PINUS L. Pine by Stanley L

Total Page:16

File Type:pdf, Size:1020Kb

PINUS L. Pine by Stanley L PINAS Pinaceae-Pine family PINUS L. Pine by Stanley L. Krugman 1 and James L. Jenkinson 2 Growth habit, occurrence, and use.-The ge- Zealand; P. canariensis in North Africa and nus Pinus, one of the largest and most important South Africa; P. cari.bea in South Africa and of the coniferous genera, comprises about 95 Australia; P. halepereszs in South America; P. species and numerous varieties and hybrids. muricata in New Zealand and Australia; P. Pines are widely distributed, mostly in the sgluestris, P, strobus, P. contorta, and P. ni'gra Northern Hemisphere from sea level (Pi'nus in Europe; P. merkusii in Borneo and Java 128, contorta var. contorta) to timberline (P. albi- 152, 169, 266). cantl;i,s). They range from Alaska to Nicaragua, The pines are evergreen trees of various from Scandinavia to North Africa. and from heights,-often very tall but occasionally shrubby Siberia to Sumatra. Some species, such as P. (table 3). Some species, such as P.lnmbertionn, syluestris, are widely distributed-from Scot- P. monticola, P. ponderosa, antd. P. strobtr's, grow land to Siberia-while other species have re- to more than 200 feet tall, while others, as P. stricted natural ranges. Pinus canariensis, for cembroides and P. Ttumila, may not exceed 30 example, is found naturally only on the Canary feet at maturity. Islands, and P. torreyana numbers only a few Pines provide some of the most valuable tim- thousand individuals in two California localities ber and are also widely used to protect water- (table 1) (4e). sheds, to provide habitats for wildlife, and to Forty-one species of pines are native to the construct shelterbelts. The bulk of naval stores United States. These species are also the most still comes from pines, and the seeds of some widely planted in the United States. Planting species are a valuable food source. Increasingly, has extended the range of a number of them, pines are planted to improve man's environ- including P. strobus, P. banksinna, P. rad'inta, ment. P. pond,eroso var. scopulorum, P. resi,nosa, and, Sixty-five species and varieties which are now P. oirginiana (71, 266). Many of the native being planted or which have a potential in the eastern pines, especially those from the southern United States are listed in table 1; included are States. do not do well in the western States. The 40 species and varieties native to the United same appears to be true for many western pines States, one to Mexico, one to the Caribbean when they are planted in the eastern States region, 11 to Europe, Africa and the near east, (120,201). and 12 to Asia. Many introduced pines have been planted and Geographic races and hybrids.-The impor- grown successfully in the United States. Four tance of planting seeds or seedlings from the of these-P. sglaestris, P. thunbergi,ana, P. proper source cannot be stressed to strongly. densiflora, and P. nigra-have become natural- Seed origin is extremely important in determin- ized in parts of New England and the Lake ing the ability of a species to grow and succeed States (261r, 270). in a given environment. Many pines with an Many other pine species have been suce.ess- extensive range, as well as some of limited fully planted outside their native range. These natural range, have developed geographic races include P. patuln in South Africa; P. radinta in that are morphologically and physiologically South Africa, New Zealand, Australia, and distinct (gz). These differences make each race South America ; P. insularzs in East Africa; P. best suited for growing in certain environments. etliottii var. elliottii, P. taedn, P. pinaster, and, As a general rule, seeds from sources in moist P. palustris in South Africa, New Zealand, and regions are smaller and produce faster growing Australia; P. ponderoso in Australia and New and less deeply rooted seedlings than seeds from sources in drier regions. Southern seed sources . 