanii, and Other Pine Hybrids, to Fusarium Circinatum in Greenhouse Trials
    New Forests (2013) 44:443–456 DOI 10.1007/s11056-012-9355-3 The tolerance of Pinus patula 3 Pinus tecunumanii, and other pine hybrids, to Fusarium circinatum in greenhouse trials R. G. Mitchell • M. J. Wingfield • G. R. Hodge • E. T. Steenkamp • T. A. Coutinho Received: 7 August 2011 / Accepted: 29 June 2012 / Published online: 10 July 2012 Ó Springer Science+Business Media B.V. 2012 Abstract The field survival of Pinus patula seedlings in South Africa is frequently below acceptable standards. From numerous studies it has been determined that this is largely due to the pitch canker fungus, Fusarium circinatum. Other commercial pines, such as P. elliottii and P. taeda, show good tolerance to this pathogen and better survival, but have inferior wood properties and do not grow as well as P. patula on many sites in the summer rainfall regions of South Africa. There is, thus, an urgent need to improve the tolerance of P. patula to F. circinatum. Operational experience indicates that when P. patula is hybridized with tolerant species, such as P. tecunumanii and P. oocarpa, survival is greatly improved on the warmer sites of South Africa. Field studies on young trees suggest that this is due to the improved tolerance of these hybrids to F. circinatum. In order to test the tolerance of a number of pine hybrids, the pure species representing the hybrid parents, as well as individual families of P. patula 9 P. tecunumanii, a series of greenhouse screening trials were conducted during 2008 and 2009. The results indicated that species range in tolerance and hybrids, between P.
    [Show full text]
  • Pinus Tecunumanii Eguiluz & J. P. Perry
    Pinus tecunumanii Eguiluz & J. P. Perry W.S. DVORAK Central America and Mexico Coniferous Resources Cooperative (CAMCORE) Department of Forestry, North Carolina State University PINACEAE (PINE FAMILY) Pinus patula ssp. tecunumanii (Eguiluz & Perry) Styles, Pinus oocarpa var. ochoterenae (Mart.) Pino colorado, pino de las Sierras, pino ocote, pino rojo (Gutiérrez 1996) Pinus tecunumanii is a closed-cone pine that occurs from Chi- durensis (Sénécl) Barr. and Golf., and P. maximinoi. The apas, Mexico (17°02’N) to central Nicaragua (12°42’N) in a growth rate of trees from the low-elevation sources in Central series of disjunct populations (Dvorak and Donahue 1992). America is approximately 3 to 8 m3 per ha per year. The species’ geographic range can be divided into two large Molecular marker studies show a clear separation subpopulations based on subtle morphologic and adaptability between high- and low-elevation populations of P. tecunumanii differences: high-elevation populations that occur from and suggest that the species may share a close evolutionary his- approximately 1500 to 2900 m elevation, and low-elevation tory with both P. oocarpa and P. caribaea var. hondurensis populations that are found at 450 m to 1500 m (Dvorak and (Furman and others 1996). The Central America and Mexico others 1989). Coniferous Resources Cooperative (CAMCORE), North Car- Mature trees from high-elevation populations can reach olina State University, is keeping the two groups of P. 55 m in height and more than 100 cm d.b.h. on the deep, fer- tecunumanii separate for breeding purposes (Central America tile soils of the montane cloud forests of Guatemala and Hon- and Mexico Coniferous Resources Cooperative 1996).
