Representation Theory with a Perspective from Category Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Theory of Induced Representations in Field Theory
QMW{PH{95{? hep-th/yymmnnn The Theory of Induced Representations in Field Theory Jose´ M. Figueroa-O'Farrill ABSTRACT These are some notes on Mackey's theory of induced representations. They are based on lectures at the ITP in Stony Brook in the Spring of 1987. They were intended as an exercise in the theory of homogeneous spaces (as principal bundles). They were never meant for distribution. x1 Introduction The theory of group representations is by no means a closed chapter in mathematics. Although for some large classes of groups all representations are more or less completely classified, this is not the case for all groups. The theory of induced representations is a method of obtaining representations of a topological group starting from a representation of a subgroup. The classic example and one of fundamental importance in physics is the Wigner construc- tion of representations of the Poincar´egroup. Later Mackey systematized this construction and made it applicable to a large class of groups. The method of induced representations appears geometrically very natural when expressed in the context of (homogeneous) vector bundles over a coset manifold. In fact, the representation of a group G induced from a represen- tation of a subgroup H will be decomposed as a \direct integral" indexed by the elements of the space of cosets G=H. The induced representation of G will be carried by the completion of a suitable subspace of the space of sections through a given vector bundle over G=H. In x2 we review the basic notions about coset manifolds emphasizing their connections with principal fibre bundles. -
REPRESENTATION THEORY. WEEK 4 1. Induced Modules Let B ⊂ a Be
REPRESENTATION THEORY. WEEK 4 VERA SERGANOVA 1. Induced modules Let B ⊂ A be rings and M be a B-module. Then one can construct induced A module IndB M = A ⊗B M as the quotient of a free abelian group with generators from A × M by relations (a1 + a2) × m − a1 × m − a2 × m, a × (m1 + m2) − a × m1 − a × m2, ab × m − a × bm, and A acts on A ⊗B M by left multiplication. Note that j : M → A ⊗B M defined by j (m) = 1 ⊗ m is a homomorphism of B-modules. Lemma 1.1. Let N be an A-module, then for ϕ ∈ HomB (M, N) there exists a unique ψ ∈ HomA (A ⊗B M, N) such that ψ ◦ j = ϕ. Proof. Clearly, ψ must satisfy the relation ψ (a ⊗ m)= aψ (1 ⊗ m)= aϕ (m) . It is trivial to check that ψ is well defined. Exercise. Prove that for any B-module M there exists a unique A-module satisfying the conditions of Lemma 1.1. Corollary 1.2. (Frobenius reciprocity.) For any B-module M and A-module N there is an isomorphism of abelian groups ∼ HomB (M, N) = HomA (A ⊗B M, N) . F Example. Let k ⊂ F be a field extension. Then induction Indk is an exact functor from the category of vector spaces over k to the category of vector spaces over F , in the sense that the short exact sequence 0 → V1 → V2 → V3 → 0 becomes an exact sequence 0 → F ⊗k V1⊗→ F ⊗k V2 → F ⊗k V3 → 0. Date: September 27, 2005. -
Frobenius Recip-Rocity and Extensions of Nilpotent Lie Groups
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 298, Number I, November 1986 FROBENIUS RECIP-ROCITY AND EXTENSIONS OF NILPOTENT LIE GROUPS JEFFREY FOX ABSTRACT. In §1 we use COO-vector methods, essentially Frobenius reciprocity, to derive the Howe-Richardson multiplicity formula for compact nilmanifolds. In §2 we use Frobenius reciprocity to generalize and considerably simplify a reduction procedure developed by Howe for solvable groups to general extensions of nilpotent Lie groups. In §3 we give an application of the previous results to obtain a reduction formula for solvable Lie groups. Introduction. In the representation theory of rings the fact that the tensor product functor and Hom functor are adjoints is of fundamental importance and at the time very simple and elegant. When this adjointness property is translated into a statement about representations of finite groups via the group ring, the classical Frobenius reciprocity theorem emerges. From this point of view, Frobenius reciproc- ity, aside from being a useful tool, provides a very natural explanation for many phenomena in representation theory. When G is a Lie group and r is a discrete cocompact subgroup, a main problem in harmonic analysis is to describe the decomposition of ind~(1)-the quasiregular representation. When G is semisimple the problem is enormously difficult, and little is known in general. However, if G is nilpotent, a rather detailed description of ind¥(l) is available, thanks to the work of Moore, Howe, Richardson, and Corwin and Greenleaf [M, H-I, R, C-G]. If G is solvable Howe has developed an inductive method of describing ind~(l) [H-2]. -
