Rvk-Diss Digi

Total Page:16

File Type:pdf, Size:1020Kb

Rvk-Diss Digi University of Groningen Of dwarves and giants van Klink, Roel IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Klink, R. (2014). Of dwarves and giants: How large herbivores shape arthropod communities on salt marshes. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 01-10-2021 Of Dwarves and Giants How large herbivores shape arthropod communities on salt marshes Roel van Klink This PhD-project was carried out at the Community and Conservation Ecology group, which is part of the Centre for Ecological and Environmental Studies of the University of Groningen, The Netherlands. This project was funded by the Waddenfonds (Project WF200451) and carried out in cooperation with It Fryske Gea. The printing of this thesis was partially funded by the University of Groningen and the Faculty of Mathematics and Natural Science. Lay-out & figures: Dick Visser Cover: Bill Hauser (http://billhauser.deviantart.com) Photo credits: Chapter 1: Salt marsh of Westerhever, Germany (C. Rickert) Chapter 2: The birth of a conceptual framework, Herdershut, Schiermonnikoog, January 2010 (R. v. Klink) Chapter 3: Enoplognatha mordax, NFB (R. v. Klink) Chapter 4: Vegetation mosaics at the Hamburger Hallig, Germany (C. Rickert) Chapter 5: Compaction experiment at NFB, May 2011 (R. v. Klink) Chapter 6: Thymelicus lineola on Aster tripolium, NFB (R. v. Klink) Box I: Mine of Calycomyza humeralis in leaf of Aster tripolium (R. v. Klink) Box II: Setting up the experiment at NFB (R. v. Klink) Chapter 7: Meadow Pipits (Anthus pratensis) at NFB, 2011 (R. v. Klink) Box III: Colletes halophilus at Schiermonnikoog, 2010 (R. v. Klink) Chapter 8: Ballooning spiders at Noord Friesland Buitendijks, September 2011 (R. v. Klink) Appendix: Caterpillars of Aglais urticae on Urtica dioica, summerdike of NFB, September 2012 (R. v. Klink) References: Spittlebugs (Philaenus spumarius and Neophilaenus lineatus) in the compaction experiment at NFB (R. v. Klink) Summary: Whittleia retiella at the salt marsh of Westerhever, Germany (C. Rickert) Acknowledgements: Cattle at NFB (R. v. Klink) Printed by: CPI – Koninklijke Wöhrmann, Zutphen ISBN: 978-90-367-7084-2 ISBN: 978-90-367-7083-5 (electronic version) Of Dwarves and Giants How large herbivores shape arthropod communities on salt marshes Proefschrift ter verkrijging van de graad van doctor aan de Rijksuniversiteit Groningen op gezag van de rector magnificus prof. dr. E. Sterken en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op vrijdag 20 juni 2014 om 14.30 uur door Roel van Klink geboren op 12 oktober 1981 te Aalsmeer Promotores Prof. dr. J.P. Bakker Prof. dr. ir. M.F. Wallis de Vries Beoordelingscommissie Prof. dr. J.C. Biesmeijer Prof. dr. H. van Dyck Prof. dr. D. Bonte Contents Chapter 1 General introduction 7 Intermezzo: A short history of research on salt-marsh arthropods Chapter 2 Effects of large herbivores on grassland arthropod diversity 17 Chapter 3 Contrasting responses of the diversity of arthropod habitat specialists and generalists 41 to salt-marsh elevation and livestock grazing Chapter 4 Grazed vegetation mosaics do not maximize arthropod diversity: evidence from 57 salt marshes Chapter 5 Defoliation and soil compaction jointly drive grazing effects on plants and soil 77 arthropods on fine-textured soil Chapter 6 Effects of livestock species and density on flower-visiting insects in a salt marsh 101 Box I The herbivorous fauna of Aster tripolium on grazed and ungrazed salt marshes 113 Box II Contrasting effects of microclimate and defoliation on the fauna of five halophytes 123 Chapter 7 Foraging site choice and diet selection of Meadow Pipits Anthus pratensis breeding 133 on grazed salt marshes Box III Combining faunistic and ecological knowledge to optimise conservation management 147 for salt-marsh invertebrates Chapter 8 General synthesis 161 Epilogue: The little things that run the world Appendix The arthropod fauna of the Noorderleech area 177 References 183 Summary 206 Samenvatting 213 Acknowledgements 222 List of publications 225 Co-author affiliations 226 Chapter 1 General introduction Roel van Klink Chapter 1 ARTHROPOD CONSERVATION Arthropods are the most species-rich clade of eukaryotic life forms on earth, with an esti- mated number of species ranging between 3 and 7 million (Novotny et al. 2002, Hamilton et al. 2010). They play a key role in many ecological processes and have important effects on plant communities (De Deyn et al. 2003, Allan and Crawley 2011). Their central