Certain One-Relator Products of Groups: Freiheitssatz and Non-Triviality

Total Page:16

File Type:pdf, Size:1020Kb

Certain One-Relator Products of Groups: Freiheitssatz and Non-Triviality Certain one-relator products of groups: Freiheitssatz and non-triviality Ihechukwu Chinyere Submitted for the degree of Doctor of Philosophy Heriot-Watt University Department of Mathematics, School of Mathematical and Computer Sciences. November 6, 2015 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. Abstract Combinatorial group theory is an aspect of group theory that deals with groups given by presentations. Many techniques both geometric and algebraic are used in tackling problems in this area. In this work, we mostly adopt the geometric approach. In particular we use pictures and clique-pictures to describe various properties of certain one-relator product of groups. These groups are our object of study and they have presentations of the form G G = Λ ; N(w) where GΛ is a free product of groups Gλ2Λ and w is a (cyclically reduced) word in the free product GΛ with length at least two. It is known that most results about G are obtained by putting some conditions on the Gλ's, on w, or both. In the case where Λ = 2, say Λ = f1; 2g, there are two forms of conditions we put on w. The first condition is that w = rn, where r is cyclically reduced word of length at most eight and n > 0. More precisely suppose A and B non-trivial groups and G = (A ∗ B)=N(rn): Suppose that any of the following conditions holds: 1. `(r) = 8 and n ≥ 3; or 2.2 ≤ `(r) < 8 and n ≥ 2; or 3. n = 1 and `(r) = 4 say r = abcd, with ha; ci and hb; di isomorphic to 2- generator subgroups of P SL2(C). We show that at least one of the following holds: i. A and B embed in G naturally and r has order n in G. ii. n = 2 and up to conjugation r has the form r = axbx−1cz with z2 = 1, where a; b; c 2 A and x; z 2 B. We then deduce that r has order n in G. The other condition is that w = rn as before but we require also that r is a word in −1 hai ∗ hUbU i, where a; b 2 G1 [ G2 and U is a word in G1 ∗ G2. We prove that a minimal clique-picture over G satisfies the small-cancellation condition C(6) under the condition that r has no element of order two or r has length at least two in the −1 generators fa; UbU g and whenever both a and b belong to same factor, say G1, then either the subgroup of G1 generated by fa; bg is cyclic or hai \ hbi = 1. From this we deduce the following results. −1 n 1. Let H be the quotient of hai ∗ hUbU i by the normal closure of R . Then G1, G2 and H all embed in G via the natural maps. 2. If the word problems are soluble for H, G1 and G2, then it is soluble for G. 3. No proper cyclic sub-word of w is trivial in G. In particular r has order n in G. We also consider the case where Λ = 3, say Λ = f1; 2; 3g, and prove the following results. 1. Suppose G1, G2 and G3 are all finite cyclic groups, then each embed in G via the natural maps provided w has non-zero exponent sum in each of the generators. 2. If w has length at most eight, then G is non-trivial. 1 Acknowledgements I am most grateful to God Almighty for giving me life, good health and peace of mind throughout the period of this work. My deepest appreciation goes to my Supervisor Prof. Jim Howie who introduced me to combinatorial group theory and carried me along with his ideas and suggestions. I thank Prof. Bernd Schroers and Dr. Emma Coutts through whom I got to know about Jim and Heriot-Watt in general. Many thanks to Prof. Ingrid Rewitzky, Dr. Cornelia Naude and Dr. Bruce Bartlett for their assistance while I was at Stellenbosch University. Many thanks to my examiners Prof. Nick Gilbert and Dr. Martin Edjvet for the wonderful job done in reading my work. I also thank the entire HWU MACS staff who have worked together to make my stay here comfortable and successful. I thank my office mates and friends for their warm company. Special thanks to Bernard Oduoku for helping in the proof-reading. This work would not have been possible without the Maxwell Scholarship. I thank Heriot-Watt University for granting me this life time opportunity. Finally I thank my family for their love, prayer and support. It is you who have had to put up with my long period of absence. I hold you all in high esteem and would never let you down. Contents Introduction ii 0.1 Layout . .3 1 Preliminaries 5 1.1 Preamble . .5 1.2 Free groups and Group presentations . .5 1.3 Algorithmic problems . .6 1.3.1 Tietze transformations . .7 1.3.2 Nielsen Equivalence . .7 1.4 Free Product, Free Product with Amalgamation and HNN extension .8 1.4.1 Free Products . .8 1.4.2 Free Product with Amalgamation and HNN extensions . .9 1.5 Small cancellation . 