'Timber Management Research, USDA Forest Serv- commonly differ from northern sources by being rce. faster growing, capable of growing longer in a 'Pacific Southwest Forest and Range Exp. Stn. season, more susceptible to damage by winter 598 PINUS freezes, less susceptible to late spring and early ern origins require a longer stratification period autumn frosts; and having seed dormancy that (3 wee[s or more) than seeds of southern origin can often de overcome with a shorter presowing (less than 3 weeks). Seedlings from northern treatment (122, 218, 260, 266). sources tend to be more frost resistant than For many of the pines, detailed data about those from southern sources. These differences geographic rdces are not available. In some among sources appear to be clinal and reflect cases our understanding of races of pines native the latitudinal disliibution of the species (175). to the United States comes from plantings in Pinu,s balfouriana-Seeds of northern origin other countries. When appropriate, this infor- (Lake Mountain, California) are longer than mation is included in the following species sum- those of southern origin (Mineral King, Cali- maries: fornia) and have persistent seed wings com- Pinus attenuata-From morphological and pared to the detachable wings of southern nursery studies, knobcone pine in California can sources (154.). be separated into two major groups, one north Pinus banksiana-Sources differ in seed size, and the other south of the Monterey-San Luis growth, form, and susceptibility to insect and Obispo County line. Seed weight tends to in- disease damage. Seeds tend to be larger from crease from north to south. and seeds of north- the warmer parts of the range (71) . In Minne- TAsLp l.-Pinus: nomenclature, occutrence, and uses; data comTtilers Data compilers Scientific names and synonyms Common names Occurrence IJses' for the species P. albicaulic Engelm. whitebark pine Subalpine in the northern T,W,E - R. J. Steinhoff. Rocky Mountains and Coast Mountains of British Columbia through the Cascade Range to the southern Sierra Nevada. P. arietata Engelm. ... bristlecone pine, Small, scattered subalpine H,E G. H, Schubert. P. balfouriana var. foxtail pine, areas in California, aristata (Engelm.) Engelm. hickory pine. Nevada, Utah, Arizona, and New Mexico. P. armandii Franeh. Armandpine Moderate-highelevations T,E P. O. Rudolf. from central and south- western China to north- ern Burma and south- eastern Tibet; Taiwan and Hainan. P. artcnua'a Lemm. knobcone pine Rocky slopes and ridges w,E S. L. Krugman. P. tuberculatc Gord. from southwestern Oregon and California to northwestern Baja California. P. balfouriana Grev. & Balf. -------- foxtail pine, Subalpine in Klamath H, W Do. Balfour pine. Mountains and southern Sierra Nevada, California. P. bankeiana Lamb. jack pine, Canada, from the Mackenzie T, H, W, D. H. Dawson. P. diaaricata (Ait.) Sudw. scrub nine. River and Alberta to S, E. banksiana Nova Scotia and south pine, black into the Great Lakes pine, gray region and New England pine. States. P. brutia Ten. Calabrian pine Crete, Cyprus, and Lebanon S,E S. L. Krugman. P. halepensis vat. brutia north through Turkey. (Ten.) Elwes & Henry P. canariendt C. Smith Canary Island Dry, exposed slopes of the T,W,E P. O. Rudolf. prne, central and western Canary pine. Canary Islands. P. caribaea Morelet Caribbean pine Bahama Islands, western T,E S. L. Krugman. P. bahamensis Griseb. Cuba, Isle of Pines, and P, hondurensis Loock Central America from British Honduras to Nicaragua. 599 PINAS Tnnln l.-Pi,nus: nomenclature, occu,rrence, and uses; data compilers-Continued compilers Scientific names and Occurrence Uses' Data synonyms Common names for the species P. cembra L.- - --- Swiss stone High elevations in the Alps T,W,E P. O. Rudolf. P, montana Lam. pine, cembran and Carpathian Moun- pine, arolla tains of central Europe. prne. P. cembroidet Zucc.