Gazette 31 Vol 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
These Links No Longer Work. Springer Have Pulled the Free Plug
Sign up for a GitHub account Sign in Instantly share code, notes, and snippets. Create a gist now bishboria / springer-free-maths-books.md Last active 10 minutes ago Code Revisions 7 Stars 2104 Forks 417 Embed <script src="https://gist.githu b .coDmo/wbinslohabodr ZiIaP/8326b17bbd652f34566a.js"></script> Springer made a bunch of books available for free, these were the direct links springer-free-maths-books.md Raw These links no longer work. Springer have pulled the free plug. Graduate texts in mathematics duplicates = multiple editions A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Course in Arithmetic, Jean-Pierre Serre A Course in Computational Algebraic Number Theory, Henri Cohen A Course in Differential Geometry, Wilhelm Klingenberg A Course in Functional Analysis, John B. Conway A Course in Homological Algebra, P. J. Hilton U. Stammbach A Course in Homological Algebra, Peter J. Hilton Urs Stammbach A Course in Mathematical Logic, Yu. I. Manin A Course in Number Theory and Cryptography, Neal Koblitz A Course in Number Theory and Cryptography, Neal Koblitz A Course in Simple-Homotopy Theory, Marshall M. Cohen A Course in p-adic Analysis, Alain M. Robert A Course in the Theory of Groups, Derek J. S. Robinson A Course in the Theory of Groups, Derek J. S. Robinson A Course on Borel Sets, S. M. Srivastava A Course on Borel Sets, S. M. Srivastava A First Course in Noncommutative Rings, T. Y. Lam A First Course in Noncommutative Rings, T. Y. Lam A Hilbert Space Problem Book, P. -
Nominations for President
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society September 2013 Volume 60, Number 8 The Calculus Concept Inventory— Measurement of the Effect of Teaching Methodology in Mathematics page 1018 DML-CZ: The Experience of a Medium- Sized Digital Mathematics Library page 1028 Fingerprint Databases for Theorems page 1034 A History of the Arf-Kervaire Invariant Problem page 1040 About the cover: 63 years since ENIAC broke the ice (see page 1113) Solve the differential equation. Solve the differential equation. t ln t dr + r = 7tet dt t ln t dr + r = 7tet dt 7et + C r = 7et + C ln t ✓r = ln t ✓ WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS? THE ANSWER IS IN THE QUESTIONS. When it comes to online calculus, you need a solution that can grade the toughest open-ended questions. And for that there is one answer: WebAssign. WebAssign’s patent pending grading engine can recognize multiple correct answers to the same complex question. Competitive systems, on the other hand, are forced to use multiple choice answers because, well they have no choice. And speaking of choice, only WebAssign supports every major textbook from every major publisher. With new interactive tutorials and videos offered to every student, it’s not hard to see why WebAssign is the perfect answer to your online homework needs. It’s all part of the WebAssign commitment to excellence in education. Learn all about it now at webassign.net/math. 800.955.8275 webassign.net/math WA Calculus Question ad Notices.indd 1 11/29/12 1:06 PM Notices 1051 of the American Mathematical Society September 2013 Communications 1048 WHAT IS…the p-adic Mandelbrot Set? Joseph H. -
Bibliography
Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977. -
The Vile, Dopy, Evil and Odious Game Players
The vile, dopy, evil and odious game players Aviezri S. Fraenkel¤ Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot 76100, Israel February 7, 2010 Wil: We have worked and published jointly, for example on graph focality. Now that one of us is already an octogenarian and the other is only a decade away, let's have some fun; let's play a game. Gert: I'm game. Wil: In the Fall 2009 issue of the MSRI gazette Emissary, Elwyn Berlekamp and Joe Buhler proposed the following puzzle: \Nathan and Peter are playing a game. Nathan always goes ¯rst. The players take turns changing a positive integer to a smaller one and then passing the smaller number back to their op- ponent. On each move, a player may either subtract one from the integer or halve it, rounding down if necessary. Thus, from 28 the legal moves are to 27 or to 14; from 27, the legal moves are to 26 or to 13. The game ends when the integer reaches 0. The player who makes the last move wins. For example, if the starting integer is 15, a legal sequence of moves might be to 7, then 6, then 3, then 2, then 1, and then to 0. (In this sample game one of the players could have played better!) Assuming both Nathan and Peter play according to the best possible strategy, who will win if the starting integer is 1000? 