11 1.5.1 Basic formulas . 12 1.5.2 Pictures . 13 1.5.3 Combinatorial curvature . 16 1.6 Bass-Serre Theory . 17 1.6.1 Group actions . 17 1.6.2 Group actions on graphs . 18 1.6.3 Theory of covering spaces . 19 1.6.4 Graph of groups . 19 1.6.5 The fundamental group of a graph of groups . 20 1.6.6 Group action on trees . 21 2 Short review of one-relator product of groups 24 2.1 Preamble . 24 2.2 One relator groups . 24 2.3 One relator product of groups . 25 2.4 One relator product of cyclics . 27 2.5 Relative presentations . 29 i CONTENTS 3 One-relator product induced from generalised triangle group 31 3.1 Preamble . 31 3.2 Periodicity . 33 3.3 Generalised triangle group description and refinements . 35 3.4 Clique-pictures . 37 3.5 Clique-labels and virtual periodicity . 42 3.6 The relator has free product length at least 4 and the pair (a; b) is admissible. 47 3.7 The relator has no letter of order 2 . 49 3.7.1 Proof of Theorem 3.7.1 . 58 3.8 Proof of Theorems . 62 4 One-relator product of two non-trivial groups with short relator 66 4.1 Preamble . 66 4.2 Preliminary results . 68 4.3 Relator of length eight with power n ≥ 3................ 73 4.4 Relator of length six with power n ≥ 2 ................. 79 4.4.1 Configurations of an interior vertex of degree 4 . 82 4.4.2 Configurations of an interior vertex of degree 5 . 88 4.5 Relator of length four with power n ≥ 2 ................ 99 4.6 Special case of n = 1 and relator has length four. 103 5 One-relator product of three non-trivial finite cyclic groups 106 5.1 Preamble . 106 5.2 S1-equivariant homotopy and degree of maps . 106 5.3 Main result . 109 6 One-relator product of three non-trivial groups with short relator112 6.1 Preamble . 112 6.2 Technical Lemmas . 113 6.3 Main result . 123 7 Conclusion and future work 124 7.0.1 Removing admissibility condition . 124 7.0.2 Solution of equations over free product of groups . 125 ii List of Tables 4.1 A table containing all the possible configurations of a positively- curved interior vertex. 74 4.2 A table containing all the possible configurations of a positively- curved interior vertex. 82 6.1 A table containing all the possible words R (up to cyclic permutation and inversion) in fU2;V g of index k, 1 ≤ k ≤ 3 and `(R) ≥ 2(6 − k). 119 iii List of Figures 1.1 Diagram showing bridge-move. 14 1.2 A graph with two edges and one vertex. 22 1.3 Graph of groups for free product of A and B.............. 22 1.4 Graph of groups for free product of A and B amalgamated over C.. 23 1.5 Graph of groups for HNN extension. 23 3.1 Push-out diagram. 31 3.2 Double push-out diagram. 36 3.3 Diagram showing an example of u ∼ v.................. 38 3.4 Diagram showing u and v joined by l=2 arcs after doing bridge-moves to Figure 3.3. 38 3.5 Diagram showing the l=2-zone in Figure 3.4 replaced by a single shaded rectangle. 39 3.6 Diagram showing two vertices u ∼ v joined by l-zone. 39 3.7 Diagram showing the l-zone in Figure 3.6 replaced by a single shaded rectangle. 39 3.8 Diagram showing a simply-connected clique consisting of only two vertices and how the two vertices are combined to form one single vertex. 40 3.9 Diagram showing a non-simply connected clique. 40 3.10 Diagram showing vertices v1 and v5 joined by a 2-zone and vertices v2 and v5 joined by a 3-zone. 41 3.11 Diagram showing a vertex v of degree five. 43 3.12 Diagram showing the case where only the special letters z0, zl=2 and zl are contained in zones . 52 3.13 Diagram showing the case where all four special letters z0, zl=2, zl and z3l=2 are contained in zones .