Representations of Finite Groups’ Iordan Ganev 13 August 2012 Eugene, Oregon
Notes for ‘Representations of Finite Groups’ Iordan Ganev 13 August 2012 Eugene, Oregon Contents 1 Introduction 2 2 Functions on finite sets 2 3 The group algebra C[G] 4 4 Induced representations 5 5 The Hecke algebra H(G; K) 7 6 Characters and the Frobenius character formula 9 7 Exercises 12 1 1 Introduction The following notes were written in preparation for the first talk of a week-long workshop on categorical representation theory. We focus on basic constructions in the representation theory of finite groups. The participants are likely familiar with much of the material in this talk; we hope that this review provides perspectives that will precipitate a better understanding of later talks of the workshop. 2 Functions on finite sets Let X be a finite set of size n. Let C[X] denote the vector space of complex-valued functions on X. In what follows, C[X] will be endowed with various algebra structures, depending on the nature of X. The simplest algebra structure is pointwise multiplication, and in this case we can identify C[X] with the algebra C × C × · · · × C (n times). To emphasize pointwise multiplication, we write (C[X], ptwise). A C[X]-module is the same as X-graded vector space, or a vector bundle on X. To see this, let V be a C[X]-module and let δx 2 C[X] denote the delta function at x. Observe that δ if x = y δ · δ = x x y 0 if x 6= y It follows that each δx acts as a projection onto a subspace Vx of V and Vx \ Vy = 0 if x 6= y. -
Induction and Restriction As Adjoint Functors on Representations of Locally Compact Groups
Internat. J. Math. & Math. Scl. 61 VOL. 16 NO. (1993) 61-66 INDUCTION AND RESTRICTION AS ADJOINT FUNCTORS ON REPRESENTATIONS OF LOCALLY COMPACT GROUPS ROBERT A. BEKES and PETER J. HILTON Department of Mathematics Department of Mathematical Sciences Santa Clara University State University of New York at Binghamton Santa Clara, CA 95053 Bingharnton, NY 13902-6000 (Received April 16, 1992) ABSTRACT. In this paper the Frobenius Reciprocity Theorem for locally compact groups is looked at from a category theoretic point of view. KEY WORDS AND PHRASES. Locally compact group, Frobenius Reciprocity, category theory. 1991 AMS SUBJECT CLASSIFICATION CODES. 22D30, 18A23 I. INTRODUCTION. In [I] C. C. Moore proves a global version of the Frobenius Reciprocity Theorem for locally compact groups in the case that the coset space has an invariant measure. This result, for arbitrary closed subgroups, was obtained by A. Kleppner [2], using different methods. We show how a slight modification of Moore's original proof yields the general result. It is this global version of the reciprocity theorem that is the basis for our categorical approach. (See [3] for a description of the necessary category-theoretical concepts.) We begin by setting up the machinery necessary to discuss the reciprocity theorem. Next we show how, using the global version of the theorem, the functors of induction and restriction are adjoint. The proofs of these results are at the end of the paper. 2. THE MAIN RFULTS. Throughout G is a separable locally compact group and K is a closed subgroup. Let G/K denote the space of right cosets of K in G and for s E G, we write for the coset Ks. -
Representing Groups on Graphs
Representing groups on graphs Sagarmoy Dutta and Piyush P Kurur Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016 {sagarmoy,ppk}@cse.iitk.ac.in Abstract In this paper we formulate and study the problem of representing groups on graphs. We show that with respect to polynomial time turing reducibility, both abelian and solvable group representability are all equivalent to graph isomorphism, even when the group is presented as a permutation group via generators. On the other hand, the representability problem for general groups on trees is equivalent to checking, given a group G and n, whether a nontrivial homomorphism from G to Sn exists. There does not seem to be a polynomial time algorithm for this problem, in spite of the fact that tree isomorphism has polynomial time algorithm. 