Introduction to Representation Theory by Pavel Etingof, Oleg Golberg

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Representation Theory by Pavel Etingof, Oleg Golberg Introduction to representation theory by Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina with historical interludes by Slava Gerovitch Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents Chapter 1. Introduction 1 Chapter 2. Basic notions of representation theory 5 x2.1. What is representation theory? 5 x2.2. Algebras 8 x2.3. Representations 9 x2.4. Ideals 15 x2.5. Quotients 15 x2.6. Algebras defined by generators and relations 16 x2.7. Examples of algebras 17 x2.8. Quivers 19 x2.9. Lie algebras 22 x2.10. Historical interlude: Sophus Lie's trials and transformations 26 x2.11. Tensor products 30 x2.12. The tensor algebra 35 x2.13. Hilbert's third problem 36 x2.14. Tensor products and duals of representations of Lie algebras 36 x2.15. Representations of sl(2) 37 iii Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms iv Contents x2.16. Problems on Lie algebras 39 Chapter 3. General results of representation theory 41 x3.1. Subrepresentations in semisimple representations 41 x3.2. The density theorem 43 x3.3. Representations of direct sums of matrix algebras 44 x3.4. Filtrations 45 x3.5. Finite dimensional algebras 46 x3.6. Characters of representations 48 x3.7. The Jordan-H¨oldertheorem 50 x3.8. The Krull-Schmidt theorem 51 x3.9. Problems 53 x3.10. Representations of tensor products 56 Chapter 4. Representations of finite groups: Basic results 59 x4.1. Maschke's theorem 59 x4.2. Characters 61 x4.3. Examples 62 x4.4. Duals and tensor products of representations 65 x4.5. Orthogonality of characters 65 x4.6. Unitary representations. Another proof of Maschke's theorem for complex representations 69 x4.7. Orthogonality of matrix elements 70 x4.8. Character tables, examples 71 x4.9. Computing tensor product multiplicities using character tables 75 x4.10. Frobenius determinant 76 x4.11. Historical interlude: Georg Frobenius's \Principle of Horse Trade" 77 x4.12. Problems 81 x4.13. Historical interlude: William Rowan Hamilton's quaternion of geometry, algebra, metaphysics, and poetry 86 Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents v Chapter 5. Representations of finite groups: Further results 91 x5.1. Frobenius-Schur indicator 91 x5.2. Algebraic numbers and algebraic integers 93 x5.3. Frobenius divisibility 96 x5.4. Burnside's theorem 98 x5.5. Historical interlude: William Burnside and intellectual harmony in mathematics 100 x5.6. Representations of products 104 x5.7. Virtual representations 105 x5.8. Induced representations 105 x5.9. The Frobenius formula for the character of an induced representation 106 x5.10. Frobenius reciprocity 107 x5.11. Examples 110 x5.12. Representations of Sn 110 x5.13. Proof of the classification theorem for representations of Sn 112 x5.14. Induced representations for Sn 114 x5.15. The Frobenius character formula 115 x5.16. Problems 118 x5.17. The hook length formula 118 x5.18. Schur-Weyl duality for gl(V ) 119 x5.19. Schur-Weyl duality for GL(V ) 122 x5.20. Historical interlude: Hermann Weyl at the intersection of limitation and freedom 122 x5.21. Schur polynomials 128 x5.22. The characters of Lλ 129 x5.23. Algebraic representations of GL(V ) 130 x5.24. Problems 131 x5.25. Representations of GL2(Fq) 132 x5.26. Artin's theorem 141 Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms vi Contents x5.27. Representations of semidirect products 142 Chapter 6. Quiver representations 145 x6.1. Problems 145 x6.2. Indecomposable representations of the quivers A1;A2;A3 150 x6.3. Indecomposable representations of the quiver D4 154 x6.4. Roots 160 x6.5. Gabriel's theorem 163 x6.6. Reflection functors 164 x6.7. Coxeter elements 169 x6.8. Proof of Gabriel's theorem 170 x6.9. Problems 173 Chapter 7. Introduction to categories 177 x7.1. The definition of a category 177 x7.2. Functors 179 x7.3. Morphisms of functors 181 x7.4. Equivalence of categories 182 x7.5. Representable functors 183 x7.6. Adjoint functors 184 x7.7. Abelian categories 186 x7.8. Complexes and cohomology 187 x7.9. Exact functors 190 x7.10. Historical interlude: Eilenberg, Mac Lane, and \general abstract nonsense" 192 Chapter 8. Homological algebra 201 x8.1. Projective and injective modules 201 x8.2. Tor and Ext functors 203 Chapter 9. Structure of finite dimensional algebras 209 x9.1. Lifting of idempotents 209 x9.2. Projective covers 210 Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents vii x9.3. The Cartan matrix of a finite dimensional algebra 212 x9.4. Homological dimension 212 x9.5. Blocks 213 x9.6. Finite abelian categories 214 x9.7. Morita equivalence 216 References for historical interludes 217 Mathematical references 223 Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Chapter 1 Introduction Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to ge- ometry, probability theory, quantum mechanics, and quantum field theory. Representation theory was born in 1896 in the work of the Ger- man mathematician F. G. Frobenius. This work was triggered by a letter to Frobenius by R. Dedekind. In this letter Dedekind made the following observation: take the multiplication table of a finite group G and turn it into a matrix XG by replacing every entry g of this table by a variable xg. Then the determinant of XG factors into a product of irreducible polynomials in fxgg, each of which occurs with multiplicity equal to its degree. Dedekind checked this surprising fact in a few special cases but could not prove it in general. So he gave this problem to Frobenius. In order to find a solution of this problem (which we will explain below), Frobenius created the representation theory of finite groups. The goal of this book is to give a \holistic" introduction to rep- resentation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representa- tion theories of groups, Lie algebras, and quivers as special cases. It is designed as a textbook for advanced undergraduate and beginning 1 Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms 2 1. Introduction graduate students and should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract al- gebra. Theoretical material in this book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book covers a number of standard topics in representation theory of groups, associative algebras, Lie algebras, and quivers. For a more detailed treatment of these topics, we refer the reader to the textbooks [S], [FH], and [CR]. We mostly follow [FH], with the exception of the sections discussing quivers, which follow [BGP], and the sections on homological algebra and finite dimensional algebras, for which we recommend [W] and [CR], respectively. The organization of the book is as follows. Chapter 2 is devoted to the basics of representation theory. Here we review the basics of abstract algebra (groups, rings, modules, ideals, tensor products, symmetric and exterior powers, etc.), as well as give the main definitions of representation theory and discuss the objects whose representations we will study (associative algebras, groups, quivers, and Lie algebras). Chapter 3 introduces the main general results about representa- tions of associative algebras (the density theorem, the Jordan-H¨older theorem, the Krull-Schmidt theorem, and the structure theorem for finite dimensional algebras). In Chapter 4 we discuss the basic results about representations of finite groups. Here we prove Maschke's theorem and the orthogonality of characters and matrix elements and compute character tables and tensor product multiplicities for the simplest finite groups. We also discuss the Frobenius determinant, which was a starting point for development of the representation theory of finite groups. We continue to study representations of finite groups in Chapter 5, treating more advanced and special topics, such as the Frobenius- Schur indicator, the Frobenius divisibility theorem, the Burnside the- orem, the Frobenius formula for the character of an induced repre- sentation, representations of the symmetric group and the general Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms 1. Introduction 3 linear group over C, representations of GL2(Fq), representations of semidirect products, etc. In Chapter 6, we give an introduction to the representation theory of quivers (starting with the problem of the classification of configura- tions of n subspaces in a vector space) and present a proof of Gabriel's theorem, which classifies quivers of finite type. In Chapter 7, we give an introduction to category theory, in par- ticular, abelian categories, and explain how such categories arise in representation theory. In Chapter 8, we give a brief introduction to homological algebra and explain how it can be applied to categories of representations. Finally, in Chapter 9 we give a short introduction to the repre- sentation theory of finite dimensional algebras.