place in all terrestrial food webs makes them an important link between primary producers and vertebrate (top-) predators. Moreover, they perform myriad ecosystem services that human society depends upon, ranging from decomposition and crop pollination to ama- teur entomology and bird watching (Losey and Vaughan 2006, Prather et al. 2013). Wild invertebrates alone were estimated to account for a yearly economic value of $60 billion in the U.S. alone (Losey and Vaughan 2006), and domesticated bees accounted for another $19 billion (Calderone 2012). Hence, they constitute “the little things that run the world” (Wilson 1987), and ecosystems and human society would soon collapse without arthro- pods. Yet, the conservation effort directed towards invertebrates is only a fraction of the effort directed towards the conservation of vertebrates (Wilson 1987, Cardoso et al. 2011), and was thus dubbed “the awkward ‘kid sister’ to vertebrate conservation” (Dunn 2005). This fails to recognize, however, that due to their vast diversity and often strong speciali- sation, the majority of species that are endangered or have gone extinct due to human influence must be invertebrates (Dunn 2005). Moreover, it was shown that invertebrates are more prone to be endangered or to go (locally) extinct than either plants or vertebrates (Thomas et al. 2004). Fortunately, there is an increasing recognition of the conservation value of arthropods. Over the past decades, the effort directed at their conservation has increased considerably, resulting in numerous books (e.g. Samways 1994, 2005, New 2009), high profile publica- tions (e.g. Thomas et al. 2004, 2009, Biesmeijer et al. 2006), and two specialised journals (Journal of Insect conservation and Insect Conservation and Diversity) on this topic. How the conservation of arthropods should be achieved, though, requires a context specific approach. For each species to persist at a location, its requirements in terms of trophic and non–trophic resources must be met in a spatial and temporal context that can be used by the individuals making op the population (Southwood 1977). The conservation of arthropod species, and any other organism for that matter, should therefore be based on maintaining (or creating) habitats in which required trophic and non-trophic resources are sufficient to retain a viable population (Dennis 2003). The extreme diversity of arthropods entails an equally large variation in life history traits and, habitat requirements. Contrary to the better known plants and especially verte- brates, these traits and requirements are poorly known for the vast majority of arthropod species, even in the relatively well-studied fauna of Western Europe. To provide condi- tions meeting the requirements of all species in an ecosystem, and thus to preserve a maxi- mum diversity of arthropods, some form of nature management is often necessary. 8 General introduction GRAZING MANAGEMENT Most grassland types in Western Europe have a millennia long history of human land use and management (Barker 1985). Interestingly, this long-term extensive land use has led to an extremely high biodiversity (Wilson et al. 2012), and many plant and animal species now depend on the continued existence of these grasslands (Thomas 1993, Thomas et al. 1994). Typically, these grasslands stay in a plagioclimax state (sensu Tansley 1935) due to management actions, and are therefore prone to succession (in most cases to forest) if man- agement is ceased. In most cases, this succession will lead to a decline in plant species rich- ness due to an increasing dominance of tall-statured species (Grime 1973), which is deemed undesirable from a conservation perspective (Bakker 1989). Livestock grazing, as well as mowing or burning, can prevent this succession (Clements 1916), and can maintain plant species richness (Grime 1973). As an increasingly popular management tool to main- tain grassland biodiversity, grazing is currently used as management tool in over 500 proj- ects in the Netherlands alone (Alterra 2013). Grazing is often seen as preferable over burn- ing or mowing because large grazers usually display some selectivity in food choice, and can thereby create spatial heterogeneity (McNaughton 1984, Adler et al. 2001). Further- more, large, charismatic herbivores are seen as a more natural type of grassland manage- ment than mowing or burning in Western European landscapes (WallisDeVries 1998), and are seen as replacement for extinct herbivores such as the Tarpan and Aurochs (Bakker et al.