1 Introduction Representation theory of groups is a vast and successful branch of mathematics with applica- tions ranging from fundamental physics to computer graphics and coding theory [5]. Recently representation theory has seen quite a few applications in computer science as well. In this article, we study some of the questions related to representation of finite groups on graphs. A representation of a group G usually means a linear representation, i.e. a homomorphism from the group G to the group GL (V ) of invertible linear transformations on a vector space V . Notice that GL (V ) is the set of symmetries or automorphisms of the vector space V . In general, by a representation of G on an object X, we mean a homomorphism from G to the automorphism group of X. -
Part II — Representation Theory Theorems
Part II | Representation Theory Theorems Based on lectures by S. Martin Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. Linear Algebra and Groups, Rings and Modules are essential Representations of finite groups Representations of groups on vector spaces, matrix representations. Equivalence of representations. Invariant subspaces and submodules. Irreducibility and Schur's Lemma. Complete reducibility for finite groups. Irreducible representations of Abelian groups. Character theory Determination of a representation by its character. The group algebra, conjugacy classes, and orthogonality relations. Regular representation. Permutation representations and their characters. Induced representations and the Frobenius reciprocity theorem. Mackey's theorem. Frobenius's Theorem. [12] Arithmetic properties of characters Divisibility of the order of the group by the degrees of its irreducible characters. Burnside's paqb theorem. [2] Tensor products Tensor products of representations and products of characters. The character ring. Tensor, symmetric and exterior algebras. [3] 1 Representations of S and SU2 1 The groups S , SU2 and SO(3), their irreducible representations, complete reducibility. The Clebsch-Gordan formula. *Compact groups.* [4] Further worked examples The characters of one of GL2(Fq);Sn or the Heisenberg group. [3] 1 Contents II Representation Theory (Theorems) Contents 0 Introduction 3 1 Group actions 4 2 Basic definitions 5 3 Complete reducibility and Maschke's theorem 6 4 Schur's lemma 7 5 Character theory 8 6 Proof of orthogonality 10 7 Permutation representations 11 8 Normal subgroups and lifting 12 9 Dual spaces and tensor products of representations 13 9.1 Dual spaces . -
A B S T R a C T. World Spinors, the Spinorial Matter (Particles, P-Branes and Fields) in a Generic Curved Space Is Considered. R
Bulletin T.CXLI de l'Acad´emieserbe des sciences et des arts − 2010 Classe des Sciences math´ematiqueset naturelles Sciences math´ematiques, No 35 SPINORIAL MATTER AND GENERAL RELATIVITY THEORY DJ. SIJAˇ CKIˇ (Inaugural lecture delivered on the 24th of May 2010 at the Serbian Academy of Sciences and Arts in Belgrade) A b s t r a c t. World spinors, the spinorial matter (particles, p-branes and fields) in a generic curved space is considered. Representation theory, as well as the basic algebraic and topological properties of relevant symme- try groups are presented. Relations between spinorial wave equations that transform respectively w.r.t. the tangent flat-space (anholonomic) Affine symmetry group and the world generic-curved-space (holonomic) group of Diffeomorphisms are presented. World spinor equations and certain basic constraints that yield a viable physical theory are discussed. A geometric con- struction based on an infinite-component generalization of the frame fields (e.g. tetrads) is outlined. The world spinor field equation in 3D is treated in more details. AMS Mathematics Subject Classification (2000): 22E46, 22E65, 58B25, 81T20, 83D05 Key Words: General relativity, world spinors, Dirac-like equation, SL(n; R) representations 98 Dj. Sijaˇckiˇ 1. Introduction Point-like matter. The Dirac equation turned out to be one of the most successful equations of the XX century physics - it describes the basic matter constituents (both particles and fields), and very significantly, it paved a way to develop the concept of gauge theories thus playing an important role in description of the basic interactions (forces) as well. It is a Poincar´ecovariant linear field 1 equation which describes relativistic spin 2 matter objects, that a coupled to fundamental interactions in Nature through the gauge (minimal coupling) prescription. -
