The Fundamental Theorem of Algebra: a Visual Approach

Total Page:16

File Type:pdf, Size:1020Kb

The Fundamental Theorem of Algebra: a Visual Approach The Fundamental Theorem of Algebra: A Visual Approach Daniel J. Velleman Department of Mathematics and Statistics Amherst College Amherst, MA 01002 In the real numbers, a linear equation ax + b = 0 (with a 6= 0) always has a solution. Quadratic equations don't always have real solutions, but the quadratic formula gives solutions in the complex numbers. What if we move on to polynomial equations of higher degree? Might we need to extend the complex numbers to some larger number system in order to find solutions to these equations? The answer is no: solutions to all polynomial equations can be found in the complex numbers. This is the content of the Fundamental Theorem of Algebra: Fundamental Theorem of Algebra. Every nonconstant polynomial with complex coefficients has a root in the complex numbers. Some version of the statement of the Fundamental Theorem of Algebra first appeared early in the 17th century in the writings of several mathematicians, including Peter Roth, Albert Girard, and Ren´eDescartes. The first proof of the Fundamental Theorem was published by Jean Le Rond d'Alembert in 1746 [2], but his proof was not very rigorous. Carl Friedrich Gauss is often credited with producing the first correct proof in his doctoral dissertation of 1799 [15], although this proof also had gaps. (For a comparison of these two proofs, see [26, pp. 195{200].) Today there are many known proofs of the Fundamental Theorem of Algebra, including proofs using methods of algebra, analysis, and topology. (The references include many papers and books containing proofs of the Fundamental Theorem; [14] alone contains 11 proofs.) Our focus in this paper will be on the use of pictures to see why the theorem is true. Of course, if we want to use pictures to display the behavior of polynomials defined on the com- plex numbers, we are immediately faced with a difficulty: the complex numbers are two-dimensional, so it appears that a graph of a complex-valued function on the complex numbers will require four dimensions. Our solution to this problem will be to use color to represent some dimensions. We begin by assigning a color to every number in the complex plane. Figure 1 is a picture of the complex plane in which every point has been assigned a different color. The origin is colored black. Traveling counterclockwise around a circle centered at the origin, we go through the colors of a standard color wheel: red, yellow, green, cyan, blue, magenta, and back to red. Points near the origin have dark colors, with the color assigned to a complex number z approaching black as z approaches 0. Points far from the origin are light, with the color of z approaching white as jzj approaches infinity. Every complex number has a different color in this picture, so a complex number can be uniquely specified by giving its color. 1 30 20 10 0 -10 -20 -30 -30 -20 -10 0 10 20 30 Figure 1: Assigning a color to each point in the complex plane. 2 We can now use this color scheme to draw a picture of a function f : C ! C as follows: we simply color each point z in the complex plane with the color corresponding to the value of f(z). From such a picture, we can read off the value of f(z), for any complex number z, by determining the color of the point z in the picture, and then consulting Figure 1 to see what complex number is represented by that color. For example, Figure 2 is a picture of the function f(z) = z3. Three things are immediately evident in this picture. First, we see that the center of the picture is very dark. This is because when z is small, z3 is very small, and therefore the color assigned to z3 is very dark. Second, the colors fade out quickly when we move toward the outside of the picture. This is because when z is large, z3 is very large, and therefore its color is very light. But what is most striking about the picture is that when we go counterclockwise around a circle centered at the origin, we go through the colors of the color wheel three times. This illustrates the fact that the argument of z3 is three times the argument of z, and therefore the image of a circle centered at the origin under the cubing function wraps