Introduction to Representation Theory

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Representation Theory Introduction to representation theory by Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina with historical interludes by Slava Gerovitch Contents Chapter 1. Introduction 1 Chapter 2. Basic notions of representation theory 5 x2.1. What is representation theory? 5 x2.2. Algebras 8 x2.3. Representations 10 x2.4. Ideals 15 x2.5. Quotients 15 x2.6. Algebras defined by generators and relations 17 x2.7. Examples of algebras 17 x2.8. Quivers 19 x2.9. Lie algebras 22 x2.10. Historical interlude: Sophus Lie's trials and transformations 26 x2.11. Tensor products 31 x2.12. The tensor algebra 35 x2.13. Hilbert's third problem 36 x2.14. Tensor products and duals of representations of Lie algebras 37 x2.15. Representations of sl(2) 37 iii iv Contents x2.16. Problems on Lie algebras 39 Chapter 3. General results of representation theory 43 x3.1. Subrepresentations in semisimple representations 43 x3.2. The density theorem 45 x3.3. Representations of direct sums of matrix algebras 47 x3.4. Filtrations 49 x3.5. Finite dimensional algebras 49 x3.6. Characters of representations 52 x3.7. The Jordan-H¨oldertheorem 53 x3.8. The Krull-Schmidt theorem 54 x3.9. Problems 56 x3.10. Representations of tensor products 59 Chapter 4. Representations of finite groups: Basic results 61 x4.1. Maschke's theorem 61 x4.2. Characters 63 x4.3. Examples 64 x4.4. Duals and tensor products of representations 67 x4.5. Orthogonality of characters 67 x4.6. Unitary representations. Another proof of Maschke's theorem for complex representations 71 x4.7. Orthogonality of matrix elements 72 x4.8. Character tables, examples 73 x4.9. Computing tensor product multiplicities using character tables 77 x4.10. Frobenius determinant 78 x4.11. Historical interlude: Georg Frobenius's \Principle of Horse Trade" 79 x4.12. Problems 83 x4.13. Historical interlude: William Rowan Hamilton's quaternion of geometry, algebra, metaphysics, and poetry 88 Contents v Chapter 5. Representations of finite groups: Further results 93 x5.1. Frobenius-Schur indicator 93 x5.2. Algebraic numbers and algebraic integers 95 x5.3. Frobenius divisibility 98 x5.4. Burnside's theorem 100 x5.5. Historical interlude: William Burnside and intellectual harmony in mathematics 102 x5.6. Representations of products 107 x5.7. Virtual representations 107 x5.8. Induced representations 107 x5.9. The Frobenius formula for the character of an induced representation 109 x5.10. Frobenius reciprocity 110 x5.11. Examples 112 x5.12. Representations of Sn 112 x5.13. Proof of the classification theorem for representations of Sn 114 x5.14. Induced representations for Sn 116 x5.15. The Frobenius character formula 118 x5.16. Problems 120 x5.17. The hook length formula 121 x5.18. Schur-Weyl duality for gl(V ) 122 x5.19. Schur-Weyl duality for GL(V ) 124 x5.20. Historical interlude: Hermann Weyl at the intersection of limitation and freedom 125 x5.21. Schur polynomials 131 x5.22. The characters of Lλ 132 x5.23. Algebraic representations of GL(V ) 133 x5.24. Problems 135 x5.25. Representations of GL2(Fq) 135 x5.26. Artin's theorem 144 vi Contents x5.27. Representations of semidirect products 145 Chapter 6. Quiver representations 149 x6.1. Problems 149 x6.2. Indecomposable representations of the quivers A1;A2;A3 154 x6.3. Indecomposable representations of the quiver D4 158 x6.4. Roots 164 x6.5. Gabriel's theorem 167 x6.6. Reflection functors 168 x6.7. Coxeter elements 173 x6.8. Proof of Gabriel's theorem 174 x6.9. Problems 177 Chapter 7. Introduction to categories 181 x7.1. The definition of a category 181 x7.2. Functors 183 x7.3. Morphisms of functors 185 x7.4. Equivalence of categories 186 x7.5. Representable functors 187 x7.6. Adjoint functors 188 x7.7. Abelian categories 190 x7.8. Complexes and cohomology 191 x7.9. Exact functors 194 x7.10. Historical interlude: Eilenberg, Mac Lane, and \general abstract nonsense" 196 Chapter 8. Homological algebra 205 x8.1. Projective and injective modules 205 x8.2. Tor and Ext functors 207 Chapter 9. Structure of finite dimensional algebras 213 x9.1. Lifting of idempotents 213 x9.2. Projective covers 214 Contents vii x9.3. The Cartan matrix of a finite dimensional algebra 216 x9.4. Homological dimension 216 x9.5. Blocks 217 x9.6. Finite abelian categories 218 x9.7. Morita equivalence 220 References for historical interludes 221 Mathematical references 227 Chapter 1 Introduction Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to ge- ometry, probability theory, quantum mechanics, and quantum field theory. Representation theory was born in 1896 in the work of the Ger- man mathematician F. G. Frobenius. This work was triggered by a letter to Frobenius by R. Dedekind. In this letter Dedekind made the following