Recommended publications
  • These Links No Longer Work. Springer Have Pulled the Free Plug
    Sign up for a GitHub account Sign in Instantly share code, notes, and snippets. Create a gist now bishboria / springer-free-maths-books.md Last active 10 minutes ago Code Revisions 7 Stars 2104 Forks 417 Embed <script src="https://gist.githu b .coDmo/wbinslohabodr ZiIaP/8326b17bbd652f34566a.js"></script> Springer made a bunch of books available for free, these were the direct links springer-free-maths-books.md Raw These links no longer work. Springer have pulled the free plug. Graduate texts in mathematics duplicates = multiple editions A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Course in Arithmetic, Jean-Pierre Serre A Course in Computational Algebraic Number Theory, Henri Cohen A Course in Differential Geometry, Wilhelm Klingenberg A Course in Functional Analysis, John B. Conway A Course in Homological Algebra, P. J. Hilton U. Stammbach A Course in Homological Algebra, Peter J. Hilton Urs Stammbach A Course in Mathematical Logic, Yu. I. Manin A Course in Number Theory and Cryptography, Neal Koblitz A Course in Number Theory and Cryptography, Neal Koblitz A Course in Simple-Homotopy Theory, Marshall M. Cohen A Course in p-adic Analysis, Alain M. Robert A Course in the Theory of Groups, Derek J. S. Robinson A Course in the Theory of Groups, Derek J. S. Robinson A Course on Borel Sets, S. M. Srivastava A Course on Borel Sets, S. M. Srivastava A First Course in Noncommutative Rings, T. Y. Lam A First Course in Noncommutative Rings, T. Y. Lam A Hilbert Space Problem Book, P.
    [Show full text]
  • Bibliography
    Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Introduction to Representation Theory
    STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina with historical interludes by Slava Gerovitch http://dx.doi.org/10.1090/stml/059 STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof Oleg Golberg Sebastian Hensel Tiankai Liu Alex Schwendner Dmitry Vaintrob Elena Yudovina with historical interludes by Slava Gerovitch American Mathematical Society Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell 2010 Mathematics Subject Classification. Primary 16Gxx, 20Gxx. For additional information and updates on this book, visit www.ams.org/bookpages/stml-59 Library of Congress Cataloging-in-Publication Data Introduction to representation theory / Pavel Etingof ...[et al.] ; with historical interludes by Slava Gerovitch. p. cm. — (Student mathematical library ; v. 59) Includes bibliographical references and index. ISBN 978-0-8218-5351-1 (alk. paper) 1. Representations of algebras. 2. Representations of groups. I. Etingof, P. I. (Pavel I.), 1969– QA155.I586 2011 512.46—dc22 2011004787 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294 USA.