Recommended publications
  • Topic Paper Chilterns Beechwoods
    . O O o . 0 O . 0 . O Shoping growth in Docorum Appendices for Topic Paper for the Chilterns Beechwoods SAC A summary/overview of available evidence BOROUGH Dacorum Local Plan (2020-2038) Emerging Strategy for Growth COUNCIL November 2020 Appendices Natural England reports 5 Chilterns Beechwoods Special Area of Conservation 6 Appendix 1: Citation for Chilterns Beechwoods Special Area of Conservation (SAC) 7 Appendix 2: Chilterns Beechwoods SAC Features Matrix 9 Appendix 3: European Site Conservation Objectives for Chilterns Beechwoods Special Area of Conservation Site Code: UK0012724 11 Appendix 4: Site Improvement Plan for Chilterns Beechwoods SAC, 2015 13 Ashridge Commons and Woods SSSI 27 Appendix 5: Ashridge Commons and Woods SSSI citation 28 Appendix 6: Condition summary from Natural England’s website for Ashridge Commons and Woods SSSI 31 Appendix 7: Condition Assessment from Natural England’s website for Ashridge Commons and Woods SSSI 33 Appendix 8: Operations likely to damage the special interest features at Ashridge Commons and Woods, SSSI, Hertfordshire/Buckinghamshire 38 Appendix 9: Views About Management: A statement of English Nature’s views about the management of Ashridge Commons and Woods Site of Special Scientific Interest (SSSI), 2003 40 Tring Woodlands SSSI 44 Appendix 10: Tring Woodlands SSSI citation 45 Appendix 11: Condition summary from Natural England’s website for Tring Woodlands SSSI 48 Appendix 12: Condition Assessment from Natural England’s website for Tring Woodlands SSSI 51 Appendix 13: Operations likely to damage the special interest features at Tring Woodlands SSSI 53 Appendix 14: Views About Management: A statement of English Nature’s views about the management of Tring Woodlands Site of Special Scientific Interest (SSSI), 2003.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Bregalnica River Watershed”
    Project Report “Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed” Dekons-Ema and Macedonian Ecological Society Book 4 Report on the status of protected areas in Bregalnica watershed Project coordinator: Slavčo Hristovski Director: Menka Spirovska Skopje, December 2015 Report on the status of protected areas in Bregalnica watershed Project implementation: Dekons-Ema and Macedonian Ecological Society Project funding: Center for the development of Eastern Planning Region Editors: Brajanoska Robertina and Slavcho Hristovski Authors: Brajanoska Robertina Valentina Slavevska Daniela Jovanovska Slavcho Hristovski Stamenkovikj Vasko Avukatov Metodija Velevski Nikolcho Velkovski Aleksandar Sarov Mitko Kostadinovski Zlatko Levkov Bogoljub Sterijovski Vlado Matevski Katerina Rusevska Ljiljana Tomovikj Sonja Ivanovska Despina Kitanova Svetlana Pejovikj Vladimir Dzabirski Aleksandar Stojanov Natalija Melovska Ljupcho Melovski Dime Melovski Evgenija Jordanovska Citation: Brajanoska, R., Hristovski, S. eds. (2015). Report on the status of protected areas in Bregalnica watershed. Final report of the project “Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed”, Book 4, Skopje. Dekons-Ema Environmental Management Associates Mitropolit Teodosij Gologanov st., 44/4 1000 Skopje [email protected] http://www.ema.com.mk Macedonian Ecological Society Vladimir Nazor st., 10 1000 Skopje [email protected] http://www.mes.org.mk The Report on the status of protected areas in Bregalnica watershed was prepared within the Project " Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed ", Contract No., 0205-145/10 of 16.06.2014, signed between the Center for the development of Eastern Planning Region, represented by Dragica Zdraveva, coordinator of the Center and Environmental Management Associates Dekons-Ema represented by Menka Spirovska, Director.