observation: take the multiplication table of a finite group G and turn it into a matrix XG by replacing every entry g of this table by a variable xg. Then the determinant of XG factors into a product of irreducible polynomials in fxgg, each of which occurs with multiplicity equal to its degree. Dedekind checked this surprising fact in a few special cases but could not prove it in general. So he gave this problem to Frobenius. In order to find a solution of this problem (which we will explain below), Frobenius created the representation theory of finite groups. The goal of this book is to give a \holistic" introduction to rep- resentation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representa- tion theories of groups, Lie algebras, and quivers as special cases. It is designed as a textbook for advanced undergraduate and beginning 1 2 1. Introduction graduate students and should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract al- gebra. Theoretical material in this book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book covers a number of standard topics in representation theory of groups, associative algebras, Lie algebras, and quivers. For a more detailed treatment of these topics, we refer the reader to the textbooks [S], [FH], and [CR]. We mostly follow [FH], with the exception of the sections discussing quivers, which follow [BGP], and the sections on homological algebra and finite dimensional algebras, for which we recommend [W] and [CR], respectively. The organization of the book is as follows. Chapter 2 is devoted to the basics of representation theory. Here we review the basics of abstract algebra (groups, rings, modules, ideals, tensor products, symmetric and exterior powers, etc.), as well as give the main definitions of representation theory and discuss the objects whose representations we will study (associative algebras, groups, quivers, and Lie algebras). Chapter 3 introduces the main general results about representa- tions of associative algebras (the density theorem, the Jordan-H¨older theorem, the Krull-Schmidt theorem, and the structure theorem for finite dimensional algebras). In Chapter 4 we discuss the basic results about representations of finite groups. Here we prove Maschke's theorem and the orthogonality of characters and matrix elements and compute character tables and tensor product multiplicities for the simplest finite groups. We also discuss the Frobenius determinant, which was a starting point for development of the representation theory of finite groups. We continue to study representations of finite groups in Chapter 5, treating more advanced and special topics, such as the Frobenius- Schur indicator, the Frobenius divisibility theorem, the Burnside the- orem, the Frobenius formula for the character of an induced repre- sentation, representations of the symmetric group and the general 1. Introduction 3 linear group over C, representations of GL2(Fq), representations of semidirect products, etc. In Chapter 6, we give an introduction to the representation theory of quivers (starting with the problem of the classification of configura- tions of n subspaces in a vector space) and present a proof of Gabriel's theorem, which classifies quivers of finite type. In Chapter 7, we give an introduction to category theory, in par- ticular, abelian categories, and explain how such categories arise in representation theory. In Chapter 8, we give a brief introduction to homological algebra and explain how it can be applied to categories of representations. Finally, in Chapter 9 we give a short introduction to the repre- sentation theory of finite dimensional algebras. Besides, the book contains six historical interludes written by Dr. Slava Gerovitch.1 These interludes, written in an accessible and ab- sorbing style, tell about the life and mathematical work of some of the mathematicians who played a major role in the development of modern algebra and representation theory: F. G. Frobenius, S. Lie, W. Burnside, W. R. Hamilton, H. Weyl, S. Mac Lane, and S. Eilen- berg. For more on the history of representation theory, we recommend that the reader consult the references to the historical interludes, in particular the excellent book [Cu]. Acknowledgments. This book arose from the lecture notes of a representation theory course given by the first author to the re- maining six authors in March 2004 within the framework of the Clay Mathematics Institute Research Academy for high school students and its extended version given by the first author to MIT undergrad- uate mathematics students in the fall of 2008. The authors are grateful to the Clay Mathematics Institute for hosting the first version of this course. The first author is very in- debted to Victor Ostrik for helping him prepare this course and thanks 1I wish to thank Prof.