- Mexican pinyon, Semiarid mountain regions w, E___-,,,. S, L. Krugman. nut pine, in Mexico. southeastern plnyon. Arizona. southwestern New Mexico. and south- western Texas. P. clauta (Chapm.) Vasey sand pine, Sandy plains of central and T,H L. Jones. spruce pine. coastal Florida and the southern tip of Alabama. P. con,orta Dougl. var. shore pine, Low elevations on the w,E S. L. Krugman. con,orta lodgepole Pacific Coast from pine, beach southeastern Alaska to pine, coast California. prne. P. contorta vat. latilolia Rocky Mountain Rocky Mountains, from T,H,W,S J. E. Lotan. Engelm. lodgepole pine. Canada to Utah and Colorado, and the Black Hills. P. contorla yat. nrurrayana Sierra Nevada High elevations in the T,H,W S. L. Krugman. (Grev. & Balf.) Engelm. lodgepole pine. Cascade Range-Sierra Nevada chain from southwestern Washing- ton to Baja California. P. couhcri D. Don.. Coulter pine, Coastal mountains from H,E Do. nut pine, central California south big-cone pine. to northern Baja California. P. densiflora Sieb. & Zucc.--------------- Japanese Midelevation in the moun- E S. L. Krugman red pine. tains of Japan and and P. O. Korea north to eastern Rudolf, Manchuria and adjacent u.s.s.R. P. ecfrinnra Mill. shortleaf pine, Coastal plain of south- T,H,W J. M. McGilvray. southern eastern United States to yellow pine. eastern Oklahoma and eastern Texas. P. edulis Engelm. pinyon, Semiarid regions in Utah, T,H,E G. H. Schubert. P. cembroides var. edulis Colorado Colorado, Arizona, and (Engelm.) Voss pinyon pine, New Mexico. nrr+ nina P. elliottii var. densa Little South Florida Southern and central T,E R. L. Barnes. & Dorman. slash pine. Florida, and Lower Florida Keys. P. elliottii Engelm. var. elliottii- slash pine, Coastal Plains from South T,H,E Do. P. caribaea Morelet swamp pine, Carolina to eentral pitch pine, Florida and southeastern yellow slash Louisiana. pine. P. engelntannii Carr. Apache pine, Mountains of southeastern T,E G.
Recommended publications
  • Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
    SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof.
    [Show full text]
  • Gradient Analysis of Exotic Species in Pinus Radiata Stands of Tenerife (Canary Islands) S
    The Open Forest Science Journal, 2009, 2, 63-69 63 Open Access Gradient Analysis of Exotic Species in Pinus radiata Stands of Tenerife (Canary Islands) S. Fernández-Lugo and J.R. Arévalo* Departamento de Ecología, Facultad de Biología, Universidad de La Laguna, La Laguna 38206, Spain Abstract: Identifying the factors that influence the spread of exotic species is essential for evaluating the present and future extent of plant invasions and for the development of eradication programs. We randomly established a network of 250 plots on an exotic Pinus radiata D. Don plantation on Tenerife Island in order to determine if roads and urban centers are favouring the spread of exotic plant species into the forest. We identified four distinct vegetation groups in the P. radiata stands: advanced laurel forest (ALF), undeveloped laurel forest (ULF), ruderal (RU), and Canarian pine stand (CPS). The groups farthest from roads and urban nuclei (ALF and CPS) have the best conserved vegetation, characterizing by the main species of the potential vegetation of the area and almost no exotic and ruderal species. On the other hand, the groups nearest to human infrastructures (ULF and RU) are characterized by species from potential vegetation’s substitution stages and a higher proportion of exotic and ruderal species. The results indicate distance to roads and urban areas are disturbance factors favouring the presence of exotic and ruderal species into the P. radiata plantation. We propose the eradication of some dangerous exotic species, monitoring of the study area in order to detect any intrusion of alien species in the best conserved areas and implementation of management activities to reduce the perturbation of the ULF and RU areas.