around the origin three times. As an illustration of how such a picture can help us understand a function, note that it is immediately evident from Figure 2 that every nonzero complex number has three cube roots. For example, the color assigned to the number 1 in Figure 1 is a deep red. Therefore, the three cube roots of 1 are the three points in Figure 2 that are colored this particular shade of red. Let us consider now a more complicated function. Figure 3 is a picture of the polynomial f(z) = z8 − 2z7 + 2z6 − 4z5 + 2z4 − 2z3 − 5z2 + 4z − 4. Perhaps the first thing one notices in this picture is that the Fundamental Theorem of Algebra does, indeed, hold for f. Since the color assigned to the number 0 is black, the roots of f appear in this picture as six black dots. The fact that the polynomial has degree eight also shows up in the picture. For large z, the z8 term in f(z) dominates the other terms, and therefore the outer parts of the picture look similar to a picture of the function z8: the colors begin to fade toward white as we move toward the edges of the picture, but before they fade out we can see that, as we go around the picture counterclockwise, the colors of the color wheel are repeated eight times. Why does f, a polynomial of degree eight, have only six roots? The reason is that two of the roots are double roots, andp this fact is also evident in the picture.p The single roots occur at the points −1, 2, and (−1 ± i 7)=2, and the double roots are at (1 ± i 3)=2. The regions around the double roots are somewhat darker than those around the single roots, and at the double roots the colors of the color wheel wrap around the root twice, whereas at the single roots they wrap around only once. In general, if a polynomial f has a root of multiplicity k at a point z0, then when f(z) is expanded in powers of z − z0 it will have the form k f(z) = c(z − z0) + (higher degree terms): For z close to z0, the first term in this expansion will dominate the higher degree terms, and therefore k we have f(z) ≈ c(z − z0) . Thus, near the point z0, the picture of f will be similar to the picture of the function czk near 0. In particular, the colors of the color wheel will wrap around the point z0 k times, and the larger k is, the darker the picture will be near z0. (It is not hard to see that the effect of the coefficient c on the picture is to alter the darkness of the picture near z0, and also to rotate the arrangement of colors around z0. For example, near the root at −1 in Figure 3, the colors have been rotated 180 degrees, so that red is to the left of the root rather than to the right. 3 6 4 2 0 -2 -4 -6 -6 -4 -2 0 2 4 6 Figure 2: f(z) = z3. 4 2 1 p 0 -1 -2 -1 0 1 2 Figure 3: f(z) = z8 − 2z7 + 2z6 − 4z5 + 2z4 − 2z3 − 5z2 + 4z − 4. 5 This is because when the polynomial f(z) of Figure 3 is expanded in powers of z + 1, the coefficient of z + 1 is a negative real number.) We might describe this situation by saying that at a single root, f is \locally linear," at a double root it is \locally quadratic," etc. In fact, a similar principle applies even at points that are not roots, although this is a little harder to see in our pictures. For any complex number z0, by expanding f(z) in powers of z − z0 we can find complex numbers b and c and a positive integer k such that k f(z) = b + c(z − z0) + (higher degree terms): k It follows that for z near z0 we will have f(z) ≈ b + c(z − z0) . We have already seen that the k picture of the function c(z − z0) has a black dot at z0, with the colors that surround 0 in Figure 1 wrapping around z0 k times. The effect of adding b to this function is to \shift" the colors in the color space of Figure 1 from 0 to b. The result is that z0 will be colored with the color assigned to b, and it is the colors surrounding b in Figure 1 that will wrap around z0 k times. (The fact that all of the colors surrounding b appear near z0 illustrates that the Open Mapping Theorem holds for f.) For example, in Figure 3 we have drawn a small circle at the point representing the complex number −:7 + :8i, and labeled this point p. The point p is colored light green, which is the color representing the complex number f(−:7+:8i) ≈ −7:5+15:8i. Moving up from p, the colors become greenish-yellow and then yellow; moving down, they shift toward cyan.