Recommended publications
  • REPRESENTATION THEORY. WEEK 4 1. Induced Modules Let B ⊂ a Be
    REPRESENTATION THEORY. WEEK 4 VERA SERGANOVA 1. Induced modules Let B ⊂ A be rings and M be a B-module. Then one can construct induced A module IndB M = A ⊗B M as the quotient of a free abelian group with generators from A × M by relations (a1 + a2) × m − a1 × m − a2 × m, a × (m1 + m2) − a × m1 − a × m2, ab × m − a × bm, and A acts on A ⊗B M by left multiplication. Note that j : M → A ⊗B M defined by j (m) = 1 ⊗ m is a homomorphism of B-modules. Lemma 1.1. Let N be an A-module, then for ϕ ∈ HomB (M, N) there exists a unique ψ ∈ HomA (A ⊗B M, N) such that ψ ◦ j = ϕ. Proof. Clearly, ψ must satisfy the relation ψ (a ⊗ m)= aψ (1 ⊗ m)= aϕ (m) . It is trivial to check that ψ is well defined. Exercise. Prove that for any B-module M there exists a unique A-module satisfying the conditions of Lemma 1.1. Corollary 1.2. (Frobenius reciprocity.) For any B-module M and A-module N there is an isomorphism of abelian groups ∼ HomB (M, N) = HomA (A ⊗B M, N) . F Example. Let k ⊂ F be a field extension. Then induction Indk is an exact functor from the category of vector spaces over k to the category of vector spaces over F , in the sense that the short exact sequence 0 → V1 → V2 → V3 → 0 becomes an exact sequence 0 → F ⊗k V1⊗→ F ⊗k V2 → F ⊗k V3 → 0. Date: September 27, 2005.
    [Show full text]
  • Frobenius Recip-Rocity and Extensions of Nilpotent Lie Groups
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 298, Number I, November 1986 FROBENIUS RECIP-ROCITY AND EXTENSIONS OF NILPOTENT LIE GROUPS JEFFREY FOX ABSTRACT. In §1 we use COO-vector methods, essentially Frobenius reciprocity, to derive the Howe-Richardson multiplicity formula for compact nilmanifolds. In §2 we use Frobenius reciprocity to generalize and considerably simplify a reduction procedure developed by Howe for solvable groups to general extensions of nilpotent Lie groups. In §3 we give an application of the previous results to obtain a reduction formula for solvable Lie groups. Introduction. In the representation theory of rings the fact that the tensor product functor and Hom functor are adjoints is of fundamental importance and at the time very simple and elegant. When this adjointness property is translated into a statement about representations of finite groups via the group ring, the classical Frobenius reciprocity theorem emerges. From this point of view, Frobenius reciproc- ity, aside from being a useful tool, provides a very natural explanation for many phenomena in representation theory. When G is a Lie group and r is a discrete cocompact subgroup, a main problem in harmonic analysis is to describe the decomposition of ind~(1)-the quasiregular representation. When G is semisimple the problem is enormously difficult, and little is known in general. However, if G is nilpotent, a rather detailed description of ind¥(l) is available, thanks to the work of Moore, Howe, Richardson, and Corwin and Greenleaf [M, H-I, R, C-G]. If G is solvable Howe has developed an inductive method of describing ind~(l) [H-2].
    [Show full text]
  • Representations of Finite Groups’ Iordan Ganev 13 August 2012 Eugene, Oregon
    Notes for ‘Representations of Finite Groups’ Iordan Ganev 13 August 2012 Eugene, Oregon Contents 1 Introduction 2 2 Functions on finite sets 2 3 The group algebra C[G] 4 4 Induced representations 5 5 The Hecke algebra H(G; K) 7 6 Characters and the Frobenius character formula 9 7 Exercises 12 1 1 Introduction The following notes were written in preparation for the first talk of a week-long workshop on categorical representation theory. We focus on basic constructions in the representation theory of finite groups. The participants are likely familiar with much of the material in this talk; we hope that this review provides perspectives that will precipitate a better understanding of later talks of the workshop. 2 Functions on finite sets Let X be a finite set of size n. Let C[X] denote the vector space of complex-valued functions on X. In what follows, C[X] will be endowed with various algebra structures, depending on the nature of X. The simplest algebra structure is pointwise multiplication, and in this case we can identify C[X] with the algebra C × C × · · · × C (n times). To emphasize pointwise multiplication, we write (C[X], ptwise). A C[X]-module is the same as X-graded vector space, or a vector bundle on X. To see this, let V be a C[X]-module and let δx 2 C[X] denote the delta function at x. Observe that δ if x = y δ · δ = x x y 0 if x 6= y It follows that each δx acts as a projection onto a subspace Vx of V and Vx \ Vy = 0 if x 6= y.