    [Show full text]
  • Disturbances Influence Trait Evolution in Pinus
    Master's Thesis Diversify or specialize: Disturbances influence trait evolution in Pinus Supervision by: Prof. Dr. Elena Conti & Dr. Niklaus E. Zimmermann University of Zurich, Institute of Systematic Botany & Swiss Federal Research Institute WSL Birmensdorf Landscape Dynamics Bianca Saladin October 2013 Front page: Forest of Pinus taeda, northern Florida, 1/2013 Table of content 1 STRONG PHYLOGENETIC SIGNAL IN PINE TRAITS 5 1.1 ABSTRACT 5 1.2 INTRODUCTION 5 1.3 MATERIAL AND METHODS 8 1.3.1 PHYLOGENETIC INFERENCE 8 1.3.2 TRAIT DATA 9 1.3.3 PHYLOGENETIC SIGNAL 9 1.4 RESULTS 11 1.4.1 PHYLOGENETIC INFERENCE 11 1.4.2 PHYLOGENETIC SIGNAL 12 1.5 DISCUSSION 14 1.5.1 PHYLOGENETIC INFERENCE 14 1.5.2 PHYLOGENETIC SIGNAL 16 1.6 CONCLUSION 17 1.7 ACKNOWLEDGEMENTS 17 1.8 REFERENCES 19 2 THE ROLE OF FIRE IN TRIGGERING DIVERSIFICATION RATES IN PINE SPECIES 21 2.1 ABSTRACT 21 2.2 INTRODUCTION 21 2.3 MATERIAL AND METHODS 24 2.3.1 PHYLOGENETIC INFERENCE 24 2.3.2 DIVERSIFICATION RATE 24 2.4 RESULTS 25 2.4.1 PHYLOGENETIC INFERENCE 25 2.4.2 DIVERSIFICATION RATE 25 2.5 DISCUSSION 29 2.5.1 DIVERSIFICATION RATE IN RESPONSE TO FIRE ADAPTATIONS 29 2.5.2 DIVERSIFICATION RATE IN RESPONSE TO DISTURBANCE, STRESS AND PLEIOTROPIC COSTS 30 2.5.3 CRITICAL EVALUATION OF THE ANALYSIS PATHWAY 33 2.5.4 PHYLOGENETIC INFERENCE 34 2.6 CONCLUSIONS AND OUTLOOK 34 2.7 ACKNOWLEDGEMENTS 35 2.8 REFERENCES 36 3 SUPPLEMENTARY MATERIAL 39 3.1 S1 - ACCESSION NUMBERS OF GENE SEQUENCES 40 3.2 S2 - TRAIT DATABASE 44 3.3 S3 - SPECIES DISTRIBUTION MAPS 58 3.4 S4 - DISTRIBUTION OF TRAITS OVER PHYLOGENY 81 3.5 S5 - PHYLOGENETIC SIGNAL OF 19 BIOCLIM VARIABLES 84 3.6 S6 – COMPLETE LIST OF REFERENCES 85 2 Introduction to the Master's thesis The aim of my master's thesis was to assess trait and niche evolution in pines within a phylogenetic comparative framework.
    [Show full text]
  • Foliage Use by Birds of the Oak-Juniper Woodland and Ponderosa Pine Forest in Southeastern Arizona
    FOLIAGE USE BY BIRDS OF THE OAK-JUNIPER WOODLAND AND PONDEROSA PINE FOREST IN SOUTHEASTERN ARIZONA RUSSELL P. BALDAl Department of Zoology University of Illinois Urbana, Illinois 61801 Bird populations obtain their requisites from METHODS the resources available to them in a number While conducting breeding-bird counts in various of different ways. Species within the same plant communities of the Chiricahua Mountains of community may use different configurations southeastern Arizona ( Balda 1967), two areas were of the habitat, or the same configurations in a selected for study of foliage use by the nesting birds. In the oak-juniper woodland (36-acre plot) and pon- different manner or in different proportions. derosa pine forest (38-acre plot) trees and saplings This tends to minimize or eliminate interspe- were measured for volume of foliage in conjunction cific competition. Habitat utilization by various with a sampling plan to obtain relative density, relative species of nesting birds is often a main portioIz frequency, relative dominance, and number of individ- of autecological studies (Stenger and Falls ual trees per acre. I used the plotless point-quarter method of Cottam and Curtis (1956) to sample trees 1959), or of studies dealing with the interac- with a DBH of three inches or more in both plots. In tions of a few species from a given avian com- each study area a series of points was established and munity. at each point the surrounding area was divided into Recent studies by Morse (1967) and Mac- four quarters. In each quarter the name of the tree Arthur (1958) have shown that volume of closest to the point and its distance from the point were recorded.