    [Show full text]
  • EVERGREEN TREES for NEBRASKA Justin Evertson & Bob Henrickson
    THE NEBRASKA STATEWIDE ARBORETUM PRESENTS EVERGREEN TREES FOR NEBRASKA Justin Evertson & Bob Henrickson. For more plant information, visit plantnebraska.org or retreenbraska.unl.edu Throughout much of the Great Plains, just a handful of species make up the majority of evergreens being planted. This makes them extremely vulnerable to challenges brought on by insects, extremes of weather, and diseases. Utilizing a variety of evergreen species results in a more diverse and resilient landscape that is more likely to survive whatever challenges come along. Geographic Adaptability: An E indicates plants suitable primarily to the Eastern half of the state while a W indicates plants that prefer the more arid environment of western Nebraska. All others are considered to be adaptable to most of Nebraska. Size Range: Expected average mature height x spread for Nebraska. Common & Proven Evergreen Trees 1. Arborvitae, Eastern ‐ Thuja occidentalis (E; narrow habit; vertically layered foliage; can be prone to ice storm damage; 20‐25’x 5‐15’; cultivars include ‘Techny’ and ‘Hetz Wintergreen’) 2. Arborvitae, Western ‐ Thuja plicata (E; similar to eastern Arborvitae but not as hardy; 25‐40’x 10‐20; ‘Green Giant’ is a common, fast growing hybrid growing to 60’ tall) 3. Douglasfir (Rocky Mountain) ‐ Pseudotsuga menziesii var. glauca (soft blue‐green needles; cones have distinctive turkey‐foot bract; graceful habit; avoid open sites; 50’x 30’) 4. Fir, Balsam ‐ Abies balsamea (E; narrow habit; balsam fragrance; avoid open, windswept sites; 45’x 20’) 5. Fir, Canaan ‐ Abies balsamea var. phanerolepis (E; similar to balsam fir; common Christmas tree; becoming popular as a landscape tree; very graceful; 45’x 20’) 6.
    [Show full text]
  • Pines in the Arboretum
    UNIVERSITY OF MINNESOTA MtJ ARBORETUM REVIEW No. 32-198 PETER C. MOE Pines in the Arboretum Pines are probably the best known of the conifers native to The genus Pinus is divided into hard and soft pines based on the northern hemisphere. They occur naturally from the up­ the hardness of wood, fundamental leaf anatomy, and other lands in the tropics to the limits of tree growth near the Arctic characteristics. The soft or white pines usually have needles in Circle and are widely grown throughout the world for timber clusters of five with one vascular bundle visible in cross sec­ and as ornamentals. In Minnesota we are limited by our cli­ tions. Most hard pines have needles in clusters of two or three mate to the more cold hardy species. This review will be with two vascular bundles visible in cross sections. For the limited to these hardy species, their cultivars, and a few hy­ discussion here, however, this natural division will be ignored brids that are being evaluated at the Arboretum. and an alphabetical listing of species will be used. Where neces­ Pines are readily distinguished from other common conifers sary for clarity, reference will be made to the proper groups by their needle-like leaves borne in clusters of two to five, of particular species. spirally arranged on the stem. Spruce (Picea) and fir (Abies), Of the more than 90 species of pine, the following 31 are or for example, bear single leaves spirally arranged. Larch (Larix) have been grown at the Arboretum. It should be noted that and true cedar (Cedrus) bear their leaves in a dense cluster of many of the following comments and recommendations are indefinite number, whereas juniper (Juniperus) and arborvitae based primarily on observations made at the University of (Thuja) and their related genera usually bear scalelikie or nee­ Minnesota Landscape Arboretum, and plant performance dlelike leaves that are opposite or borne in groups of three.
    [Show full text]
  • Formation of Pinus Merkusii Growing in Central Thailand
    Environment and Natural Resources Journal 2020; 18(3): 234-248 Effects of Climate Variability on the Annual and Intra-annual Ring Formation of Pinus merkusii Growing in Central Thailand Nathsuda Pumijumnong1 and Kritsadapan Palakit2* 1Faculty of Environment and Resource Studies, Mahidol University, Thailand 2Laboratory of Tropical Dendrochronology, Department of Forest Management, Faculty of Forestry, Kasetsart University, Thailand ARTICLE INFO ABSTRACT Received: 5 Aug 2019 The research clarifies which climatic factors induce annual and intra-annual ring Received in revised: 3 Feb 2020 formation in merkus pine (Pinus merkusii) growing in the low lying plains of Accepted: 19 Feb 2020 central Thailand and reconstructs the past climate by using climate modelling Published online: 26 May 2020 derived from climate-growth response. Not only are climate variations longer DOI: 10.32526/ennrj.18.3.2020.22 than a century in central Thailand explained, but the study also explores for the first time the variability in climate using the formation of intra-annual rings in Keywords: Climate reconstruction/ Thai merkus pines. The tree-ring analysis of wood core samples indicated that Dendrochronology/ False ring/ the pine stand was more than 150 years old with the oldest tree being 191 years Merkus pine/ Pinus latteri old. The annual variation in tree growth significantly correlated with local climate variables, the number of rainy days in each year (r=0.520, p<0.01) and *Corresponding author: the extreme maximum temperature in April (r=-0.377, p<0.01). The regional E-mail: [email protected] climate of the Equatorial Southern Oscillation in March (EQ_SOIMarch) also highly correlated with the pine growth (r=0.360, p<0.01).