2000?" Let's dub it the Mark game, since it's due to Mark Krusemeyer according to Berlekamp and Buhler. -
Introduction to Representation Theory
STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina with historical interludes by Slava Gerovitch http://dx.doi.org/10.1090/stml/059 STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof Oleg Golberg Sebastian Hensel Tiankai Liu Alex Schwendner Dmitry Vaintrob Elena Yudovina with historical interludes by Slava Gerovitch American Mathematical Society Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell 2010 Mathematics Subject Classification. Primary 16Gxx, 20Gxx. For additional information and updates on this book, visit www.ams.org/bookpages/stml-59 Library of Congress Cataloging-in-Publication Data Introduction to representation theory / Pavel Etingof ...[et al.] ; with historical interludes by Slava Gerovitch. p. cm. — (Student mathematical library ; v. 59) Includes bibliographical references and index. ISBN 978-0-8218-5351-1 (alk. paper) 1. Representations of algebras. 2. Representations of groups. I. Etingof, P. I. (Pavel I.), 1969– QA155.I586 2011 512.46—dc22 2011004787 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294 USA. -
E6-132-29.Pdf
HISTORY OF MATHEMATICS – The Number Concept and Number Systems - John Stillwell THE NUMBER CONCEPT AND NUMBER SYSTEMS John Stillwell Department of Mathematics, University of San Francisco, U.S.A. School of Mathematical Sciences, Monash University Australia. Keywords: History of mathematics, number theory, foundations of mathematics, complex numbers, quaternions, octonions, geometry. Contents 1. Introduction 2. Arithmetic 3. Length and area 4. Algebra and geometry 5. Real numbers 6. Imaginary numbers 7. Geometry of complex numbers 8. Algebra of complex numbers 9. Quaternions 10. Geometry of quaternions 11. Octonions 12. Incidence geometry Glossary Bibliography Biographical Sketch Summary A survey of the number concept, from its prehistoric origins to its many applications in mathematics today. The emphasis is on how the number concept was expanded to meet the demands of arithmetic, geometry and algebra. 1. Introduction The first numbers we all meet are the positive integers 1, 2, 3, 4, … We use them for countingUNESCO – that is, for measuring the size– of collectionsEOLSS – and no doubt integers were first invented for that purpose. Counting seems to be a simple process, but it leads to more complex processes,SAMPLE such as addition (if CHAPTERSI have 19 sheep and you have 26 sheep, how many do we have altogether?) and multiplication ( if seven people each have 13 sheep, how many do they have altogether?). Addition leads in turn to the idea of subtraction, which raises questions that have no answers in the positive integers. For example, what is the result of subtracting 7 from 5? To answer such questions we introduce negative integers and thus make an extension of the system of positive integers. -
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) Is a Series of Graduate-Level Textbooks in Mathematics Published by Springer-Verlag
欢迎加入数学专业竞赛及考研群:681325984 Graduate Texts in Mathematics - Wikipedia Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. Contents List of books See also Notes External links List of books 1. Introduction to Axiomatic Set Theory, Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ISBN 978-1-4613- 8170-9) 2. Measure and Category - A Survey of the Analogies between Topological and Measure Spaces, John C. Oxtoby (1980, 2nd ed., ISBN 978-0-387-90508-2) 3. Topological Vector Spaces, H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ISBN 978-0-387-98726-2) 4. A Course in Homological Algebra, Peter Hilton, Urs Stammbach (1997, 2nd ed., ISBN 978-0-387-94823-2) 5. Categories for the Working Mathematician, Saunders Mac Lane (1998, 2nd ed., ISBN 978-0-387-98403-2) 6. Projective Planes, Daniel R. Hughes, Fred C. Piper, (1982, ISBN 978-3-540-90043-6) 7. A Course in Arithmetic, Jean-Pierre Serre (1996, ISBN 978-0-387-90040-7) 8. -