    [Show full text]
  • State of the World's Forest Genetic Resources Part 1
    Forests and trees enhance and protect landscapes, ecosystems and production systems. They provide goods and services which are essential to the survival and well-being of all humanity. Forest genetic resources – the heritable materials maintained within and among tree and other woody plant species that are of actual or potential economic, environmental, scientific or societal value – are essential for the continued productivity, services, adaptation and evolutionary processes of forests and trees. This first volume of The State of the World’s Forest Genetic Resources constitutes a major step in building the information and knowledge base required for action towards better conservation and sustainable management of forest genetic resources at the national, regional and international levels. The publication was prepared based on information provided by 86 countries, outcomes from regional and subregional consultations and commissioned thematic studies. It presents definitions and concepts related to forest genetic resources and a FOREST GENETIC RESOURCES review of their value; the main drivers of changes and the trends affecting these vital resources; and key emerging technologies. The central section analyses the current status of conservation and use of forest genetic resources on the basis of reports provided by the countries. The book concludes with recommendations for ensuring that present and future generations continue to benefit from forests and trees, both through innovations in practices and technologies and through enhanced attention
    [Show full text]
  • Fluorescent Banding in Tropical Pinus Chromosomes Bandeamento
    SCIENTIA FORESTALIS n. 61, p. 59-63, jun. 2002 Fluorescent banding in tropical Pinus chromosomes Bandeamento fluorescente em cromossomos de Pinus tropicais Renata Silva-Mann Lisete Chamma Davide Marcelo de Almeida Reis ABSTRACT: There have been controversies about the taxonomic classification of Tecun Umán pine for about 50 years. Some investigations have shown a close relationship between this conifer and Pinus patula, while others showed relationship to the Pinus oocarpa. In this study, data on CMA fluorescent chromosomes banding showed that Tecun Umán pine had banding patterns close to Pinus oocarpa. KEYWORDS: Tecun Umán pine, CMA banding, Pinus RESUMO: Tem havido controvérsias sobre a classificação taxonômica do Pinus de Tecun Umán por aproximadamente 50 anos. Algumas investigações mostraram uma relação próxi- ma entre esta conífera e o Pinus patula, enquanto que outras mostraram relação com o Pinus oocarpa. Neste estudo, dados de bandeamento cromossômico fluorescente CMA mostraram que o Pinus de Tecun Umán tinha padrões próximos ao Pinus oocarpa. PALAVRAS-CHAVE: Pinus de Tecun Umán, Bandeamento CMA, Pinus INTRODUCTION The great increase in the demand for wood Some studies denominated Tecun Umán on the world market has encouraged industri- pine as Pinus oocarpa Schiede var. ochoterenai al projects to use almost exclusively introduced Martinez (Martinez, 1948). Others were called (non-native) forest species. Pinus tecunumanii (Schw) Eguiluz and Perry Within the tropical conifers introduced in by Eguiluz-Piedra and Perry (1983). Styles Brazil, the Tecun Umán pine has performed (1985) reported that both, P. oocarpa var. well in several regions (Wright and Osorio, ochoterenai and P. tecunumanii, belong to the 1992), showing excellent agricultural qualities same taxon, Pinus patula Schiede & Deppe such as rapid growth, over 50 m height, straight ssp.