    [Show full text]
  • Non-Wood Forest Products from Conifers
    Page 1 of 8 NON -WOOD FOREST PRODUCTS 12 Non-Wood Forest Products From Conifers FAO - Food and Agriculture Organization of the United Nations The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-37 ISBN 92-5-104212-8 (c) FAO 1995 TABLE OF CONTENTS FOREWORD ACKNOWLEDGMENTS ABBREVIATIONS INTRODUCTION CHAPTER 1 - AN OVERVIEW OF THE CONIFERS WHAT ARE CONIFERS? DISTRIBUTION AND ABUNDANCE USES CHAPTER 2 - CONIFERS IN HUMAN CULTURE FOLKLORE AND MYTHOLOGY RELIGION POLITICAL SYMBOLS ART CHAPTER 3 - WHOLE TREES LANDSCAPE AND ORNAMENTAL TREES Page 2 of 8 Historical aspects Benefits Species Uses Foliage effect Specimen and character trees Shelter, screening and backcloth plantings Hedges CHRISTMAS TREES Historical aspects Species Abies spp Picea spp Pinus spp Pseudotsuga menziesii Other species Production and trade BONSAI Historical aspects Bonsai as an art form Bonsai cultivation Species Current status TOPIARY CONIFERS AS HOUSE PLANTS CHAPTER 4 - FOLIAGE EVERGREEN BOUGHS Uses Species Harvesting, management and trade PINE NEEDLES Mulch Decorative baskets OTHER USES OF CONIFER FOLIAGE CHAPTER 5 - BARK AND ROOTS TRADITIONAL USES Inner bark as food Medicinal uses Natural dyes Other uses TAXOL Description and uses Harvesting methods Alternative
    [Show full text]
  • Pinus Heldreichii Christ.) Growth Due to Climate in Kosovo
    International Journal of Development and Sustainability ISSN: 2186-8662 – www.isdsnet.com/ijds Volume 6 Number 1 (2017): Pages 1-15 ISDS Article ID: IJDS17050301 Spatial and temporal variation in Bosnian pine (Pinus heldreichii Christ.) growth due to climate in Kosovo Faruk Bojaxhi 1*, Elvin Toromani 2 1 Kosovo Forest Agency, Zenel Saliu street 1/a, 10000 Pristina, Kosovo 2 Agricultural University of Tirana, Faculty of Forestry Sciences, Koder Kamez, AL-1029 Tirana, Albania Abstract The purpose of this study was the identification of the dominant temporal and spatial patterns of P.heldreichii growth due to climate from three high elevation sites in Kosovo. Bootstrap correlation analysis, forward evolutionary analysis were used to study the temporal and spatial patterns of climate-growth relationship. P.heldreichii chronologies have a length from 175 to 541 years and a greater similarity along the latitudinal gradient. Growth - climate relationship pointed out that P.heldreichii growth vary due to the combined effect of summer precipitation with winter temperature providing a better understanding of this response at spatial and temporal scales. Future research focused on the analysis and integration of P.heldreichii growth along latitudinal and longitudinal gradients, as well as on the spatial and temporal patterns of temperature and precipitation records will improve the knowledge of long-term climate fluctuations during the last century in Kosovo. Keywords: Kosovo, P.heldreichii, High Elevation, Spatial Variation, Temporal Variation Published by ISDS LLC, Japan | Copyright © 2017 by the Author(s) |This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • (HRM) and Trnl Approaches: from Cytoplasmic Inheritance to Timber Tracing