Recommended publications
  • These Links No Longer Work. Springer Have Pulled the Free Plug
    Sign up for a GitHub account Sign in Instantly share code, notes, and snippets. Create a gist now bishboria / springer-free-maths-books.md Last active 10 minutes ago Code Revisions 7 Stars 2104 Forks 417 Embed <script src="https://gist.githu b .coDmo/wbinslohabodr ZiIaP/8326b17bbd652f34566a.js"></script> Springer made a bunch of books available for free, these were the direct links springer-free-maths-books.md Raw These links no longer work. Springer have pulled the free plug. Graduate texts in mathematics duplicates = multiple editions A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Course in Arithmetic, Jean-Pierre Serre A Course in Computational Algebraic Number Theory, Henri Cohen A Course in Differential Geometry, Wilhelm Klingenberg A Course in Functional Analysis, John B. Conway A Course in Homological Algebra, P. J. Hilton U. Stammbach A Course in Homological Algebra, Peter J. Hilton Urs Stammbach A Course in Mathematical Logic, Yu. I. Manin A Course in Number Theory and Cryptography, Neal Koblitz A Course in Number Theory and Cryptography, Neal Koblitz A Course in Simple-Homotopy Theory, Marshall M. Cohen A Course in p-adic Analysis, Alain M. Robert A Course in the Theory of Groups, Derek J. S. Robinson A Course in the Theory of Groups, Derek J. S. Robinson A Course on Borel Sets, S. M. Srivastava A Course on Borel Sets, S. M. Srivastava A First Course in Noncommutative Rings, T. Y. Lam A First Course in Noncommutative Rings, T. Y. Lam A Hilbert Space Problem Book, P.
    [Show full text]
  • Bibliography
    Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
    [Show full text]
  • Introduction to Representation Theory
    STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina with historical interludes by Slava Gerovitch http://dx.doi.org/10.1090/stml/059 STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof Oleg Golberg Sebastian Hensel Tiankai Liu Alex Schwendner Dmitry Vaintrob Elena Yudovina with historical interludes by Slava Gerovitch American Mathematical Society Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell 2010 Mathematics Subject Classification. Primary 16Gxx, 20Gxx. For additional information and updates on this book, visit www.ams.org/bookpages/stml-59 Library of Congress Cataloging-in-Publication Data Introduction to representation theory / Pavel Etingof ...[et al.] ; with historical interludes by Slava Gerovitch. p. cm. — (Student mathematical library ; v. 59) Includes bibliographical references and index. ISBN 978-0-8218-5351-1 (alk. paper) 1. Representations of algebras. 2. Representations of groups. I. Etingof, P. I. (Pavel I.), 1969– QA155.I586 2011 512.46—dc22 2011004787 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294 USA.
    [Show full text]
  • E6-132-29.Pdf
    HISTORY OF MATHEMATICS – The Number Concept and Number Systems - John Stillwell THE NUMBER CONCEPT AND NUMBER SYSTEMS John Stillwell Department of Mathematics, University of San Francisco, U.S.A. School of Mathematical Sciences, Monash University Australia. Keywords: History of mathematics, number theory, foundations of mathematics, complex numbers, quaternions, octonions, geometry. Contents 1. Introduction 2. Arithmetic 3. Length and area 4. Algebra and geometry 5. Real numbers 6. Imaginary numbers 7. Geometry of complex numbers 8. Algebra of complex numbers 9. Quaternions 10. Geometry of quaternions 11. Octonions 12. Incidence geometry Glossary Bibliography Biographical Sketch Summary A survey of the number concept, from its prehistoric origins to its many applications in mathematics today. The emphasis is on how the number concept was expanded to meet the demands of arithmetic, geometry and algebra. 1. Introduction The first numbers we all meet are the positive integers 1, 2, 3, 4, … We use them for countingUNESCO – that is, for measuring the size– of collectionsEOLSS – and no doubt integers were first invented for that purpose. Counting seems to be a simple process, but it leads to more complex processes,SAMPLE such as addition (if CHAPTERSI have 19 sheep and you have 26 sheep, how many do we have altogether?) and multiplication ( if seven people each have 13 sheep, how many do they have altogether?). Addition leads in turn to the idea of subtraction, which raises questions that have no answers in the positive integers. For example, what is the result of subtracting 7 from 5? To answer such questions we introduce negative integers and thus make an extension of the system of positive integers.