Probability and Random Processes ECS 315
Probability and Random Processes ECS 315 Asst. Prof. Dr. Prapun Suksompong [email protected] 4 Combinatorics Office Hours: BKD, 6th floor of Sirindhralai building Tuesday 9:00-10:00 Wednesday 14:20-15:20 1 Thursday 9:00-10:00 Supplementary References Mathematics of Choice How to count without counting By Ivan Niven permutations, combinations, binomial coefficients, the inclusion-exclusion principle, combinatorial probability, partitions of numbers, generating polynomials, the pigeonhole principle, and much more A Course in Combinatorics By J. H. van Lint and R. M. Wilson 2 Cartesian product The Cartesian product A × B is the set of all ordered pairs where and . Named after René Descartes His best known philosophical statement is “Cogito ergo sum” (French: Je pense, donc je suis; I think, therefore I am) 3 [http://mathemagicalworld.weebly.com/rene-descartes.html] Heads, Bodies and Legs flip-book 4 Heads, Bodies and Legs flip-book (2) 5 Interactive flipbook: Miximal 6 [http://www.fastcodesign.com/3028287/miximal-is-the-new-worlds-cutest-ipad-app] One Hundred Thousand Billion Poems 7 [https://www.youtube.com/watch?v=2NhFoSFNQMQ] One Hundred Thousand Billion Poems Cent mille milliards de poèmes 8 Pokemon Go: Designing how your avatar looks 9 How many chess games are possible? 10 [https://www.youtube.com/watch?v=Km024eldY1A] An Estimate: The Shannon Number 11 [https://www.youtube.com/watch?v=Km024eldY1A] An Estimate: The Shannon Number 12 [https://www.youtube.com/watch?v=Km024eldY1A] An Estimate: The Shannon Number 13 [https://www.youtube.com/watch?v=Km024eldY1A] The Shannon Number: Just an Estimate 14 [https://www.youtube.com/watch?v=Km024eldY1A] Example: Sock It Two Me 15 [Greenes, 1977] Example: Sock It Two Me Jack is so busy that he's always throwing his socks into his top drawer without pairing them. -
What Comes Next?
NEWSFOCUS For PRESIDENT What Comes Next? arrangement of toothpicks, in which a new batch is added at each stage, centered on and One of mathematicians’ most beloved at right angles to the exposed tips of the pre- e e e e e ic c ic o i ic ic Web sites is getting ready for a makeover. vious batch (see figure). The picture that (Rank candidates o o o o h h h h in order of choice) h C C C C C The Online Encyclopedia of Integer emerges displays surprising fractal growth. t d d h h s n r t t 1 2 3 4 5 Sequences, established by Neil Sloane at “It’s got beautiful structure,” Sloane says. He Candidate A 1 2 3 4 5 AT&T Labs Research in 1996 and run and his AT&T colleague David Applegate largely as a one-man shop, is poised to go have written a paper on the sequence’s math- Candidate B 1 2 3 4 5 “wiki,” with 50 associate editors taking over ematical properties, and Applegate has con- Candidate C 1 2 3 4 5 much of the workload. tributed a movie of its geometric growth, The OEIS, or simply “Sloane” as it’s linked to its entry in the OEIS. Candidate D 1 2 3 4 5 known to sequence fanatics, is a database of Sloane set up the OEIS Foundation last Candidate E 1 2 3 4 5 nearly 200,000 lists of numbers—a mathe- year and transferred intellectual-property matical equivalent to the FBI’s voluminous rights to the nonprofit organization. -
CABINET 48 the FAX NUMBERS of the BEAST, and OTHER MATHEMATICAL SPORTS: an INTERVIEW with NEIL SLOANE Margaret Wertheim