Recommended publications
  • George W. Whitehead Jr
    George W. Whitehead Jr. 1918–2004 A Biographical Memoir by Haynes R. Miller ©2015 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. GEORGE WILLIAM WHITEHEAD JR. August 2, 1918–April 12 , 2004 Elected to the NAS, 1972 Life George William Whitehead, Jr., was born in Bloomington, Ill., on August 2, 1918. Little is known about his family or early life. Whitehead received a BA from the University of Chicago in 1937, and continued at Chicago as a graduate student. The Chicago Mathematics Department was somewhat ingrown at that time, dominated by L. E. Dickson and Gilbert Bliss and exhibiting “a certain narrowness of focus: the calculus of variations, projective differential geometry, algebra and number theory were the main topics of interest.”1 It is possible that Whitehead’s interest in topology was stimulated by Saunders Mac Lane, who By Haynes R. Miller spent the 1937–38 academic year at the University of Chicago and was then in the early stages of his shift of interest from logic and algebra to topology. Of greater importance for Whitehead was the appearance of Norman Steenrod in Chicago. Steenrod had been attracted to topology by Raymond Wilder at the University of Michigan, received a PhD under Solomon Lefschetz in 1936, and remained at Princeton as an Instructor for another three years. He then served as an Assistant Professor at the University of Chicago between 1939 and 1942 (at which point he moved to the University of Michigan).
    [Show full text]
  • Qisar-Alexander-Ollongren-Astrolinguistics.Pdf
    Astrolinguistics Alexander Ollongren Astrolinguistics Design of a Linguistic System for Interstellar Communication Based on Logic Alexander Ollongren Advanced Computer Science Leiden University Leiden The Netherlands ISBN 978-1-4614-5467-0 ISBN 978-1-4614-5468-7 (eBook) DOI 10.1007/978-1-4614-5468-7 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012945935 © Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a speci fi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Weak Representation Theory in the Calculus of Relations Jeremy F
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Weak representation theory in the calculus of relations Jeremy F. Alm Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons Recommended Citation Alm, Jeremy F., "Weak representation theory in the calculus of relations " (2006). Retrospective Theses and Dissertations. 1795. https://lib.dr.iastate.edu/rtd/1795 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Weak representation theory in the calculus of relations by Jeremy F. Aim A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Roger Maddux, Major Professor Maria Axenovich Paul Sacks Jonathan Smith William Robinson Iowa State University Ames, Iowa 2006 Copyright © Jeremy F. Aim, 2006. All rights reserved. UMI Number: 3217250 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Geometric Representation Theory, Fall 2005
    GEOMETRIC REPRESENTATION THEORY, FALL 2005 Some references 1) J. -P. Serre, Complex semi-simple Lie algebras. 2) T. Springer, Linear algebraic groups. 3) A course on D-modules by J. Bernstein, availiable at www.math.uchicago.edu/∼arinkin/langlands. 4) J. Dixmier, Enveloping algebras. 1. Basics of the category O 1.1. Refresher on semi-simple Lie algebras. In this course we will work with an alge- braically closed ground field of characteristic 0, which may as well be assumed equal to C Let g be a semi-simple Lie algebra. We will fix a Borel subalgebra b ⊂ g (also sometimes denoted b+) and an opposite Borel subalgebra b−. The intersection b+ ∩ b− is a Cartan subalgebra, denoted h. We will denote by n, and n− the unipotent radicals of b and b−, respectively. We have n = [b, b], and h ' b/n. (I.e., h is better to think of as a quotient of b, rather than a subalgebra.) The eigenvalues of h acting on n are by definition the positive roots of g; this set will be denoted by ∆+. We will denote by Q+ the sub-semigroup of h∗ equal to the positive span of ∆+ (i.e., Q+ is the set of eigenvalues of h under the adjoint action on U(n)). For λ, µ ∈ h∗ we shall say that λ ≥ µ if λ − µ ∈ Q+. We denote by P + the sub-semigroup of dominant integral weights, i.e., those λ that satisfy hλ, αˇi ∈ Z+ for all α ∈ ∆+. + For α ∈ ∆ , we will denote by nα the corresponding eigen-space.