    [Show full text]
  • Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) Is a Series of Graduate-Level Textbooks in Mathematics Published by Springer-Verlag
    欢迎加入数学专业竞赛及考研群:681325984 Graduate Texts in Mathematics - Wikipedia Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. Contents List of books See also Notes External links List of books 1. Introduction to Axiomatic Set Theory, Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ISBN 978-1-4613- 8170-9) 2. Measure and Category - A Survey of the Analogies between Topological and Measure Spaces, John C. Oxtoby (1980, 2nd ed., ISBN 978-0-387-90508-2) 3. Topological Vector Spaces, H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ISBN 978-0-387-98726-2) 4. A Course in Homological Algebra, Peter Hilton, Urs Stammbach (1997, 2nd ed., ISBN 978-0-387-94823-2) 5. Categories for the Working Mathematician, Saunders Mac Lane (1998, 2nd ed., ISBN 978-0-387-98403-2) 6. Projective Planes, Daniel R. Hughes, Fred C. Piper, (1982, ISBN 978-3-540-90043-6) 7. A Course in Arithmetic, Jean-Pierre Serre (1996, ISBN 978-0-387-90040-7) 8.
    [Show full text]
  • Direct Links to Free Springer Books (Pdf Versions)
    Sign up for a GitHub account Sign in Instantly share code, notes, and snippets. Create a gist now bishboria / springer-free-maths-books.md Last active 36 seconds ago Code Revisions 5 Stars 1664 Forks 306 Embed <script src="https://gist.githu b .coDmo/wbinslohabodr ZiIaP/8326b17bbd652f34566a.js"></script> Springer have made a bunch of books available for free, here are the direct links springer-free-maths-books.md Raw Direct links to free Springer books (pdf versions) Graduate texts in mathematics duplicates = multiple editions A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Course in Arithmetic, Jean-Pierre Serre A Course in Computational Algebraic Number Theory, Henri Cohen A Course in Differential Geometry, Wilhelm Klingenberg A Course in Functional Analysis, John B. Conway A Course in Homological Algebra, P. J. Hilton U. Stammbach A Course in Homological Algebra, Peter J. Hilton Urs Stammbach A Course in Mathematical Logic, Yu. I. Manin A Course in Number Theory and Cryptography, Neal Koblitz A Course in Number Theory and Cryptography, Neal Koblitz A Course in Simple-Homotopy Theory, Marshall M. Cohen A Course in p-adic Analysis, Alain M. Robert A Course in the Theory of Groups, Derek J. S. Robinson A Course in the Theory of Groups, Derek J. S. Robinson A Course on Borel Sets, S. M. Srivastava A Course on Borel Sets, S. M. Srivastava A First Course in Noncommutative Rings, T. Y. Lam A First Course in Noncommutative Rings, T. Y. Lam A Hilbert Space Problem Book, P.
    [Show full text]
  • Topics in Combinatorial Group Theory
    Topics in Combinatorial Group Theory Preface I gave a course on Combinatorial Group Theory at ETH, Zurich, in the Winter term of 1987/88. The notes of that course have been reproduced here, essentially without change. I have made no attempt to improve on those notes, nor have I made any real attempt to provide a complete list of references. I have, however, included some general references which should make it possible for the interested reader to obtain easy access to any one of the topics treated here. In notes of this kind, it may happen that an idea or a theorem that is due to someone other than the author, has inadvertently been improperly acknowledged, if at all. If indeed that is the case here, I trust that I will be forgiven in view of the informal nature of these notes. Acknowledgements I would like to thank R. Suter for taking notes of the course and for his many comments and corrections and M. Schunemann for a superb job of “TEX-ing” the manuscript. I would also like to acknowledge the help and insightful comments of Urs Stammbach. In addition, I would like to take this opportunity to express my thanks and appreciation to him and his wife Irene, for their friendship and their hospitality over many years, and to him, in particular, for all of the work that he has done on my behalf, making it possible for me to spend so many pleasurable months in Zurich. Combinatorial Group Theory iii CONTENTS Chapter I History 1. Introduction ..................................................................1 2.