    [Show full text]
  • E6-132-29.Pdf
    HISTORY OF MATHEMATICS – The Number Concept and Number Systems - John Stillwell THE NUMBER CONCEPT AND NUMBER SYSTEMS John Stillwell Department of Mathematics, University of San Francisco, U.S.A. School of Mathematical Sciences, Monash University Australia. Keywords: History of mathematics, number theory, foundations of mathematics, complex numbers, quaternions, octonions, geometry. Contents 1. Introduction 2. Arithmetic 3. Length and area 4. Algebra and geometry 5. Real numbers 6. Imaginary numbers 7. Geometry of complex numbers 8. Algebra of complex numbers 9. Quaternions 10. Geometry of quaternions 11. Octonions 12. Incidence geometry Glossary Bibliography Biographical Sketch Summary A survey of the number concept, from its prehistoric origins to its many applications in mathematics today. The emphasis is on how the number concept was expanded to meet the demands of arithmetic, geometry and algebra. 1. Introduction The first numbers we all meet are the positive integers 1, 2, 3, 4, … We use them for countingUNESCO – that is, for measuring the size– of collectionsEOLSS – and no doubt integers were first invented for that purpose. Counting seems to be a simple process, but it leads to more complex processes,SAMPLE such as addition (if CHAPTERSI have 19 sheep and you have 26 sheep, how many do we have altogether?) and multiplication ( if seven people each have 13 sheep, how many do they have altogether?). Addition leads in turn to the idea of subtraction, which raises questions that have no answers in the positive integers. For example, what is the result of subtracting 7 from 5? To answer such questions we introduce negative integers and thus make an extension of the system of positive integers.
    [Show full text]
  • Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) Is a Series of Graduate-Level Textbooks in Mathematics Published by Springer-Verlag
    欢迎加入数学专业竞赛及考研群:681325984 Graduate Texts in Mathematics - Wikipedia Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. Contents List of books See also Notes External links List of books 1. Introduction to Axiomatic Set Theory, Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ISBN 978-1-4613- 8170-9) 2. Measure and Category - A Survey of the Analogies between Topological and Measure Spaces, John C. Oxtoby (1980, 2nd ed., ISBN 978-0-387-90508-2) 3. Topological Vector Spaces, H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ISBN 978-0-387-98726-2) 4. A Course in Homological Algebra, Peter Hilton, Urs Stammbach (1997, 2nd ed., ISBN 978-0-387-94823-2) 5. Categories for the Working Mathematician, Saunders Mac Lane (1998, 2nd ed., ISBN 978-0-387-98403-2) 6. Projective Planes, Daniel R. Hughes, Fred C. Piper, (1982, ISBN 978-3-540-90043-6) 7. A Course in Arithmetic, Jean-Pierre Serre (1996, ISBN 978-0-387-90040-7) 8.
    [Show full text]
  • Direct Links to Free Springer Books (Pdf Versions)
    Sign up for a GitHub account Sign in Instantly share code, notes, and snippets. Create a gist now bishboria / springer-free-maths-books.md Last active 36 seconds ago Code Revisions 5 Stars 1664 Forks 306 Embed <script src="https://gist.githu b .coDmo/wbinslohabodr ZiIaP/8326b17bbd652f34566a.js"></script> Springer have made a bunch of books available for free, here are the direct links springer-free-maths-books.md Raw Direct links to free Springer books (pdf versions) Graduate texts in mathematics duplicates = multiple editions A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Course in Arithmetic, Jean-Pierre Serre A Course in Computational Algebraic Number Theory, Henri Cohen A Course in Differential Geometry, Wilhelm Klingenberg A Course in Functional Analysis, John B. Conway A Course in Homological Algebra, P. J. Hilton U. Stammbach A Course in Homological Algebra, Peter J. Hilton Urs Stammbach A Course in Mathematical Logic, Yu. I. Manin A Course in Number Theory and Cryptography, Neal Koblitz A Course in Number Theory and Cryptography, Neal Koblitz A Course in Simple-Homotopy Theory, Marshall M. Cohen A Course in p-adic Analysis, Alain M. Robert A Course in the Theory of Groups, Derek J. S. Robinson A Course in the Theory of Groups, Derek J. S. Robinson A Course on Borel Sets, S. M. Srivastava A Course on Borel Sets, S. M. Srivastava A First Course in Noncommutative Rings, T. Y. Lam A First Course in Noncommutative Rings, T. Y. Lam A Hilbert Space Problem Book, P.
