Introduction to Representation Theory

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Representation Theory STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina with historical interludes by Slava Gerovitch http://dx.doi.org/10.1090/stml/059 STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof Oleg Golberg Sebastian Hensel Tiankai Liu Alex Schwendner Dmitry Vaintrob Elena Yudovina with historical interludes by Slava Gerovitch American Mathematical Society Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell 2010 Mathematics Subject Classification. Primary 16Gxx, 20Gxx. For additional information and updates on this book, visit www.ams.org/bookpages/stml-59 Library of Congress Cataloging-in-Publication Data Introduction to representation theory / Pavel Etingof ...[et al.] ; with historical interludes by Slava Gerovitch. p. cm. — (Student mathematical library ; v. 59) Includes bibliographical references and index. ISBN 978-0-8218-5351-1 (alk. paper) 1. Representations of algebras. 2. Representations of groups. I. Etingof, P. I. (Pavel I.), 1969– QA155.I586 2011 512.46—dc22 2011004787 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294 USA. Requests can also be made by e-mail to [email protected]. c 2011 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 161514131211 Contents Chapter 1. Introduction 1 Chapter 2. Basic notions of representation theory 5 §2.1. What is representation theory? 5 §2.2. Algebras 8 §2.3. Representations 9 §2.4. Ideals 15 §2.5. Quotients 15 §2.6. Algebras defined by generators and relations 16 §2.7. Examples of algebras 17 §2.8. Quivers 19 §2.9. Lie algebras 22 §2.10. Historical interlude: Sophus Lie’s trials and transformations 26 §2.11. Tensor products 30 §2.12. The tensor algebra 35 §2.13. Hilbert’s third problem 36 §2.14. Tensor products and duals of representations of Lie algebras 36 §2.15. Representations of sl(2) 37 iii iv Contents §2.16. Problems on Lie algebras 39 Chapter 3. General results of representation theory 41 §3.1. Subrepresentations in semisimple representations 41 §3.2. The density theorem 43 §3.3. Representations of direct sums of matrix algebras 44 §3.4. Filtrations 45 §3.5. Finite dimensional algebras 46 §3.6. Characters of representations 48 §3.7. The Jordan-H¨older theorem 50 §3.8. The Krull-Schmidt theorem 51 §3.9. Problems 53 §3.10. Representations of tensor products 56 Chapter 4. Representations of finite groups: Basic results 59 §4.1. Maschke’s theorem 59 §4.2. Characters 61 §4.3. Examples 62 §4.4. Duals and tensor products of representations 65 §4.5. Orthogonality of characters 65 §4.6. Unitary representations. Another proof of Maschke’s theorem for complex representations 68 §4.7. Orthogonality of matrix elements 70 §4.8. Character tables, examples 71 §4.9. Computing tensor product multiplicities using character tables 74 §4.10. Frobenius determinant 75 §4.11. Historical interlude: Georg Frobenius’s “Principle of Horse Trade” 77 §4.12. Problems 81 §4.13. Historical interlude: William Rowan Hamilton’s quaternion of geometry, algebra, metaphysics, and poetry 86 Contents v Chapter 5. Representations of finite groups: Further results 91 §5.1. Frobenius-Schur indicator 91 §5.2. Algebraic numbers and algebraic integers 93 §5.3. Frobenius divisibility 96 §5.4. Burnside’s theorem 98 §5.5. Historical interlude: William Burnside and intellectual harmony in mathematics 100 §5.6. Representations of products 104 §5.7. Virtual representations 105 §5.8. Induced representations 105 §5.9. The