    [Show full text]
  • An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown.
    [Show full text]
  • Hohestein – Zoologische Untersuchungen 1994-1996, Teil 2
    Naturw.res.07-A4:Layout 1 09.11.2007 13:10 Uhr Seite 1 HESSEN Hessisches Ministerium für Umwelt, HESSEN ländlichen Raum und Verbraucherschutz Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz www.hmulv.hessen.de Naturwaldreservate in Hessen HOHESTEINHOHESTEIN ZOOLOGISCHEZOOLOGISCHE UNTERSUCHUNGENUNTERSUCHUNGEN Zoologische Untersuchungen – Naturwaldreservate in Hessen Naturwaldreservate Hohestein NO OO 7/2.2 NN 7/2.27/2.2 Naturwaldreservate in Hessen 7/2.2 Hohestein Zoologische Untersuchungen 1994-1996, Teil 2 Wolfgang H. O. Dorow Jens-Peter Kopelke mit Beiträgen von Andreas Malten & Theo Blick (Araneae) Pavel Lauterer (Psylloidea) Frank Köhler & Günter Flechtner (Coleoptera) Mitteilungen der Hessischen Landesforstverwaltung, Band 42 Impressum Herausgeber: Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz Mainzer Str. 80 65189 Wiesbaden Landesbetrieb Hessen-Forst Bertha-von-Suttner-Str. 3 34131 Kassel Nordwestdeutsche Forstliche Versuchsanstalt Grätzelstr. 2 37079 Göttingen http://www.nw-fva.de Dieser Band wurde in wissenschaftlicher Kooperation mit dem Forschungsinstitut Senckenberg erstellt. – Mitteilungen der Hessischen Landesforstverwaltung, Band 42 – Titelfoto: Der Schnellkäfer Denticollis rubens wurde im Naturwaldreservat „Hohestein“ nur selten gefunden. Die stark gefährdete Art entwickelt sich in feuchtem, stärker verrottetem Buchenholz. (Foto: Frank Köhler) Layout: Eva Feltkamp, 60486 Frankfurt Druck: Elektra Reprographischer Betrieb GmbH, 65527 Niedernhausen Umschlaggestaltung: studio
    [Show full text]
  • A Revised List of the Weevil Subfamily Ceutorhynchinae
    J. Asia-Pacific Entomol. 7(2): 143 -169 (2004) www.entornology.or.kr A Revised List of the Weevil Subfamily Ceutorhynchinae (Coleoptera; Curculionidae) of the Korean Fauna, with Contribution to the Knowledge of the Fauna of Neighbouring Countries Boris A. Korotyaev and Ki-Jeong Hong' Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia I Central Post-Entry Quarantine Station, National Plant Quarantine Service, Suwon 442-400, Korea Abstract 58 species are recorded from Korea based preceding publications (Hong et al., 1999a, 1999b; on re-examination ofthe previously reported material Hong et al., 2000; Hong et Korotyaev, 2002) and and study ofa new one. Six new species (Rutidosorna investigation ofadditional material on distribution and koreanurnKorotyaev et Hong, sp. n., Calosirus kwoni host plants of the Ceutorhynchinae in Korea have Korotyaev et Hong, sp. n., MJgulones kwoni Korotyaev provided new data on this fauna. Although still quite et Hong, sp. n., Augustinus koreanus Korotyaev et incomplete, these data stimulate some speculations on Hong, sp. n., Ceutorhynchoides koreanus Korotyaev the ecological and geographical characteristics of the et Hong, sp. n. and Mecysrnoderes koreanus Korotyaev Korean fauna. We hope that some preliminary con­ et Hong, sp. n.) are described from Korea, and siderations reported herein may facilitate further study 5 species [Pelenomus waltoni (Boheman, 1843), ofthis group in Korea and the entire Far East. Several Ceutorhynchus scapularis Gyllenhal, 1837,Hadroplontus new species are described from the neighbouring ancora (Roelofs, 1875), Thamiocolus kerzhneri countries apparently vicar to the Korean species or Korotyaev, 1980 and Glocianus fennicus (Faust, probably occurring in Korea but not found yet.