    [Show full text]
  • Topics in Combinatorial Group Theory
    Topics in Combinatorial Group Theory Preface I gave a course on Combinatorial Group Theory at ETH, Zurich, in the Winter term of 1987/88. The notes of that course have been reproduced here, essentially without change. I have made no attempt to improve on those notes, nor have I made any real attempt to provide a complete list of references. I have, however, included some general references which should make it possible for the interested reader to obtain easy access to any one of the topics treated here. In notes of this kind, it may happen that an idea or a theorem that is due to someone other than the author, has inadvertently been improperly acknowledged, if at all. If indeed that is the case here, I trust that I will be forgiven in view of the informal nature of these notes. Acknowledgements I would like to thank R. Suter for taking notes of the course and for his many comments and corrections and M. Schunemann for a superb job of “TEX-ing” the manuscript. I would also like to acknowledge the help and insightful comments of Urs Stammbach. In addition, I would like to take this opportunity to express my thanks and appreciation to him and his wife Irene, for their friendship and their hospitality over many years, and to him, in particular, for all of the work that he has done on my behalf, making it possible for me to spend so many pleasurable months in Zurich. Combinatorial Group Theory iii CONTENTS Chapter I History 1. Introduction ..................................................................1 2.
    [Show full text]
  • One-Relator Groups
    One-relator groups Andrew Putman Abstract We give a classically flavored introduction to the theory of one-relator groups. Topics include Magnus’s Freiheitsatz, the solution of the word problem, the classification of torsion, Newman’s Spelling Theorem together with the hyperbolicity (and thus solution to the conjugacy problem) for one-relator groups with torsion, and Lyndon’s Identity Theorem together with the fact that the presentation 2-complex for a torsion-free one- relator group is aspherical. 1 Introduction A one-relator group is a group with a presentation of the form ⟨S ∣ r⟩, where r is a single element in the free group F (S) on the generating set S. One fundamental example is a surface group ⟨a1, b1, . , ag, bg ∣ [a1, b1]⋯[ag, bg]⟩. These groups are basic examples in combinatorial/geometric group theory and possess an extensive literature. In these notes, we will discuss several important classical results about them. The outline is as follows. • We begin in §2 by discussing Magnus’s Freiheitsatz [Ma1], which he proved in his 1931 thesis. This theorem says that certain subgroups of one-relator groups are free. The techniques introduced in its proof ended up playing a decisive role in all subsequent work on the subject. • In §3, we will show how to solve the word problem in one-relator groups. This was proved by Magnus [Ma2] soon after the Freiheitsatz. • In §4, we will prove a theorem of Karrass, Magnus, and Solitar [KMaSo] that says that the only torsion in a one-relator group is the “obvious” torsion.
    [Show full text]
  • Undergraduate Texts in Mathematics
    Undergraduate Texts in Mathematics Editors S. Axler K.A. Ribet Undergraduate Texts in Mathematics Abbott: Understanding Analysis. Chambert-Loir: A Field Guide to Algebra Anglin: Mathematics: A Concise History Childs: A Concrete Introduction to and Philosophy. Higher Algebra. Second edition. Readings in Mathematics. Chung/AitSahlia: Elementary Probability Anglin/Lambek: The Heritage of Theory: With Stochastic Processes and Thales. an Introduction to Mathematical Readings in Mathematics. Finance. Fourth edition. Apostol: Introduction to Analytic Cox/Little/O’Shea: Ideals, Varieties, Number Theory. Second edition. and Algorithms. Second edition. Armstrong: Basic Topology. Croom: Basic Concepts of Algebraic Armstrong: Groups and Symmetry. Topology. Axler: Linear Algebra Done Right. Cull/Flahive/Robson: Difference Second edition. Equations: From Rabbits to Chaos Beardon: Limits: A New Approach to Curtis: Linear Algebra: An Introductory Real Analysis. Approach. Fourth edition. Bak/Newman: Complex Analysis. Daepp/Gorkin: Reading, Writing, and Second edition. Proving: A Closer Look at Banchoff/Wermer: Linear Algebra Mathematics. Through Geometry. Second edition. Devlin: The Joy of Sets: Fundamentals Berberian: A First Course in Real of Contemporary Set Theory. Second Analysis. edition. Bix: Conics and Cubics: A Dixmier: General Topology. Concrete Introduction to Algebraic Driver: Why Math? Curves. Ebbinghaus/Flum/Thomas: Bre´maud: An Introduction to Mathematical Logic. Second edition. Probabilistic Modeling. Edgar: Measure, Topology, and Fractal Bressoud: Factorization and Primality Geometry. Testing. Elaydi: An Introduction to Difference Bressoud: Second Year Calculus. Equations. Third edition. Readings in Mathematics. Erdo˜s/Sura´nyi: Topics in the Theory of Brickman: Mathematical Introduction Numbers. to Linear Programming and Game Estep: Practical Analysis in One Variable. Theory. Exner: An Accompaniment to Higher Browder: Mathematical Analysis: Mathematics.