    Taxonomic Identification of Mediterranean Pines and Their Hybrids Based on the High Resolution Melting (HRM) and trnL Approaches: From Cytoplasmic Inheritance to Timber Tracing Ioannis Ganopoulos1,2, Filippos Aravanopoulos1,3, Panagiotis Madesis1, Konstantinos Pasentsis1, Irene Bosmali1, Christos Ouzounis1,4, Athanasios Tsaftaris1,2* 1 Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece, 2 Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Greece, 3 Laboratory of Forest Genetics and Tree Breeding, Faculty of Forestry and Natural Environment, Aristotle University of Thessaloniki, Greece, 4 Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada Abstract Fast and accurate detection of plant species and their hybrids using molecular tools will facilitate the assessment and monitoring of local biodiversity in an era of climate and environmental change. Herein, we evaluate the utility of the plastid trnL marker for species identification applied to Mediterranean pines (Pinus spp.). Our results indicate that trnL is a very sensitive marker for delimiting species biodiversity. Furthermore, High Resolution Melting (HRM) analysis was exploited as a molecular fingerprint for fast and accurate discrimination of Pinus spp. DNA sequence variants. The trnL approach and the HRM analyses were extended to wood samples of two species (Pinus nigra and Pinus sylvestris) with excellent results, congruent to those obtained using leaf tissue. Both analyses demonstrate that hybrids from the P. brutia (maternal parent) 6 P. halepensis (paternal parent) cross, exhibit the P. halepensis profile, confirming paternal plastid inheritance in Group Halepensis pines. Our study indicates that a single one-step reaction method and DNA marker are sufficient for the identification of Mediterranean pines, their hybrids and the origin of pine wood.
    [Show full text]
  • Biodiversity Conservation in Botanical Gardens
    AgroSMART 2019 International scientific and practical conference ``AgroSMART - Smart solutions for agriculture'' Volume 2019 Conference Paper Biodiversity Conservation in Botanical Gardens: The Collection of Pinaceae Representatives in the Greenhouses of Peter the Great Botanical Garden (BIN RAN) E M Arnautova and M A Yaroslavceva Department of Botanical garden, BIN RAN, Saint-Petersburg, Russia Abstract The work researches the role of botanical gardens in biodiversity conservation. It cites the total number of rare and endangered plants in the greenhouse collection of Peter the Great Botanical garden (BIN RAN). The greenhouse collection of Pinaceae representatives has been analysed, provided with a short description of family, genus and certain species, presented in the collection. The article highlights the importance of Pinaceae for various industries, decorative value of plants of this group, the worth of the pinaceous as having environment-improving properties. In Corresponding Author: the greenhouses there are 37 species of Pinaceae, of 7 geni, all species have a E M Arnautova conservation status: CR -- 2 species, EN -- 3 species, VU- 3 species, NT -- 4 species, LC [email protected] -- 25 species. For most species it is indicated what causes depletion. Most often it is Received: 25 October 2019 the destruction of natural habitats, uncontrolled clearance, insect invasion and diseases. Accepted: 15 November 2019 Published: 25 November 2019 Keywords: biodiversity, botanical gardens, collections of tropical and subtropical plants, Pinaceae plants, conservation status Publishing services provided by Knowledge E E M Arnautova and M A Yaroslavceva. This article is distributed under the terms of the Creative Commons 1. Introduction Attribution License, which permits unrestricted use and Nowadays research of biodiversity is believed to be one of the overarching goals for redistribution provided that the original author and source are the modern world.