    [Show full text]
  • Pioneers of Representation Theory, by Charles W
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 3, Pages 359{362 S 0273-0979(00)00867-3 Article electronically published on February 16, 2000 Pioneers of representation theory, by Charles W. Curtis, Amer. Math. Soc., Prov- idence, RI, 1999, xvi + 287 pp., $49.00, ISBN 0-8218-9002-6 The theory of linear representations of finite groups emerged in a series of papers by Frobenius appearing in 1896{97. This was at first couched in the language of characters but soon evolved into the formulation now considered standard, in which characters give the traces of representing linear transformations. There were of course antecedents in the number-theoretic work of Lagrange, Gauss, and others| especially Dedekind, whose correspondence with Frobenius suggested a way to move from characters of abelian groups to characters of arbitrary finite groups. In the past century this theory has developed in many interesting directions. Besides being a natural tool in the study of the structure of finite groups, it has turned up in many branches of mathematics and has found extensive applications in chemistry and physics. Marking the end of the first century of the subject, the book under review offers a somewhat unusual blend of history, biography, and mathematical exposition. Before discussing the book itself, it may be worthwhile to pose a general question: Does one need to know anything about the history of mathematics (or the lives of individual mathematicians) in order to appreciate the subject matter? Most of us are complacent about quoting the usual sloppy misattributions of famous theorems, even if we are finicky about the details of proofs.
    [Show full text]
  • Representation Theory with a Perspective from Category Theory
    Representation Theory with a Perspective from Category Theory Joshua Wong Mentor: Saad Slaoui 1 Contents 1 Introduction3 2 Representations of Finite Groups4 2.1 Basic Definitions.................................4 2.2 Character Theory.................................7 3 Frobenius Reciprocity8 4 A View from Category Theory 10 4.1 A Note on Tensor Products........................... 10 4.2 Adjunction.................................... 10 4.3 Restriction and extension of scalars....................... 12 5 Acknowledgements 14 2 1 Introduction Oftentimes, it is better to understand an algebraic structure by representing its elements as maps on another space. For example, Cayley's Theorem tells us that every finite group is isomorphic to a subgroup of some symmetric group. In particular, representing groups as linear maps on some vector space allows us to translate group theory problems to linear algebra problems. In this paper, we will go over some introductory representation theory, which will allow us to reach an interesting result known as Frobenius Reciprocity. Afterwards, we will examine Frobenius Reciprocity from the perspective of category theory. 3 2 Representations of Finite Groups 2.1 Basic Definitions Definition 2.1.1 (Representation). A representation of a group G on a finite-dimensional vector space is a homomorphism φ : G ! GL(V ) where GL(V ) is the group of invertible linear endomorphisms on V . The degree of the representation is defined to be the dimension of the underlying vector space. Note that some people refer to V as the representation of G if it is clear what the underlying homomorphism is. Furthermore, if it is clear what the representation is from context, we will use g instead of φ(g).
    [Show full text]
  • Induction and Restriction As Adjoint Functors on Representations of Locally Compact Groups
    Internat. J. Math. & Math. Scl. 61 VOL. 16 NO. (1993) 61-66 INDUCTION AND RESTRICTION AS ADJOINT FUNCTORS ON REPRESENTATIONS OF LOCALLY COMPACT GROUPS ROBERT A. BEKES and PETER J. HILTON Department of Mathematics Department of Mathematical Sciences Santa Clara University State University of New York at Binghamton Santa Clara, CA 95053 Bingharnton, NY 13902-6000 (Received April 16, 1992) ABSTRACT. In this paper the Frobenius Reciprocity Theorem for locally compact groups is looked at from a category theoretic point of view. KEY WORDS AND PHRASES. Locally compact group, Frobenius Reciprocity, category theory. 1991 AMS SUBJECT CLASSIFICATION CODES. 22D30, 18A23 I. INTRODUCTION. In [I] C. C. Moore proves a global version of the Frobenius Reciprocity Theorem for locally compact groups in the case that the coset space has an invariant measure. This result, for arbitrary closed subgroups, was obtained by A. Kleppner [2], using different methods. We show how a slight modification of Moore's original proof yields the general result. It is this global version of the reciprocity theorem that is the basis for our categorical approach. (See [3] for a description of the necessary category-theoretical concepts.) We begin by setting up the machinery necessary to discuss the reciprocity theorem. Next we show how, using the global version of the theorem, the functors of induction and restriction are adjoint. The proofs of these results are at the end of the paper. 2. THE MAIN RFULTS. Throughout G is a separable locally compact group and K is a closed subgroup. Let G/K denote the space of right cosets of K in G and for s E G, we write for the coset Ks.