Frobenius formula for the character of an induced representation 106 §5.10. Frobenius reciprocity 107 §5.11. Examples 110 §5.12. Representations of Sn 110 §5.13. Proof of the classification theorem for representations of Sn 112 §5.14. Induced representations for Sn 114 §5.15. The Frobenius character formula 115 §5.16. Problems 118 §5.17. The hook length formula 118 §5.18. Schur-Weyl duality for gl(V ) 119 §5.19. Schur-Weyl duality for GL(V ) 122 §5.20. Historical interlude: Hermann Weyl at the intersection of limitation and freedom 122 §5.21. Schur polynomials 128 §5.22. The characters of Lλ 129 §5.23. Algebraic representations of GL(V ) 130 §5.24. Problems 131 §5.25. Representations of GL2(Fq) 132 §5.26. Artin’s theorem 141 vi Contents §5.27. Representations of semidirect products 142 Chapter 6. Quiver representations 145 §6.1. Problems 145 §6.2. Indecomposable representations of the quivers A1,A2,A3 150 §6.3. Indecomposable representations of the quiver D4 154 §6.4. Roots 160 §6.5. Gabriel’s theorem 163 §6.6. Reflection functors 164 §6.7. Coxeter elements 169 §6.8. Proof of Gabriel’s theorem 170 §6.9. Problems 173 Chapter 7. Introduction to categories 177 §7.1. The definition of a category 177 §7.2. Functors 179 §7.3. Morphisms of functors 181 §7.4. Equivalence of categories 182 §7.5. Representable functors 183 §7.6. Adjoint functors 184 §7.7. Abelian categories 186 §7.8. Complexes and cohomology 187 §7.9. Exact functors 190 §7.10. Historical interlude: Eilenberg, Mac Lane, and “general abstract nonsense” 192 Chapter 8. Homological algebra 201 §8.1. Projective and injective modules 201 §8.2. Tor and Ext functors 203 Chapter 9. Structure of finite dimensional algebras 209 §9.1. Lifting of idempotents 209 §9.2. Projective covers 210 Contents vii §9.3. The Cartan matrix of a finite dimensional algebra 211 §9.4. Homological dimension 212 §9.5. Blocks 213 §9.6. Finite abelian categories 214 §9.7. Morita equivalence 215 References for historical interludes 217 Mathematical references 223 Index 225 References for historical interludes [1] Adelmann, Clemens, and Eberhard H.-A. Gerbracht. “Letters from William Burnside to Robert Fricke: Automorphic Functions, and the Emergence of the Burnside Problem”. Archive for History of Exact Sciences 63:1 (2009): 33–50. [2] Arnold, Vladimir. “Matematika s chelovecheskim litsom” (Mathe- matics with a Human Face). Priroda, no. 3 (1988): 117–119. [3] Atiyah, Michael. “Hermann Weyl, 1885–1955: A Biographical Mem- oir”. In Biographical Memoirs, vol. 82 (Washington, DC: National Academy of Sciences, 2003), 321–332. [4] Baumslag, Gilbert, comp. Reviews on Infinite Groups: As Printed in Mathematical Reviews 1940 through 1970, vol. 2 (Providence, RI: American Mathematical Society, 1974). [5] Beaulieu, Liliane. “Bourbaki’s Art of Memory”. Osiris,2ndseries,14 (1999): 219–251. [6] Bass, Hyman, et al. “Samuel Eilenberg (1913–1998)”. Notices of the American Mathematical Society 45, no. 10 (1998): 1344–1352. [7] Bass, Hyman. “Eilenberg, Samuel”. New Dictionary of Scientific Bi- ography, vol. 20 (Detroit, MI: Charles Scribner’s Sons, 2008), pp. 360–363. [8] Burnside, William. “On the Theory of Groups of Finite Order”. Proc. London Math. Soc. (1909): 1–7. [9] Corry, Leo. Modern Algebra and the Rise of Mathematical Structures, 2nd ed. (Basel: Birkh¨auser, 2004). 217 218 References for historical interludes [10] Crowe, Michael J. A History of Vector Analysis: The Evolution of the Idea of a Vectorial System (New York: Dover, 1985). [11] Curtis, Charles W. Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, History of Mathematics, vol. 15 (Prov- idence, RI: American Mathematical Society, 1999). [12] Eilenberg, Samuel, and Saunders Mac Lane. “General Theory of Nat- ural Equivalences”. Transactions of the American Mathematical So- ciety 58 (1945): 231–294. [13] Everett, Martin G., A. J. S. Mann, and Kathy Young. “Notes of Burnside’s life”. In The Collected Papers of William Burnside,eds. Everett, Mann, and Young, vol. 1 (New York: Oxford University Press, 2004), pp. 89–110. [14] Feit, Walter. “Foreword”. In The Collected Papers of William Burn- side, vol. 1, pp. 3–6. [15] Forsyth, A. R. “William Burnside”. J. London Math. Soc. s1-3:1 (Jan- uary 1928): 64–80. [16] Freudenthal, Hans. “Lie, Marius Sophus”. In Dictionary of Scientific Biography, vol. 8 (New York: Scribner, 1973), pp. 323–327. [17] Graves, Robert P. Life of Sir William Rowan Hamilton,3vols. (Dublin: Dublin University Press, 1882–1889). [18] Hankins, Thomas L. “Hamilton, William Rowan”. Complete Dictio- nary of Scientific Biography, ed. Charles C. Gillespie, vol. 6 (Detroit: Charles Scribner’s Sons, 2008), pp. 85–93 (Gale Virtual Reference Library). [19] Hankins, Thomas L. Sir William Rowan Hamilton (Baltimore, MD: Johns Hopkins University Press, 1980). [20] Hankins, Thomas L. “Triplets and Triads: Sir William Rowan Hamil- ton on the Metaphysics of Mathematics”. Isis 68 (1977): 175–193. [21] Haubrich, Ralf. “Frobenius, Schur, and the Berlin algebraic tradi- tion”. In Mathematics in Berlin, eds. Heinrich Begehr et al. (Berlin: Birkh¨auser, 1998), pp. 83–96. [22] Hawkins, Thomas. Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics, 1869–1926 (Berlin: Springer, 2000). [23] Hawkins, Thomas. “Hypercomplex Numbers, Lie Groups, and the Creation of Group Representation Theory”. Archive for History of Exact Sciences 8 (1971): 243–287. [24] Hawkins, Thomas.
Recommended publications
  • These Links No Longer Work. Springer Have Pulled the Free Plug
    Sign up for a GitHub account Sign in Instantly share code, notes, and snippets. Create a gist now bishboria / springer-free-maths-books.md Last active 10 minutes ago Code Revisions 7 Stars 2104 Forks 417 Embed <script src="https://gist.githu b .coDmo/wbinslohabodr ZiIaP/8326b17bbd652f34566a.js"></script> Springer made a bunch of books available for free, these were the direct links springer-free-maths-books.md Raw These links no longer work. Springer have pulled the free plug. Graduate texts in mathematics duplicates = multiple editions A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Course in Arithmetic, Jean-Pierre Serre A Course in Computational Algebraic Number Theory, Henri Cohen A Course in Differential Geometry, Wilhelm Klingenberg A Course in Functional Analysis, John B. Conway A Course in Homological Algebra, P. J. Hilton U. Stammbach A Course in Homological Algebra, Peter J. Hilton Urs Stammbach A Course in Mathematical Logic, Yu. I. Manin A Course in Number Theory and Cryptography, Neal Koblitz A Course in Number Theory and Cryptography, Neal Koblitz A Course in Simple-Homotopy Theory, Marshall M. Cohen A Course in p-adic Analysis, Alain M. Robert A Course in the Theory of Groups, Derek J. S. Robinson A Course in the Theory of Groups, Derek J. S. Robinson A Course on Borel Sets, S. M. Srivastava A Course on Borel Sets, S. M. Srivastava A First Course in Noncommutative Rings, T. Y. Lam A First Course in Noncommutative Rings, T. Y. Lam A Hilbert Space Problem Book, P.