    [Show full text]
  • Mathematical Apocrypha Redux Originally Published by the Mathematical Association of America, 2005
    AMS / MAA SPECTRUM VOL 44 Steven G. Krantz MATHEMATICAL More Stories & Anecdotes of Mathematicians & the Mathematical 10.1090/spec/044 Mathematical Apocrypha Redux Originally published by The Mathematical Association of America, 2005. ISBN: 978-1-4704-5172-1 LCCN: 2005932231 Copyright © 2005, held by the American Mathematical Society Printed in the United States of America. Reprinted by the American Mathematical Society, 2019 The American Mathematical Society retains all rights except those granted to the United States Government. ⃝1 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10 9 8 7 6 5 4 3 2 24 23 22 21 20 19 AMS/MAA SPECTRUM VOL 44 Mathematical Apocrypoha Redux More Stories and Anecdotes of Mathematicians and the Mathematical Steven G. Krantz SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Council on Publications Roger Nelsen, Chair Spectrum Editorial Board Gerald L. Alexanderson, Editor Robert Beezer Ellen Maycock William Dunham JeffreyL. Nunemacher Michael Filaseta Jean Pedersen Erica Flapan J. D. Phillips, Jr. Michael A. Jones Kenneth Ross Eleanor Lang Kendrick Marvin Schaefer Keith Kendig Sanford Segal Franklin Sheehan The Spectrum Series of the Mathematical Association of America was so named to reflect its purpose: to publish a broad range of books including biographies, acces­ sible expositions of old or new mathematical ideas, reprints and revisions of excel­ lent out-of-print books, popular works, and other monographs of high interest that will appeal to a broad range of readers, including students and teachers of mathe­ matics, mathematical amateurs, and researchers.
    [Show full text]
  • Martin Gardner Papers SC0647
    http://oac.cdlib.org/findaid/ark:/13030/kt6s20356s No online items Guide to the Martin Gardner Papers SC0647 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives October 2008 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Martin Gardner SC064712473 1 Papers SC0647 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Martin Gardner papers Creator: Gardner, Martin Identifier/Call Number: SC0647 Identifier/Call Number: 12473 Physical Description: 63.5 Linear Feet Date (inclusive): 1957-1997 Abstract: These papers pertain to his interest in mathematics and consist of files relating to his SCIENTIFIC AMERICAN mathematical games column (1957-1986) and subject files on recreational mathematics. Papers include correspondence, notes, clippings, and articles, with some examples of puzzle toys. Correspondents include Dmitri A. Borgmann, John H. Conway, H. S. M Coxeter, Persi Diaconis, Solomon W Golomb, Richard K.Guy, David A. Klarner, Donald Ervin Knuth, Harry Lindgren, Doris Schattschneider, Jerry Slocum, Charles W.Trigg, Stanislaw M. Ulam, and Samuel Yates. Immediate Source of Acquisition note Gift of Martin Gardner, 2002. Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner.
    [Show full text]