    [Show full text]
  • Pioneers of Representation Theory, by Charles W
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 3, Pages 359{362 S 0273-0979(00)00867-3 Article electronically published on February 16, 2000 Pioneers of representation theory, by Charles W. Curtis, Amer. Math. Soc., Prov- idence, RI, 1999, xvi + 287 pp., $49.00, ISBN 0-8218-9002-6 The theory of linear representations of finite groups emerged in a series of papers by Frobenius appearing in 1896{97. This was at first couched in the language of characters but soon evolved into the formulation now considered standard, in which characters give the traces of representing linear transformations. There were of course antecedents in the number-theoretic work of Lagrange, Gauss, and others| especially Dedekind, whose correspondence with Frobenius suggested a way to move from characters of abelian groups to characters of arbitrary finite groups. In the past century this theory has developed in many interesting directions. Besides being a natural tool in the study of the structure of finite groups, it has turned up in many branches of mathematics and has found extensive applications in chemistry and physics. Marking the end of the first century of the subject, the book under review offers a somewhat unusual blend of history, biography, and mathematical exposition. Before discussing the book itself, it may be worthwhile to pose a general question: Does one need to know anything about the history of mathematics (or the lives of individual mathematicians) in order to appreciate the subject matter? Most of us are complacent about quoting the usual sloppy misattributions of famous theorems, even if we are finicky about the details of proofs.
    [Show full text]
  • The History of the Abel Prize and the Honorary Abel Prize the History of the Abel Prize
    The History of the Abel Prize and the Honorary Abel Prize The History of the Abel Prize Arild Stubhaug On the bicentennial of Niels Henrik Abel’s birth in 2002, the Norwegian Govern- ment decided to establish a memorial fund of NOK 200 million. The chief purpose of the fund was to lay the financial groundwork for an annual international prize of NOK 6 million to one or more mathematicians for outstanding scientific work. The prize was awarded for the first time in 2003. That is the history in brief of the Abel Prize as we know it today. Behind this government decision to commemorate and honor the country’s great mathematician, however, lies a more than hundred year old wish and a short and intense period of activity. Volumes of Abel’s collected works were published in 1839 and 1881. The first was edited by Bernt Michael Holmboe (Abel’s teacher), the second by Sophus Lie and Ludvig Sylow. Both editions were paid for with public funds and published to honor the famous scientist. The first time that there was a discussion in a broader context about honoring Niels Henrik Abel’s memory, was at the meeting of Scan- dinavian natural scientists in Norway’s capital in 1886. These meetings of natural scientists, which were held alternately in each of the Scandinavian capitals (with the exception of the very first meeting in 1839, which took place in Gothenburg, Swe- den), were the most important fora for Scandinavian natural scientists. The meeting in 1886 in Oslo (called Christiania at the time) was the 13th in the series.
    [Show full text]
  • Permutation Groups Containing a Regular Abelian Subgroup: The
    PERMUTATION GROUPS CONTAINING A REGULAR ABELIAN SUBGROUP: THE TANGLED HISTORY OF TWO MISTAKES OF BURNSIDE MARK WILDON Abstract. A group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2- transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later in 1921 he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this note we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data. 1. Introduction In 1911, writing in §252 of the second edition of his influential textbook [6], Burnside claimed a proof of the following theorem. Theorem 1.1. Let G be a transitive permutation group of composite prime- power degree containing a regular cyclic subgroup. Either G is imprimitive or G is 2-transitive. An error in the penultimate sentence of Burnside’s proof was noted in [7, page 24], where Neumann remarks ‘Nevertheless, the theorem is certainly true and can be proved by similar character-theoretic methods to those that Burnside employed’. In §3 we present the correct part of Burnside’s arXiv:1705.07502v2 [math.GR] 11 Jun 2017 proof in today’s language.