    [Show full text]
  • Bibliography
    Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
    [Show full text]
  • Permutation Groups Containing a Regular Abelian Subgroup: The
    PERMUTATION GROUPS CONTAINING A REGULAR ABELIAN SUBGROUP: THE TANGLED HISTORY OF TWO MISTAKES OF BURNSIDE MARK WILDON Abstract. A group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2- transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later in 1921 he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this note we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data. 1. Introduction In 1911, writing in §252 of the second edition of his influential textbook [6], Burnside claimed a proof of the following theorem. Theorem 1.1. Let G be a transitive permutation group of composite prime- power degree containing a regular cyclic subgroup. Either G is imprimitive or G is 2-transitive. An error in the penultimate sentence of Burnside’s proof was noted in [7, page 24], where Neumann remarks ‘Nevertheless, the theorem is certainly true and can be proved by similar character-theoretic methods to those that Burnside employed’. In §3 we present the correct part of Burnside’s arXiv:1705.07502v2 [math.GR] 11 Jun 2017 proof in today’s language.
    [Show full text]
  • Letters from William Burnside to Robert Fricke: Automorphic Functions, and the Emergence of the Burnside Problem
    LETTERS FROM WILLIAM BURNSIDE TO ROBERT FRICKE: AUTOMORPHIC FUNCTIONS, AND THE EMERGENCE OF THE BURNSIDE PROBLEM CLEMENS ADELMANN AND EBERHARD H.-A. GERBRACHT Abstract. Two letters from William Burnside have recently been found in the Nachlass of Robert Fricke that contain instances of Burnside's Problem prior to its first publication. We present these letters as a whole to the public for the first time. We draw a picture of these two mathematicians and describe their activities leading to their correspondence. We thus gain an insight into their respective motivations, reactions, and attitudes, which may sharpen the current understanding of professional and social interactions of the mathemat- ical community at the turn of the 20th century. 1. The simple group of order 504 { a first meeting of minds Until 1902, when the publication list of the then fifty-year-old William Burnside already encompassed 90 papers, only one of these had appeared in a non-British journal: a three-page article [5] entitled \Note on the simple group of order 504" in volume 52 of Mathematische Annalen in 1898. In this paper Burnside deduced a presentation of that group in terms of generators and relations,1 which is based on the fact that it is isomorphic to the group of linear fractional transformations with coefficients in the finite field with 8 elements. The proof presented is very concise and terse, consisting only of a succession of algebraic identities, while calculations in the concrete group of transformations are omitted. In the very same volume of Mathematische Annalen, only one issue later, there can be found a paper [18] by Robert Fricke entitled \Ueber eine einfache Gruppe von 504 Operationen" (On a simple group of 504 operations), which is on exactly the same subject.
    [Show full text]
  • E6-132-29.Pdf
    HISTORY OF MATHEMATICS – The Number Concept and Number Systems - John Stillwell THE NUMBER CONCEPT AND NUMBER SYSTEMS John Stillwell Department of Mathematics, University of San Francisco, U.S.A. School of Mathematical Sciences, Monash University Australia. Keywords: History of mathematics, number theory, foundations of mathematics, complex numbers, quaternions, octonions, geometry. Contents 1. Introduction 2. Arithmetic 3. Length and area 4. Algebra and geometry 5. Real numbers 6. Imaginary numbers 7. Geometry of complex numbers 8. Algebra of complex numbers 9. Quaternions 10. Geometry of quaternions 11. Octonions 12. Incidence geometry Glossary Bibliography Biographical Sketch Summary A survey of the number concept, from its prehistoric origins to its many applications in mathematics today. The emphasis is on how the number concept was expanded to meet the demands of arithmetic, geometry and algebra. 1. Introduction The first numbers we all meet are the positive integers 1, 2, 3, 4, … We use them for countingUNESCO – that is, for measuring the size– of collectionsEOLSS – and no doubt integers were first invented for that purpose. Counting seems to be a simple process, but it leads to more complex processes,SAMPLE such as addition (if CHAPTERSI have 19 sheep and you have 26 sheep, how many do we have altogether?) and multiplication ( if seven people each have 13 sheep, how many do they have altogether?). Addition leads in turn to the idea of subtraction, which raises questions that have no answers in the positive integers. For example, what is the result of subtracting 7 from 5? To answer such questions we introduce negative integers and thus make an extension of the system of positive integers.