    [Show full text]
  • Permutation Groups Containing a Regular Abelian Subgroup: The
    PERMUTATION GROUPS CONTAINING A REGULAR ABELIAN SUBGROUP: THE TANGLED HISTORY OF TWO MISTAKES OF BURNSIDE MARK WILDON Abstract. A group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2- transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later in 1921 he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this note we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data. 1. Introduction In 1911, writing in §252 of the second edition of his influential textbook [6], Burnside claimed a proof of the following theorem. Theorem 1.1. Let G be a transitive permutation group of composite prime- power degree containing a regular cyclic subgroup. Either G is imprimitive or G is 2-transitive. An error in the penultimate sentence of Burnside’s proof was noted in [7, page 24], where Neumann remarks ‘Nevertheless, the theorem is certainly true and can be proved by similar character-theoretic methods to those that Burnside employed’. In §3 we present the correct part of Burnside’s arXiv:1705.07502v2 [math.GR] 11 Jun 2017 proof in today’s language.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Math 126 Lecture 4. Basic Facts in Representation Theory
    Math 126 Lecture 4. Basic facts in representation theory. Notice. Definition of a representation of a group. The theory of group representations is the creation of Frobenius: Georg Frobenius lived from 1849 to 1917 Frobenius combined results from the theory of algebraic equations, geometry, and number theory, which led him to the study of abstract groups, the representation theory of groups and the character theory of groups. Find out more at: http://www-history.mcs.st-andrews.ac.uk/history/ Mathematicians/Frobenius.html Matrix form of a representation. Equivalence of two representations. Invariant subspaces. Irreducible representations. One dimensional representations. Representations of cyclic groups. Direct sums. Tensor product. Unitary representations. Averaging over the group. Maschke’s theorem. Heinrich Maschke 1853 - 1908 Schur’s lemma. Issai Schur Biography of Schur. Issai Schur Born: 10 Jan 1875 in Mogilyov, Mogilyov province, Russian Empire (now Belarus) Died: 10 Jan 1941 in Tel Aviv, Palestine (now Israel) Although Issai Schur was born in Mogilyov on the Dnieper, he spoke German without a trace of an accent, and nobody even guessed that it was not his first language. He went to Latvia at the age of 13 and there he attended the Gymnasium in Libau, now called Liepaja. In 1894 Schur entered the University of Berlin to read mathematics and physics. Frobenius was one of his teachers and he was to greatly influence Schur and later to direct his doctoral studies. Frobenius and Burnside had been the two main founders of the theory of representations of groups as groups of matrices. This theory proved a very powerful tool in the study of groups and Schur was to learn the foundations of this subject from Frobenius.
    [Show full text]
  • A Brief History of an Important Classical Theorem
    Advances in Group Theory and Applications c 2016 AGTA - www.advgrouptheory.com/journal 2 (2016), pp. 121–124 ISSN: 2499-1287 DOI: 10.4399/97888548970148 A Brief History of an Important Classical Theorem L.A. Kurdachenko — I.Ya.Subbotin (Received Nov. 6, 2016 – Communicated by Francesco de Giovanni) Mathematics Subject Classification (2010): 20F14, 20F19 Keywords: Schur theorem; Baer theorem; Neumann theorem This note is a by-product of the authors’ investigation of relations between the lower and upper central series in a group. There are some famous theorems laid at the foundation of any research in this area. These theorems are so well-known that, by the established tra- dition, they usually were named in honor of the mathematicians who first formulated and proved them. However, this did not always hap- pened. Our intention here is to talk about one among the fundamen- tal results of infinite group theory which is linked to Issai Schur. Issai Schur (January 10, 1875 in Mogilev, Belarus — January 10, 1941 in Tel Aviv, Israel) was a very famous mathematician who proved many important and interesting results, first in algebra and number theory. There is a biography sketch of I. Schur wonderfully written by J.J. O’Connor and E.F. Robertson [6]. The authors documented that I. Schur actively and successfully worked in many branches of mathematics, such as for example, finite groups, matrices, alge- braic equations (where he gave examples of equations with alterna- ting Galois groups), number theory, divergent series, integral equa- tions, function theory. We cannot add anything important to this, saturated with factual and emotional details, article of O’Connor 122 L.A.