    [Show full text]
  • Spiders (Araneae) of Churchill, Manitoba: DNA Barcodes And
    Blagoev et al. BMC Ecology 2013, 13:44 http://www.biomedcentral.com/1472-6785/13/44 RESEARCH ARTICLE Open Access Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records Gergin A Blagoev1*, Nadya I Nikolova1, Crystal N Sobel1, Paul DN Hebert1,2 and Sarah J Adamowicz1,2 Abstract Background: Arctic ecosystems, especially those near transition zones, are expected to be strongly impacted by climate change. Because it is positioned on the ecotone between tundra and boreal forest, the Churchill area is a strategic locality for the analysis of shifts in faunal composition. This fact has motivated the effort to develop a comprehensive biodiversity inventory for the Churchill region by coupling DNA barcoding with morphological studies. The present study represents one element of this effort; it focuses on analysis of the spider fauna at Churchill. Results: 198 species were detected among 2704 spiders analyzed, tripling the count for the Churchill region. Estimates of overall diversity suggest that another 10–20 species await detection. Most species displayed little intraspecific sequence variation (maximum <1%) in the barcode region of the cytochrome c oxidase subunit I (COI) gene, but four species showed considerably higher values (maximum = 4.1-6.2%), suggesting cryptic species. All recognized species possessed a distinct haplotype array at COI with nearest-neighbour interspecific distances averaging 8.57%. Three species new to Canada were detected: Robertus lyrifer (Theridiidae), Baryphyma trifrons (Linyphiidae), and Satilatlas monticola (Linyphiidae). The first two species may represent human-mediated introductions linked to the port in Churchill, but the other species represents a range extension from the USA.
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • 196 Arachnology (2019)18 (3), 196–212 a Revised Checklist of the Spiders of Great Britain Methods and Ireland Selection Criteria and Lists
    196 Arachnology (2019)18 (3), 196–212 A revised checklist of the spiders of Great Britain Methods and Ireland Selection criteria and lists Alastair Lavery The checklist has two main sections; List A contains all Burach, Carnbo, species proved or suspected to be established and List B Kinross, KY13 0NX species recorded only in specific circumstances. email: [email protected] The criterion for inclusion in list A is evidence that self- sustaining populations of the species are established within Great Britain and Ireland. This is taken to include records Abstract from the same site over a number of years or from a number A revised checklist of spider species found in Great Britain and of sites. Species not recorded after 1919, one hundred years Ireland is presented together with their national distributions, before the publication of this list, are not included, though national and international conservation statuses and syn- this has not been applied strictly for Irish species because of onymies. The list allows users to access the sources most often substantially lower recording levels. used in studying spiders on the archipelago. The list does not differentiate between species naturally Keywords: Araneae • Europe occurring and those that have established with human assis- tance; in practice this can be very difficult to determine. Introduction List A: species established in natural or semi-natural A checklist can have multiple purposes. Its primary pur- habitats pose is to provide an up-to-date list of the species found in the geographical area and, as in this case, to major divisions The main species list, List A1, includes all species found within that area.