    [Show full text]
  • Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) Is a Series of Graduate-Level Textbooks in Mathematics Published by Springer-Verlag
    欢迎加入数学专业竞赛及考研群:681325984 Graduate Texts in Mathematics - Wikipedia Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. Contents List of books See also Notes External links List of books 1. Introduction to Axiomatic Set Theory, Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ISBN 978-1-4613- 8170-9) 2. Measure and Category - A Survey of the Analogies between Topological and Measure Spaces, John C. Oxtoby (1980, 2nd ed., ISBN 978-0-387-90508-2) 3. Topological Vector Spaces, H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ISBN 978-0-387-98726-2) 4. A Course in Homological Algebra, Peter Hilton, Urs Stammbach (1997, 2nd ed., ISBN 978-0-387-94823-2) 5. Categories for the Working Mathematician, Saunders Mac Lane (1998, 2nd ed., ISBN 978-0-387-98403-2) 6. Projective Planes, Daniel R. Hughes, Fred C. Piper, (1982, ISBN 978-3-540-90043-6) 7. A Course in Arithmetic, Jean-Pierre Serre (1996, ISBN 978-0-387-90040-7) 8.
    [Show full text]
  • The Characters and Commutators of Finite Groups
    THE CHARACTERS AND COMMUTATORS OF FINITE GROUPS By TIM W. BONNER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 °c 2009 Tim W. Bonner 2 ACKNOWLEDGMENTS I am sincerely grateful to my adviser, Alexandre Turull. With unyielding patience and constant support, he has been integral in my academic and personal growth. I feel indebted to have been his student, and I am fortunate to know such an inspiring individual. I also will forever appreciate the encouragement of my family. Over the past six years, my parents and sister have responded to each step forward and every setback with calm assurance. Finally, my wife, Emily, has witnessed it all only a glance away, and this work undeniably bears the steady strength of her hand. 3 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................. 3 LIST OF TABLES ..................................... 5 ABSTRACT ........................................ 6 CHAPTER 1 INTRODUCTION .................................. 8 1.1 Products of Commutators ........................... 8 1.2 Further Generation Problems ......................... 9 1.2.1 Products of Conjugacy Classes ..................... 9 1.2.2 Products of Characters ......................... 10 1.3 The Taketa Problem .............................. 11 2 MATHEMATICAL PRELIMINARIES FOR CHAPTERS 3 AND 4 ....... 13 3 PRODUCTS OF COMMUTATORS AND BARDAKOV'S CONJECTURE ... 17 3.1 A Character Identity of Burnside ....................... 18 3.2 Analysis and Results .............................. 21 3.3 Bardakov's Conjecture ............................. 26 4 PRODUCTS OF CONJUGACY CLASSES AND CHARACTERS ........ 28 4.1 Conjugacy Class Covering Numbers ...................... 28 4.2 Comparison with Previous Bounds ...................... 33 4.3 Character Covering Numbers ........................