GROUP REPRESENTATIONS and CHARACTER THEORY Contents 1
GROUP REPRESENTATIONS AND CHARACTER THEORY DAVID KANG Abstract. In this paper, we provide an introduction to the representation theory of finite groups. We begin by defining representations, G-linear maps, and other essential concepts before moving quickly towards initial results on irreducibility and Schur's Lemma. We then consider characters, class func- tions, and show that the character of a representation uniquely determines it up to isomorphism. Orthogonality relations are introduced shortly afterwards. Finally, we construct the character tables for a few familiar groups. Contents 1. Introduction 1 2. Preliminaries 1 3. Group Representations 2 4. Maschke's Theorem and Complete Reducibility 4 5. Schur's Lemma and Decomposition 5 6. Character Theory 7 7. Character Tables for S4 and Z3 12 Acknowledgments 13 References 14 1. Introduction The primary motivation for the study of group representations is to simplify the study of groups. Representation theory offers a powerful approach to the study of groups because it reduces many group theoretic problems to basic linear algebra calculations. To this end, we assume that the reader is already quite familiar with linear algebra and has had some exposure to group theory. With this said, we begin with a preliminary section on group theory. 2. Preliminaries Definition 2.1. A group is a set G with a binary operation satisfying (1) 8 g; h; i 2 G; (gh)i = g(hi)(associativity) (2) 9 1 2 G such that 1g = g1 = g; 8g 2 G (identity) (3) 8 g 2 G; 9 g−1 such that gg−1 = g−1g = 1 (inverses) Definition 2.2. -
Spinors for Everyone Gerrit Coddens
Spinors for everyone Gerrit Coddens To cite this version: Gerrit Coddens. Spinors for everyone. 2017. cea-01572342 HAL Id: cea-01572342 https://hal-cea.archives-ouvertes.fr/cea-01572342 Submitted on 7 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Spinors for everyone Gerrit Coddens Laboratoire des Solides Irradi´es, CEA-DSM-IRAMIS, CNRS UMR 7642, Ecole Polytechnique, 28, Route de Saclay, F-91128-Palaiseau CEDEX, France 5th August 2017 Abstract. It is hard to find intuition for spinors in the literature. We provide this intuition by explaining all the underlying ideas in a way that can be understood by everybody who knows the definition of a group, complex numbers and matrix algebra. We first work out these ideas for the representation SU(2) 3 of the three-dimensional rotation group in R . In a second stage we generalize the approach to rotation n groups in vector spaces R of arbitrary dimension n > 3, endowed with an Euclidean metric. The reader can obtain this way an intuitive understanding of what a spinor is. We discuss the meaning of making linear combinations of spinors. -
Representation Theory
M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23. -
Notes on Representations of Finite Groups
NOTES ON REPRESENTATIONS OF FINITE GROUPS AARON LANDESMAN CONTENTS 1. Introduction 3 1.1. Acknowledgements 3 1.2. A first definition 3 1.3. Examples 4 1.4. Characters 7 1.5. Character Tables and strange coincidences 8 2. Basic Properties of Representations 11 2.1. Irreducible representations 12 2.2. Direct sums 14 3. Desiderata and problems 16 3.1. Desiderata 16 3.2. Applications 17 3.3. Dihedral Groups 17 3.4. The Quaternion group 18 3.5. Representations of A4 18 3.6. Representations of S4 19 3.7. Representations of A5 19 3.8. Groups of order p3 20 3.9. Further Challenge exercises 22 4. Complete Reducibility of Complex Representations 24 5. Schur’s Lemma 30 6. Isotypic Decomposition 32 6.1. Proving uniqueness of isotypic decomposition 32 7. Homs and duals and tensors, Oh My! 35 7.1. Homs of representations 35 7.2. Duals of representations 35 7.3. Tensors of representations 36 7.4. Relations among dual, tensor, and hom 38 8. Orthogonality of Characters 41 8.1. Reducing Theorem 8.1 to Proposition 8.6 41 8.2. Projection operators 43 1 2 AARON LANDESMAN 8.3. Proving Proposition 8.6 44 9. Orthogonality of character tables 46 10. The Sum of Squares Formula 48 10.1. The inner product on characters 48 10.2. The Regular Representation 50 11. The number of irreducible representations 52 11.1. Proving characters are independent 53 11.2. Proving characters form a basis for class functions 54 12. Dimensions of Irreps divide the order of the Group 57 Appendix A.