    [Show full text]
  • UTM Naive Lie Theory (John Stillwell) 0387782141.Pdf
    Undergraduate Texts in Mathematics Editors S. Axler K.A. Ribet Undergraduate Texts in Mathematics Abbott: Understanding Analysis. Daepp/Gorkin: Reading, Writing, and Proving: Anglin: Mathematics: A Concise History and A Closer Look at Mathematics. Philosophy. Devlin: The Joy of Sets: Fundamentals Readings in Mathematics. of-Contemporary Set Theory. Second edition. Anglin/Lambek: The Heritage of Thales. Dixmier: General Topology. Readings in Mathematics. Driver: Why Math? Apostol: Introduction to Analytic Number Theory. Ebbinghaus/Flum/Thomas: Mathematical Logic. Second edition. Second edition. Armstrong: Basic Topology. Edgar: Measure, Topology, and Fractal Geometry. Armstrong: Groups and Symmetry. Second edition. Axler: Linear Algebra Done Right. Second edition. Elaydi: An Introduction to Difference Equations. Beardon: Limits: A New Approach to Real Third edition. Analysis. Erdos/Sur˜ anyi:´ Topics in the Theory of Numbers. Bak/Newman: Complex Analysis. Second edition. Estep: Practical Analysis on One Variable. Banchoff/Wermer: Linear Algebra Through Exner: An Accompaniment to Higher Mathematics. Geometry. Second edition. Exner: Inside Calculus. Beck/Robins: Computing the Continuous Fine/Rosenberger: The Fundamental Theory Discretely of Algebra. Berberian: A First Course in Real Analysis. Fischer: Intermediate Real Analysis. Bix: Conics and Cubics: A Concrete Introduction to Flanigan/Kazdan: Calculus Two: Linear and Algebraic Curves. Second edition. Nonlinear Functions. Second edition. Bremaud:` An Introduction to Probabilistic Fleming: Functions of Several Variables. Second Modeling. edition. Bressoud: Factorization and Primality Testing. Foulds: Combinatorial Optimization for Bressoud: Second Year Calculus. Undergraduates. Readings in Mathematics. Foulds: Optimization Techniques: An Introduction. Brickman: Mathematical Introduction to Linear Franklin: Methods of Mathematical Programming and Game Theory. Economics. Browder: Mathematical Analysis: An Introduction. Frazier: An Introduction to Wavelets Through Buchmann: Introduction to Cryptography.
    [Show full text]
  • Map Composition Generalized to Coherent Collections of Maps
    Front. Math. China 2015, 10(3): 547–565 DOI 10.1007/s11464-015-0435-5 Map composition generalized to coherent collections of maps Herng Yi CHENG1, Kang Hao CHEONG1,2 1 National University of Singapore High School of Mathematics and Science, Singapore 129957, Singapore 2 Tanglin Secondary School, Singapore 127391, Singapore c Higher Education Press and Springer-Verlag Berlin Heidelberg 2015 Abstract Relation algebras give rise to partial algebras on maps, which are generalized to partial algebras on polymaps while preserving the properties of relation union and composition. A polymap is defined as a map with every point in the domain associated with a special set of maps. Polymaps can be represented as small subcategories of Set∗, the category of pointed sets. Map composition and the counterpart of relation union for maps are generalized to polymap composition and sum. Algebraic structures and categories of polymaps are investigated. Polymaps present the unique perspective of an algebra that can retain many of its properties when its elements (maps) are augmented with collections of other elements. Keywords Relation algebra, partial algebra, composition MSC 08A02 1 Introduction This paper considers partial algebras on maps (similar to those defined in [15]), constructed in analogy to relation algebras [5,12,16]. The sum of two maps f0 : X0 → Y0 and f1 : X1 → Y1 is defined if the union of their graphs is a functional binary relation R ⊆ (X0 ∪ X1) × (Y0 ∪ Y1), in which case the sum is the map (f0 + f1): X0 ∪ X1 → Y0 ∪ Y1 with graph R. This is defined similarly to the union operation + from [10].