    [Show full text]
  • Regular Permutation Groups and Cayley Graphs Cheryl E Praeger University of Western Australia
    Regular permutation groups and Cayley graphs Cheryl E Praeger University of Western Australia 1 What are Cayley graphs? Group : G with generating set S = s, t, u, . 1 { } Group elements: ‘words in S’ stu− s etc vertices: group elements Cayley graph: Cay(G, S) edges: multiplication from S 2 What are Cayley graphs? If S inverse closed: s S s 1 S ∈ ⇐⇒ − ∈ Cayley graph Cay(G, S): may use undirected edges 3 Some reasonable questions Where: do they arise in mathematics today? Where: did they originate? What: kinds of groups G give interesting Cayley graphs Cay(G, S)? Which graphs: arise as Cayley graphs? Does it matter: what S we choose? Are: Cayley graphs important and why? And: what about regular permutation groups? Let’s see how I go with answers! 4 In Topology: Embedding maps in surfaces Thanks to Ethan Hein: flickr.com 5 Computer networks; experimental layouts (statistics) Thanks to Ethan Hein: flickr.com and Jason Twamley 6 Random walks on Cayley graphs Applications: from percolation theory to group computation How large n: g ‘approximately random’ in G? Independence? Method: for random selection in groups – underpins randomised algorithms for group computation (Babai, 1991) 7 Fundamental importance for group actions in combinatorics and geometry Iwilldescribe: Regular permutation groups Origins of Cayley graphs Links with group theory Some recent work and open problems on primitive Cayley graphs 8 Permutation groups Permutation : of set Ω, bijection g :Ω Ω Symmetric group of all permutations→ of Ω group Sym (Ω): under composition, for
    [Show full text]
  • History of Mathematics
    SIGMAA – History of Mathematics Joint meeting of: British Society for the History of Mathematics Canadian Society for the History and Philosophy of Mathematics History of Mathematics Special Interest Group of the MAA (HOMSIGMAA) Philosophy of Mathematics Special Interest Group of the MAA (POMSIGMAA) Marriott Wardman Park, Washington, D.C. Wednesday, August 5 8:20 MAA Centennial Lecture #1 - Room: Salon 2/3 9:30 Hedrick Lecture #1 - Room: Salon 2/3 Session TCPS#1A: History of Mathematics – Room: Washington 4 Moderator: Amy Ackerberg-Hastings 10:30 Amy Shell-Gellasch, Montgomery College, Maryland Ellipsographs: Drawing Ellipses and the Devices in the Smithsonian Collection 11:00 Peggy Aldrich Kidwell, National Museum of American History, Smithsonian Institution Engaging Minds – Charter Members of the MAA and the Material Culture of American Mathematics 11:30 Florence Fasanelli The History of Mathematics in Washington, D.C. Session TCPS#1B: History of Mathematics – Room: Washington 5 Moderator: Danny Otero 10:30 Cathleen O’Neil Eisenhower, the Binomial Theorem, and the $64,000 Question 11:00 S. Roberts John Horton Conway: Certainly a Piece of History 11:30 E. Donoghue A Pair of Early MAA Presidents = A Pair of Mathematics Historians: Florian Cajori and David Eugene Smith 12:00 Lunch Break Session TCPS#1C: History and Philosophy of Mathematics – Room: Washington 4 Moderator: Jim Tattersall 1:00 Charles Lindsey Doing Arithmetic in Medieval Europe 1:30 Travis D. Williams, University of Rhode Island Imagination and Reading the Third Dimension in Early Modern Geometry 2:00 Christopher Baltus, SUNY Oswego The Arc Rampant in 1673: an Early Episode in the History of Projective Geometry 2:30 Andrew Leahy William Brouncker’s Rectification of the Semi-Cubical Parabola Session TCPS#1D: History and Philosophy of Mathematics – Room: Washington 5 Moderator: Dan Sloughter 1:30 Ann Luppi von Mehren, Arcadia University Inspiration for Elementary Mathematics Descriptions from a “Heritage” Reading (in the sense of Grattan-Guinness) of “On the Nonexistent” by Gorgias 2:00 Thomas Q.