    [Show full text]
  • Pinus Serotina (Pond Pine) Is a Tree of the Southeastern Coastal Plain of United States
    PinusPinus serotinaserotina pondpond pinepine by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources Pinus serotina (pond pine) is a tree of the Southeastern Coastal Plain of United States. It was first described as a species in 1803. Historically this tree has been taxonomically associated with pitch pine Pinus rigida. Other scientific names for this tree have been Pinus rigida var. serotina (1868) and Pinus rigida subs. serotina (1939). The scientific name means a “pine with late opening cones.” Other common names include swamp pine, marsh pine, bay pine, flatwoods pine, and pocosin pine. Pinus serotina grows along the Coastal Plain from Southern New Jersey into central Florida and central Alabama. In Georgia, pond pine grows below the fall line. See Georgia range map figure. Pinus serotina grows in bogs, moving water swamps, flatwoods, savannahs, and low scrub areas including poorly drained wetland sites with widely fluctuating water tables. Unlike many other pines, pond pine tolerates and reproduces in areas with high organic matter contents. Site drainage shifts species regen- eration toward loblolly pine. Pond pine is fire tolerant and sprouts after fire damage, but is disfigured by hot fires. Pinus serotina is a medium sized tree 40-65 feet tall (maximum of 90 feet). It grows to a diam- eter of 1-2.2 feet (maximum of 3 feet). Crown form is irregular, ragged, and thin, with many tufts of needles sprouting on stems. Crown shape is usually flat-topped with many stubby and gnarled branches among longer branches. Cones held for many years lead to the appearance of a cone-crowded crown.
    [Show full text]
  • Tree and Shrub Guide
    tree and shrub guide • Problems & Challenges in Western Colorado • Purchasing A High Quality Tree • Summer & Winter Watering Tips • Best Time to Plant • Tree Planting Steps • Plant Suggestions for Grand Valley Landscapes Welcome Tree and Shrub Planters The Grand Junction Forestry Board has assembled the following packet to assist you in overcoming planting problems and challenges in the Grand Valley. How to choose a high quality tree, watering tips, proper planting techniques and tree species selection will be covered in this guide. We encourage you to further research any unknown variables or questions that may arise when the answers are not found in this guide. Trees play an important role in Grand Junction by improving our environment and our enjoyment of the outdoors. We hope this material will encourage you to plant more trees in a healthy, sustainable manner that will benefit our future generations. If you have any questions please contact the City of Grand Junction Forestry Department at 254-3821. Sincerely, The Grand Junction Forestry Board 1 Problems & Challenges in Western Colorado Most Common Problems • Plan before you plant – Know the characteristics such as mature height and width of the tree you are going to plant. Make sure the mature plant will fit into the space. • Call before digging - Call the Utility Notification Center of Colorado at 800-922-1987. • Look up – Avoid planting trees that will grow into power lines, other wires, or buildings. • Do a soil test - Soils in Western Colorado are challenging and difficult for some plants to grow in. Make sure you select a plant that will thrive in your planting site.
    [Show full text]
  • Exotic Pine Species for Georgia Dr
    Exotic Pine Species For Georgia Dr. Kim D. Coder, Professor of Tree Biology & Health Care, Warnell School, UGA Our native pines are wonderful and interesting to have in landscapes, along streets, in yards, and for plantation use. But our native pine species could be enriched by planting selected exotic pine species, both from other parts of the United States and from around the world. Exotic pines are more difficult to grow and sustain here in Georgia than native pines. Some people like to test and experiment with planting exotic pines. Pride of the Conifers Pines are in one of six families within the conifers (Pinales). The conifers are divided into roughly 50 genera and more than 500 species. Figure 1. Conifer families include pine (Pinaceae) and cypress (Cupressaceae) of the Northern Hemisphere, and podocarp (Podocarpaceae) and araucaria (Araucariaceae) of the Southern Hemisphere. The Cephalotaxaceae (plum-yew) and Sciadopityaceae (umbrella-pine) families are much less common. Members from all these conifer families can be found as ornamental and specimen trees in yards around the world, governed only by climatic and pest constraints. Family & Friends The pine family (Pinaceae) has many genera (~9) and many species (~211). Most common of the genera includes fir (Abies), cedar (Cedrus), larch (Larix), spruce (Picea), pine (Pinus), Douglas-fir (Pseudotsuga), and hemlock (Tsuga). Of these genera, pines and hemlocks are native to Georgia. The pine genus (Pinus) contains the true pines. Pines (Pinus species) are found around the world almost entirely in the Northern Hemisphere. They live in many different places under highly variable conditions. Pines have been a historic foundation for industrial development and wealth building.
    [Show full text]