    [Show full text]
  • Interview with Martin Gardner Page 602
    ISSN 0002-9920 of the American Mathematical Society june/july 2005 Volume 52, Number 6 Interview with Martin Gardner page 602 On the Notices Publication of Krieger's Translation of Weil' s 1940 Letter page 612 Taichung, Taiwan Meeting page 699 ., ' Martin Gardner (see page 611) AMERICAN MATHEMATICAL SOCIETY A Mathematical Gift, I, II, Ill The interplay between topology, functions, geometry, and algebra Shigeyuki Morita, Tokyo Institute of Technology, Japan, Koji Shiga, Yokohama, Japan, Toshikazu Sunada, Tohoku University, Sendai, Japan and Kenji Ueno, Kyoto University, Japan This three-volume set succinctly addresses the interplay between topology, functions, geometry, and algebra. Bringing the beauty and fun of mathematics to the classroom, the authors offer serious mathematics in an engaging style. Included are exercises and many figures illustrating the main concepts. It is suitable for advanced high-school students, graduate students, and researchers. The three-volume set includes A Mathematical Gift, I, II, and III. For a complete description, go to www.ams.org/bookstore-getitem/item=mawrld-gset Mathematical World, Volume 19; 2005; 136 pages; Softcover; ISBN 0-8218-3282-4; List US$29;AII AMS members US$23; Order code MAWRLD/19 Mathematical World, Volume 20; 2005; 128 pages; Softcover; ISBN 0-8218-3283-2; List US$29;AII AMS members US$23; Order code MAWRLD/20 Mathematical World, Volume 23; 2005; approximately 128 pages; Softcover; ISBN 0-8218-3284-0; List US$29;AII AMS members US$23; Order code MAWRLD/23 Set: Mathematical World, Volumes 19, 20, and 23; 2005; Softcover; ISBN 0-8218-3859-8; List US$75;AII AMS members US$60; Order code MAWRLD-GSET Also available as individual volumes ..
    [Show full text]
  • Letters from William Burnside to Robert Fricke: Automorphic Functions, and the Emergence of the Burnside Problem
    LETTERS FROM WILLIAM BURNSIDE TO ROBERT FRICKE: AUTOMORPHIC FUNCTIONS, AND THE EMERGENCE OF THE BURNSIDE PROBLEM CLEMENS ADELMANN AND EBERHARD H.-A. GERBRACHT Abstract. Two letters from William Burnside have recently been found in the Nachlass of Robert Fricke that contain instances of Burnside's Problem prior to its first publication. We present these letters as a whole to the public for the first time. We draw a picture of these two mathematicians and describe their activities leading to their correspondence. We thus gain an insight into their respective motivations, reactions, and attitudes, which may sharpen the current understanding of professional and social interactions of the mathemat- ical community at the turn of the 20th century. 1. The simple group of order 504 { a first meeting of minds Until 1902, when the publication list of the then fifty-year-old William Burnside already encompassed 90 papers, only one of these had appeared in a non-British journal: a three-page article [5] entitled \Note on the simple group of order 504" in volume 52 of Mathematische Annalen in 1898. In this paper Burnside deduced a presentation of that group in terms of generators and relations,1 which is based on the fact that it is isomorphic to the group of linear fractional transformations with coefficients in the finite field with 8 elements. The proof presented is very concise and terse, consisting only of a succession of algebraic identities, while calculations in the concrete group of transformations are omitted. In the very same volume of Mathematische Annalen, only one issue later, there can be found a paper [18] by Robert Fricke entitled \Ueber eine einfache Gruppe von 504 Operationen" (On a simple group of 504 operations), which is on exactly the same subject.
    [Show full text]