CABINET c US $12 CANADA UK £7US $12 $12 ISSUE 57 A QUARTERLY OF ART AND CULTURE CATASTROPHE 48 THE FAX NUMBERS OF THE BEAST, AND OTHER MATHEMATICAL SPORTS: AN INTERVIEW WITH NEIL SLOANE Margaret Wertheim Everyone knows a few integer sequences: the even networks, which are like artificial brains with com- numbers, the odd numbers, the primes. And we’ve puter simulations of neurons. When these “neurons” all heard about the Fibonacci sequence (1, 1, 2, 3, 5, fire, they trigger other neurons, which in turn trig- 8, 13…), where each term is computed by adding ger others—you have to have a certain amount of together the two previous terms. In 1964, mathema- activity before a neuron gets triggered. And the tician Neil Sloane, then working on a PhD at Cornell question was, “If you have a network of these con- University, began to write down interesting sequences figured in a particular way, and you start by making of numbers on file cards. His research on neural net- one fire, will the activity continue to propagate works generated quite a few; he pressed his friends through the network? Will it die out, or will it satu- for examples and consulted mathematics textbooks. rate the network?” I was looking at models of this, As the horde of sequences grew, he transferred them and I could count the number of cells firing at any to punched cards, then magnetic tape, and eventu- given time, and I would come up with a sequence of ally to the web, where today, more than half a century numbers. -
Commencement Program, 2019
263 rd COMMENCEMENT MAY 20, 2019 20, MAY R D COMMENCEME 263 NT CLA S S O F 2 019 M A Y 20, 20 1 9 CLASS OF 2019 KEEPING FRANKLIN’S PROMISE In the words of one elegiac tribute, “Great men have two lives: one which occurs while they work on this earth; a second which begins at the day of their death and continues as long as their ideas and conceptions remain powerful.” These words befit the great Benjamin Franklin, whose inventions, innovations, ideas, writings, and public works continue to shape our thinking and renew the Republic he helped to create and the institutions he founded, including the University of Pennsylvania. Nowhere does Franklin feel more contemporary, more revolutionary, and more alive than at the University of Pennsylvania. His startling vision of a secular, nonsectarian Academy that would foster an “Inclination join’d with an Ability to serve Mankind, one’s Country, Friends and Family” has never ceased to challenge Penn to redefine the scope and mission of the modern American university. When pursued vigorously and simultaneously, the two missions – developing the inclination to do good and the ability to do well – merge to help form a more perfect university that educates more capable citizens for our democracy. Penn has embodied and advanced Franklin’s revolutionary vision for 279 years. Throughout its history, Penn has extended the frontiers of higher learning and research to produce graduates and scholars whose work has enriched the nation and all of humanity. The modern liberal arts curriculum as we know it can trace its roots to Franklin’s innovation to have Penn students study international commerce and foreign languages. -
40 Years with Sloane's Integer Sequences
40 Years with Sloane’s Integer Sequences Jeffrey Shallit School of Computer Science, University of Waterloo Waterloo, Ontario N2L 3G1, Canada [email protected] http://www.cs.uwaterloo.ca/~shallit 1/1 My Christmas Present in 1974 2/1 Sloane’s First Letter to Me 3/1 Modified Engel expansions Kalpazidou, Knopfmacher, and Knopfmacher (1990) studied expansions of the form 1 1 1 1 1 1 α = a0 + + a1 − a1 + 1 · a2 a1 + 1 · a2 + 1 · a3 −··· for real numbers α, where the ai are non-negative integers with ai positive for i 1. ≥ This expansion is essentially unique provided ai ai . +1 ≥ I tried expanding α = 2/5 and found doubly-exponential growth (a0, a1,...)=(0, 2, 3, 7, 13, 97, 193, 18817, 37633, 708158977,...). Although this particular sequence was not in the OEIS at the time, its even-indexed subsequence (2, 7, 97, 18817, 708158977,...) certainly was (as A002812) and led to the discovery that ... 4/1 Modified Engel expansions 1 2i 2i a i = (2 + √3) + (2 √3) 2 +1 2 − and 2i 2i a i = (2+ √3) + (2 √3) 1. 2 +2 − − From this it was easy to deduce the general form of the expansion for 2/(2r + 1). Compare Aho and Sloane’s 1973 paper, “Some Doubly Exponential Sequences”. Open Problem: find a simple closed form for the expansion of 3/7. 5/1 Some confusing quotients Suppose we set c = a, c = b, and for n 2 define cn to be the 0 1 ≥ smallest integer such that c c n > n−1 .