    [Show full text]
  • Deadwood and Saproxylic Beetle Diversity in Naturally Disturbed and Managed Spruce Forests in Nova Scotia
    A peer-reviewed open-access journal ZooKeysDeadwood 22: 309–340 and (2009) saproxylic beetle diversity in disturbed and managed spruce forests in Nova Scotia 309 doi: 10.3897/zookeys.22.144 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia DeLancey J. Bishop1,4, Christopher G. Majka2, Søren Bondrup-Nielsen3, Stewart B. Peck1 1 Department of Biology, Carleton University, Ottawa, Ontario, Canada 2 c/o Nova Scotia Museum, 1747 Summer St., Halifax, Nova Scotia Canada 3 Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada 4 RR 5, Canning, Nova Scotia, Canada Corresponding author: Christopher G. Majka ([email protected]) Academic editor: Jan Klimaszewski | Received 26 March 2009 | Accepted 6 April 2009 | Published 28 September 2009 Citation: Bishop DJ, Majka CG, Bondrup-Nielsen S, Peck SB (2009) Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia In: Majka CG, Klimaszewski J (Eds) Biodiversity, Bio- systematics, and Ecology of Canadian Coleoptera II. ZooKeys 22: 309–340. doi: 10.3897/zookeys.22.144 Abstract Even-age industrial forestry practices may alter communities of native species. Th us, identifying coarse patterns of species diversity in industrial forests and understanding how and why these patterns diff er from those in naturally disturbed forests can play an essential role in attempts to modify forestry practices to minimize their impacts on native species. Th is study compares diversity patterns of deadwood habitat structure and saproxylic beetle species in spruce forests with natural disturbance histories (wind and fi re) and human disturbance histories (clearcutting and clearcutting with thinning).
    [Show full text]
  • Kurzfassungen Der Vorträge Der Mikrolepidopteren-Tagung: 8-12, Schwerin
    Virgo, Mitteilungsblatt des Entomologischen Vereins Mecklenburg, 12. Jahrgang (2009), Heft 1: Kurzfassungen der Vorträge der Mikrolepidopteren-Tagung: 8-12, Schwerin Kurzfassungen der Vorträge der Mikrolepidopteren-Tagung Stand der Erforschung der Unter ihnen waren auch folgende Bearbeiter für die Kleinschmetterlinge in Mecklenburg- „Kleinschmetterlinge“: Ab den 60-iger Jahren des vergangenen Vorpommern Jahrhunderts bis heute wurden unter anderen auch Kleinschmetterlinge in oder um die Urlaubsorte UWE DEUTSCHMANN, Buchholz durch Entomologen aus allen Teilen Deutschlands in Mecklenburg-Vorpommern nachgewiesen. Die Erforschung der mecklenburgischen Ab 1980 beschäftigt sich der Autor mit den Schmetterlingsfauna wurde von Gerrit Friese im Kleinschmetterlingen von Mecklenburg. Möglich „Archiv der Freunde der Naturgeschichte in war das auch durch die freundliche Unterstützung Mecklenburg“, Teil V, im Jahre 1959 erfahrener Entomologen, wie Herr Dr. Steuer aus veröffentlicht. Blankenburg, Herr Dr. Petersen und Herr Dr. Herr G. Friese stellte in seinem Beitrag die ihm Gaedicke aus Eberswalde oder Herr Patzak aus bekannten Schmetterlingssammler vor, die seit dem Aschersleben und Herrn Sutter aus Bitterfeld. 18. Jahrhundert auf dem Gebiet von Mecklenburg Durch die Veröffentlichungen von Sonderdrucken und Vorpommern Schmetterlinge gesammelt der im Rahmen der „Entomologischen Nachrichten haben. und Berichte“ erschienenen Bestimmungsliteratur Insgesamt konnte er das Leben und Wirken von 67 war es nun möglich, die gefangenen Tiere auch Schmetterlingssammlern, die er als die relativ sicher zu bestimmen. „bedeutendsten mecklenburgischen Lepidopterologen“ bezeichnete, in seinem Werk beschreiben. Name, Vorname Zeitraum der Sammeltätigkeit/ Sammelgebiet Sammeltätigkeit Dr. Herbert Buhr 1. Hälfte des 20. Jahrhunderts Minierinsekten Mecklenburgs, Nachweis von ca. 400 minierenden Kleinschmetterlingsarten in M. gemeinsam mit Prof. Dr. Hering,Berlin Dr. Gerrit Friese In den 50er Jahren des 20.
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]