    [Show full text]
  • Undergraduate Texts in Mathematics
    Undergraduate Texts in Mathematics Editors S. Axler K.A. Ribet Undergraduate Texts in Mathematics Abbott: Understanding Analysis. Chambert-Loir: A Field Guide to Algebra Anglin: Mathematics: A Concise History Childs: A Concrete Introduction to and Philosophy. Higher Algebra. Second edition. Readings in Mathematics. Chung/AitSahlia: Elementary Probability Anglin/Lambek: The Heritage of Theory: With Stochastic Processes and Thales. an Introduction to Mathematical Readings in Mathematics. Finance. Fourth edition. Apostol: Introduction to Analytic Cox/Little/O’Shea: Ideals, Varieties, Number Theory. Second edition. and Algorithms. Second edition. Armstrong: Basic Topology. Croom: Basic Concepts of Algebraic Armstrong: Groups and Symmetry. Topology. Axler: Linear Algebra Done Right. Cull/Flahive/Robson: Difference Second edition. Equations: From Rabbits to Chaos Beardon: Limits: A New Approach to Curtis: Linear Algebra: An Introductory Real Analysis. Approach. Fourth edition. Bak/Newman: Complex Analysis. Daepp/Gorkin: Reading, Writing, and Second edition. Proving: A Closer Look at Banchoff/Wermer: Linear Algebra Mathematics. Through Geometry. Second edition. Devlin: The Joy of Sets: Fundamentals Berberian: A First Course in Real of Contemporary Set Theory. Second Analysis. edition. Bix: Conics and Cubics: A Dixmier: General Topology. Concrete Introduction to Algebraic Driver: Why Math? Curves. Ebbinghaus/Flum/Thomas: Bre´maud: An Introduction to Mathematical Logic. Second edition. Probabilistic Modeling. Edgar: Measure, Topology, and Fractal Bressoud: Factorization and Primality Geometry. Testing. Elaydi: An Introduction to Difference Bressoud: Second Year Calculus. Equations. Third edition. Readings in Mathematics. Erdo˜s/Sura´nyi: Topics in the Theory of Brickman: Mathematical Introduction Numbers. to Linear Programming and Game Estep: Practical Analysis in One Variable. Theory. Exner: An Accompaniment to Higher Browder: Mathematical Analysis: Mathematics.
    [Show full text]
  • Mathematical Apocrypha Redux Originally Published by the Mathematical Association of America, 2005
    AMS / MAA SPECTRUM VOL 44 Steven G. Krantz MATHEMATICAL More Stories & Anecdotes of Mathematicians & the Mathematical 10.1090/spec/044 Mathematical Apocrypha Redux Originally published by The Mathematical Association of America, 2005. ISBN: 978-1-4704-5172-1 LCCN: 2005932231 Copyright © 2005, held by the American Mathematical Society Printed in the United States of America. Reprinted by the American Mathematical Society, 2019 The American Mathematical Society retains all rights except those granted to the United States Government. ⃝1 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10 9 8 7 6 5 4 3 2 24 23 22 21 20 19 AMS/MAA SPECTRUM VOL 44 Mathematical Apocrypoha Redux More Stories and Anecdotes of Mathematicians and the Mathematical Steven G. Krantz SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Council on Publications Roger Nelsen, Chair Spectrum Editorial Board Gerald L. Alexanderson, Editor Robert Beezer Ellen Maycock William Dunham JeffreyL. Nunemacher Michael Filaseta Jean Pedersen Erica Flapan J. D. Phillips, Jr. Michael A. Jones Kenneth Ross Eleanor Lang Kendrick Marvin Schaefer Keith Kendig Sanford Segal Franklin Sheehan The Spectrum Series of the Mathematical Association of America was so named to reflect its purpose: to publish a broad range of books including biographies, acces­ sible expositions of old or new mathematical ideas, reprints and revisions of excel­ lent out-of-print books, popular works, and other monographs of high interest that will appeal to a broad range of readers, including students and teachers of mathe­ matics, mathematical amateurs, and researchers.