    [Show full text]
  • Survival and Sprouting Responses of Chihuahua Pine After the Rodeo-Chediski Fire on the Mogollon Rim, Arizona
    ~. This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Western North American Naturalist 67(1), © 2007, pp. 51-56 SURVIVAL AND SPROUTING RESPONSES OF CHIHUAHUA PINE AFTER THE RODEO-CHEDISKI FIRE ON THE MOGOLLON RIM, ARIZONA Kenneth H. Baumgartnerl and Peter Z. Fulel .2 ABSTRACT.---Chihuahua pines (Pinus leiophylw Schiede and Deppe var. chihuahuana Engelmann) were surveyed on 11 study plots on the Mogollon Rim in east central Arizona to compare characteristics of trees that sprouted from the base or root collar after the Rodeo-Chediski fire with thosc of trees that did not sprout. The differences in trees killed and top-killed by the nre versus those that survived were also assessed. Trees that sprouted were Significantly smaller in height and diameter at breast height; they also experienced lower fire intensities than trees that did not sprout. Smaller trees had higher incidences of mortality than larger trees. These results indicate that, even though Chihuahua pine has fire resiliency, sprouting rates after firc are related to size of trees, age of trees, and burn intensity. Since Chihuahua pine is a rare species in the area studied, its ability to recover from and tolerate fire could prove advantageous for sus­ tainability. Key words: Chihltahua pine, sprouting, vegetative reproduction, fire resilience, fire resistance, fire ecology, regenera­ tion, pine. Pinus leiophylla Schiede and Deppe var. (USDA Forest Service 2002). This fire, which chihuahuana Engelmann (Chihuahua pine) is burned portions of the Mogollon Rim, provided one of the few pines that sprout in response to the opportunity to assess post-fire sprouting disturbance.
    [Show full text]
  • PINUS L. Pine by Stanley L
    PINAS Pinaceae-Pine family PINUS L. Pine by Stanley L. Krugman 1 and James L. Jenkinson 2 Growth habit, occurrence, and use.-The ge- Zealand; P. canariensis in North Africa and nus Pinus, one of the largest and most important South Africa; P. cari.bea in South Africa and of the coniferous genera, comprises about 95 Australia; P. halepereszs in South America; P. species and numerous varieties and hybrids. muricata in New Zealand and Australia; P. Pines are widely distributed, mostly in the sgluestris, P, strobus, P. contorta, and P. ni'gra Northern Hemisphere from sea level (Pi'nus in Europe; P. merkusii in Borneo and Java 128, contorta var. contorta) to timberline (P. albi- 152, 169, 266). cantl;i,s). They range from Alaska to Nicaragua, The pines are evergreen trees of various from Scandinavia to North Africa. and from heights,-often very tall but occasionally shrubby Siberia to Sumatra. Some species, such as P. (table 3). Some species, such as P.lnmbertionn, syluestris, are widely distributed-from Scot- P. monticola, P. ponderosa, antd. P. strobtr's, grow land to Siberia-while other species have re- to more than 200 feet tall, while others, as P. stricted natural ranges. Pinus canariensis, for cembroides and P. Ttumila, may not exceed 30 example, is found naturally only on the Canary feet at maturity. Islands, and P. torreyana numbers only a few Pines provide some of the most valuable tim- thousand individuals in two California localities ber and are also widely used to protect water- (table 1) (4e). sheds, to provide habitats for wildlife, and to Forty-one species of pines are native to the construct shelterbelts.
    [Show full text]
  • Susceptibility of Several Northeastern Conifers to Fusarium Circinatum and Strategies for Biocontrol
    Article Susceptibility of Several Northeastern Conifers to Fusarium circinatum and Strategies for Biocontrol Jorge Martín-García 1,2,*, Marius Paraschiv 3, Juan Asdrúbal Flores-Pacheco 2,4,5 ID , Danut Chira 3, Julio Javier Diez 2,4 and Mercedes Fernández 2,6 ID 1 Department of Biology, CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal 2 Sustainable Forest Management Research Institute, University of Valladolid-INIA, Avenida de Madrid 44, 34071 Palencia, Spain; [email protected] (J.A.F.-P.); [email protected] (J.J.D.); [email protected] (M.F.) 3 National Institute for Research and Development in Forestry “Marin Drăcea”, Brasov Station, Closca 13, 500040 Brasov, Romania; [email protected] (M.P.); [email protected] (D.C.) 4 Department of Plant Production and Forest Resources, University of Valladolid, Avenida de Madrid 44, 34071 Palencia, Spain 5 Facultad de Recursos Naturales y Medio Ambiente, Bluefields Indian and Caribbean University-BICU, Avenida Universitaria, Apartado Postal N◦ 88, Bluefields, Nicaragua 6 Department of Agroforestry Sciences, University of Valladolid, Avenida de Madrid 44, 34071 Palencia, Spain * Correspondence: [email protected]; Tel.: +34-979-108-425 Received: 11 July 2017; Accepted: 18 August 2017; Published: 30 August 2017 Abstract: Fusarium circinatum, the causal of pine pitch canker disease (PPC), is now considered among the most important pathogens of Pinaceae in the world. Although in Europe PPC is only established in the Iberian Peninsula, the potential endangered areas cover over 10 million hectares under the current host distribution and climatic conditions.