    [Show full text]
  • Direct Links to Free Springer Books (Pdf Versions)
    Sign up for a GitHub account Sign in Instantly share code, notes, and snippets. Create a gist now bishboria / springer-free-maths-books.md Last active 36 seconds ago Code Revisions 5 Stars 1664 Forks 306 Embed <script src="https://gist.githu b .coDmo/wbinslohabodr ZiIaP/8326b17bbd652f34566a.js"></script> Springer have made a bunch of books available for free, here are the direct links springer-free-maths-books.md Raw Direct links to free Springer books (pdf versions) Graduate texts in mathematics duplicates = multiple editions A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Course in Arithmetic, Jean-Pierre Serre A Course in Computational Algebraic Number Theory, Henri Cohen A Course in Differential Geometry, Wilhelm Klingenberg A Course in Functional Analysis, John B. Conway A Course in Homological Algebra, P. J. Hilton U. Stammbach A Course in Homological Algebra, Peter J. Hilton Urs Stammbach A Course in Mathematical Logic, Yu. I. Manin A Course in Number Theory and Cryptography, Neal Koblitz A Course in Number Theory and Cryptography, Neal Koblitz A Course in Simple-Homotopy Theory, Marshall M. Cohen A Course in p-adic Analysis, Alain M. Robert A Course in the Theory of Groups, Derek J. S. Robinson A Course in the Theory of Groups, Derek J. S. Robinson A Course on Borel Sets, S. M. Srivastava A Course on Borel Sets, S. M. Srivastava A First Course in Noncommutative Rings, T. Y. Lam A First Course in Noncommutative Rings, T. Y. Lam A Hilbert Space Problem Book, P.
    [Show full text]
  • Introduction to Representation Theory by Pavel Etingof, Oleg Golberg
    Introduction to representation theory by Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina with historical interludes by Slava Gerovitch Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents Chapter 1. Introduction 1 Chapter 2. Basic notions of representation theory 5 x2.1. What is representation theory? 5 x2.2. Algebras 8 x2.3. Representations 9 x2.4. Ideals 15 x2.5. Quotients 15 x2.6. Algebras defined by generators and relations 16 x2.7. Examples of algebras 17 x2.8. Quivers 19 x2.9. Lie algebras 22 x2.10. Historical interlude: Sophus Lie's trials and transformations 26 x2.11. Tensor products 30 x2.12. The tensor algebra 35 x2.13. Hilbert's third problem 36 x2.14. Tensor products and duals of representations of Lie algebras 36 x2.15. Representations of sl(2) 37 iii Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms iv Contents x2.16. Problems on Lie algebras 39 Chapter 3. General results of representation theory 41 x3.1. Subrepresentations in semisimple representations 41 x3.2. The density theorem 43 x3.3. Representations of direct sums of matrix algebras 44 x3.4. Filtrations 45 x3.5. Finite dimensional algebras 46 x3.6. Characters of representations 48 x3.7. The Jordan-H¨oldertheorem 50 x3.8. The Krull-Schmidt theorem 51 x3.9.
    [Show full text]
  • Topics in Combinatorial Group Theory
    Topics in Combinatorial Group Theory Preface I gave a course on Combinatorial Group Theory at ETH, Zurich, in the Winter term of 1987/88. The notes of that course have been reproduced here, essentially without change. I have made no attempt to improve on those notes, nor have I made any real attempt to provide a complete list of references. I have, however, included some general references which should make it possible for the interested reader to obtain easy access to any one of the topics treated here. In notes of this kind, it may happen that an idea or a theorem that is due to someone other than the author, has inadvertently been improperly acknowledged, if at all. If indeed that is the case here, I trust that I will be forgiven in view of the informal nature of these notes. Acknowledgements I would like to thank R. Suter for taking notes of the course and for his many comments and corrections and M. Schunemann for a superb job of “TEX-ing” the manuscript. I would also like to acknowledge the help and insightful comments of Urs Stammbach. In addition, I would like to take this opportunity to express my thanks and appreciation to him and his wife Irene, for their friendship and their hospitality over many years, and to him, in particular, for all of the work that he has done on my behalf, making it possible for me to spend so many pleasurable months in Zurich. Combinatorial Group Theory iii CONTENTS Chapter I History 1. Introduction ..................................................................1 2.
    [Show full text]