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • LOW-DIMENSIONAL UNITARY REPRESENTATIONS of B3 1. Introduction Unitary Braid Representations Have Been Constructed in Several
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 9, Pages 2597{2606 S 0002-9939(01)05903-2 Article electronically published on March 15, 2001 LOW-DIMENSIONAL UNITARY REPRESENTATIONS OF B3 IMRE TUBA (Communicated by Stephen D. Smith) Abstract. We characterize all simple unitarizable representations of the braid group B3 on complex vector spaces of dimension d ≤ 5. In particular, we prove that if σ1 and σ2 denote the two generating twists of B3,thenasimple representation ρ : B3 ! GL(V )(fordimV ≤ 5) is unitarizable if and only if the eigenvalues λ1,λ2;::: ;λd of ρ(σ1) are distinct, satisfy jλij =1and (d) ≤ ≤ (d) µ1i > 0for2 i d,wheretheµ1i are functions of the eigenvalues, explicitly described in this paper. 1. Introduction Unitary braid representations have been constructed in several ways using the representation theory of Kac-Moody algebras and quantum groups (see e.g. [1], [2], and [4]), and specializations of the reduced Burau and Gassner representations in [5]. Such representations easily lead to representations of PSL(2; Z)=B3=Z ,where Z is the center of B3,andPSL(2; Z)=SL(2; Z)={1g,where{1g is the center of SL(2; Z). We give a complete classification of simple unitary representations of B3 of dimension d ≤ 5 in this paper. In particular, the unitarizability of a braid rep- resentation depends only on the the eigenvalues λ1,λ2;::: ,λd of the images of the two generating twists of B3. The condition for unitarizability is a set of linear in- equalities in the logarithms of these eigenvalues. In other words, the representation is unitarizable if and only if the (arg λ1; arg λ2;::: ;arg λd) is a point inside a poly- hedron in (R=2π)d, where we give the equations of the hyperplanes that bound this polyhedron.
    [Show full text]
  • Letters from William Burnside to Robert Fricke: Automorphic Functions, and the Emergence of the Burnside Problem
    LETTERS FROM WILLIAM BURNSIDE TO ROBERT FRICKE: AUTOMORPHIC FUNCTIONS, AND THE EMERGENCE OF THE BURNSIDE PROBLEM CLEMENS ADELMANN AND EBERHARD H.-A. GERBRACHT Abstract. Two letters from William Burnside have recently been found in the Nachlass of Robert Fricke that contain instances of Burnside's Problem prior to its first publication. We present these letters as a whole to the public for the first time. We draw a picture of these two mathematicians and describe their activities leading to their correspondence. We thus gain an insight into their respective motivations, reactions, and attitudes, which may sharpen the current understanding of professional and social interactions of the mathemat- ical community at the turn of the 20th century. 1. The simple group of order 504 { a first meeting of minds Until 1902, when the publication list of the then fifty-year-old William Burnside already encompassed 90 papers, only one of these had appeared in a non-British journal: a three-page article [5] entitled \Note on the simple group of order 504" in volume 52 of Mathematische Annalen in 1898. In this paper Burnside deduced a presentation of that group in terms of generators and relations,1 which is based on the fact that it is isomorphic to the group of linear fractional transformations with coefficients in the finite field with 8 elements. The proof presented is very concise and terse, consisting only of a succession of algebraic identities, while calculations in the concrete group of transformations are omitted. In the very same volume of Mathematische Annalen, only one issue later, there can be found a paper [18] by Robert Fricke entitled \Ueber eine einfache Gruppe von 504 Operationen" (On a simple group of 504 operations), which is on exactly the same subject.
    [Show full text]