    [Show full text]
  • A Floristic Description of the San Pastor Savanna, Belize, Central America
    E D I N B U R G H J O U R N A L O F B O T A N Y 68 (2): 273–296 (2011) 273 Ó Trustees of the Royal Botanic Garden Edinburgh (2011) doi:10.1017/S0960428611000102 A FLORISTIC DESCRIPTION OF THE SAN PASTOR SAVANNA, BELIZE, CENTRAL AMERICA J. HICKS1 ,Z.A.GOODWIN1 ,S.G.M.BRIDGEWATER1 ,D.J.HARRIS1 , 2 &P.A.FURLEY3 A vascular plant species list and description is provided for the San Pastor Savanna, an isolated area of savanna within the Chiquibul Forest Reserve, Belize. Of the 126 species recorded, 28 are new records for the Chiquibul Forest Reserve with one previously unrecorded for the country. The maintenance of the current vegetation classification under the Belize Ecosystems Map for the San Pastor Savanna is supported. The coarse-textured soils are typical for extremely seasonal climates with some evidence of prolonged inundation during wet periods and dry seasons affected by burning. Although clear floristic affinities exist with other local and regional savanna areas, the San Pastor Savanna has some unique features and its flora includes national endemics. Although it is currently protected as part of the Chiquibul Forest Reserve and this status should be maintained, its inaccessible location makes frequent monitoring by the Forest Department problematic. Through providing a source of water and a source of forage for horses, the San Pastor Savanna plays a pivotal role in supporting the illegal Chamaedorea (xate´)palmleafharvestingindustry. This activity has also adversely impacted local wildlife. Like the nearby Mountain Pine Ridge, the San Pastor Savanna has suffered intense pine beetle (Dendroctonus spp.) attack.
    [Show full text]
  • Mistletoes of North American Conifers
    United States Department of Agriculture Mistletoes of North Forest Service Rocky Mountain Research Station American Conifers General Technical Report RMRS-GTR-98 September 2002 Canadian Forest Service Department of Natural Resources Canada Sanidad Forestal SEMARNAT Mexico Abstract _________________________________________________________ Geils, Brian W.; Cibrián Tovar, Jose; Moody, Benjamin, tech. coords. 2002. Mistletoes of North American Conifers. Gen. Tech. Rep. RMRS–GTR–98. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 123 p. Mistletoes of the families Loranthaceae and Viscaceae are the most important vascular plant parasites of conifers in Canada, the United States, and Mexico. Species of the genera Psittacanthus, Phoradendron, and Arceuthobium cause the greatest economic and ecological impacts. These shrubby, aerial parasites produce either showy or cryptic flowers; they are dispersed by birds or explosive fruits. Mistletoes are obligate parasites, dependent on their host for water, nutrients, and some or most of their carbohydrates. Pathogenic effects on the host include deformation of the infected stem, growth loss, increased susceptibility to other disease agents or insects, and reduced longevity. The presence of mistletoe plants, and the brooms and tree mortality caused by them, have significant ecological and economic effects in heavily infested forest stands and recreation areas. These effects may be either beneficial or detrimental depending on management objectives. Assessment concepts and procedures are available. Biological, chemical, and cultural control methods exist and are being developed to better manage mistletoe populations for resource protection and production. Keywords: leafy mistletoe, true mistletoe, dwarf mistletoe, forest pathology, life history, silviculture, forest management Technical Coordinators_______________________________ Brian W. Geils is a Research Plant Pathologist with the Rocky Mountain Research Station in Flagstaff, AZ.
    [Show full text]