    [Show full text]
  • Martin Gardner Papers SC0647
    http://oac.cdlib.org/findaid/ark:/13030/kt6s20356s No online items Guide to the Martin Gardner Papers SC0647 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives October 2008 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Martin Gardner SC064712473 1 Papers SC0647 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Martin Gardner papers Creator: Gardner, Martin Identifier/Call Number: SC0647 Identifier/Call Number: 12473 Physical Description: 63.5 Linear Feet Date (inclusive): 1957-1997 Abstract: These papers pertain to his interest in mathematics and consist of files relating to his SCIENTIFIC AMERICAN mathematical games column (1957-1986) and subject files on recreational mathematics. Papers include correspondence, notes, clippings, and articles, with some examples of puzzle toys. Correspondents include Dmitri A. Borgmann, John H. Conway, H. S. M Coxeter, Persi Diaconis, Solomon W Golomb, Richard K.Guy, David A. Klarner, Donald Ervin Knuth, Harry Lindgren, Doris Schattschneider, Jerry Slocum, Charles W.Trigg, Stanislaw M. Ulam, and Samuel Yates. Immediate Source of Acquisition note Gift of Martin Gardner, 2002. Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner.
    [Show full text]
  • BAMA School Year 2006—20072019—2020 Join Us for a Free Talk
    BAMA School Year 2006—20072019—2020 Join us for a free talk... 31 John Stillwell All Infinities, Great and Small San Jose State University* Washington Square Hall 207 7:30 pm Friday, November 1, 2019 Infinity has been part of mathematics since ancient times and has been controversial since the beginning. At first, the controversy was about "potential" versus "actual" infinity. In the 19th century the controversy morphed into "discrete" versus "continuous" infinity and was intensified by Cantor's discovery that there are infinitely many kinds of infinity. This led, in the 20th century, to axiom systems for set theory that attempt to clarify the notion of infinite set. The clarified notion answers many questions, but not all—in fact it is impossible to know whether certain very large sets, called inaccessible sets, exist. Even more confounding is the fact that these inaccessible sets control what is true of the real numbers, which mathematicians hoped to be completely knowable. John Stillwell was born in Australia and educated at Melbourne University and MIT. After teaching for 30 years at Monash University in Melbourne, he became Professor of Mathematics at the University of San Francisco in 2002. He has written numerous books on mathematics, including "Mathematics and Its History" and "Roads to Infinity," and has given two previous BAMA talks. * See back for map and directions. Visit the Bay Area Mathematical Adventures (BAMA) at http://mathematicaladventures.org To receive email notifications about BAMA talks, please contact Frank Farris at [email protected] . BAMA Bay Area Mathematical Adventures A series of presentations on diverse topics by remarkable mathematicians.
    [Show full text]
  • Math in Moscow Common History
    Scientific WorkPlace® • Mathematical Word Processing • lt\TEX Typesetting Scientific Word®• Computer Algebra Plot 30 Animated + cytlndrtcal (-1 + 2r,21ru,- 1 + lr) 0 ·-~""'- r0 .......o~ r PodianY U rN~ 2.110142 UIJIIectdl' 1 00891 -U!NtdoiZ 3.!15911 v....,_ Animated plots tn sphertc:al coorcttrud:es ,. To make an animated plot in spherieal coordinates 1 Type an exprwsslon In !hr.. v.Nbles . 2 Wllh the Insertion point In the expression. choose Plot 3D The neXI example shows a sphere that grows from radius 1 to ,. Plot 3D Animated + SpMrtcal The Gold Standard for Mathematical Publishing Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in lf.T£X. You choose to print with or without LATEX typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 20 and 30 plots, rotate, move, and fly through 30 plots, create 30 implicit plots, and more. ..- MuPAD MuPAD. Pro Pro 111fO!Ifii~A~JetriS)'Itfll "':' Version 4 MuPAD Pro is an integrated and open mathematical problem­ solving environment for symbo lic and numeric computing. Visit our website for details. cK.ichan SOFTWARE, INC , Visit our website for free trial versions of all our products. www.mackic han.com/notices • Email: [email protected] • Toll free : 87 7-724-9673 --CPAA-2007-- communications on Pure and Applied Analysis ISSN 1534-0392 (print); ISSN 1553-5258 (electronic) ' ' CPAA, covered in Science Citation Index-Expanded (SCI­ Editorial board ' ' ' ' E), publishes original research papers of the highest quality Editors in Chief: ' ' ' Shouchuan Hu ' in all the major areas of analysis and its applications, with a ' .
    [Show full text]