Representation Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discussion on Some Properties of an Infinite Non-Abelian Group
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 Discussion on Some Then A.B = Properties of an Infinite Non-abelian = Group Where = Ankur Bala#1, Madhuri Kohli#2 #1 M.Sc. , Department of Mathematics, University of Delhi, Delhi #2 M.Sc., Department of Mathematics, University of Delhi, Delhi ( 1 ) India Abstract: In this Article, we have discussed some of the properties of the infinite non-abelian group of matrices whose entries from integers with non-zero determinant. Such as the number of elements of order 2, number of subgroups of order 2 in this group. Moreover for every finite group , there exists such that has a subgroup isomorphic to the group . ( 2 ) Keywords: Infinite non-abelian group, Now from (1) and (2) one can easily say that is Notations: GL(,) n Z []aij n n : aij Z. & homomorphism. det( ) = 1 Now consider , Theorem 1: can be embedded in Clearly Proof: If we prove this theorem for , Hence is injective homomorphism. then we are done. So, by fundamental theorem of isomorphism one can Let us define a mapping easily conclude that can be embedded in for all m . Such that Theorem 2: is non-abelian infinite group Proof: Consider Consider Let A = and And let H= Clearly H is subset of . And H has infinite elements. B= Hence is infinite group. Now consider two matrices Such that determinant of A and B is , where . And ISSN: 2231-5373 http://www.ijmttjournal.org Page 108 International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 Proof: Let G be any group and A(G) be the group of all permutations of set G. -
Simultaneous Diagonalization and SVD of Commuting Matrices
Simultaneous Diagonalization and SVD of Commuting Matrices Ronald P. Nordgren1 Brown School of Engineering, Rice University Abstract. We present a matrix version of a known method of constructing common eigenvectors of two diagonalizable commuting matrices, thus enabling their simultane- ous diagonalization. The matrices may have simple eigenvalues of multiplicity greater than one. The singular value decomposition (SVD) of a class of commuting matrices also is treated. The effect of row/column permutation is examined. Examples are given. 1 Introduction It is well known that if two diagonalizable matrices have the same eigenvectors, then they commute. The converse also is true and a construction for the common eigen- vectors (enabling simultaneous diagonalization) is known. If one of the matrices has distinct eigenvalues (multiplicity one), it is easy to show that its eigenvectors pertain to both commuting matrices. The case of matrices with simple eigenvalues of mul- tiplicity greater than one requires a more complicated construction of their common eigenvectors. Here, we present a matrix version of a construction procedure given by Horn and Johnson [1, Theorem 1.3.12] and in a video by Sadun [4]. The eigenvector construction procedure also is applied to the singular value decomposition of a class of commuting matrices that includes the case where at least one of the matrices is real and symmetric. In addition, we consider row/column permutation of the commuting matrices. Three examples illustrate the eigenvector construction procedure. 2 Eigenvector Construction Let A and B be diagonalizable square matrices that commute, i.e. AB = BA (1) and their Jordan canonical forms read −1 −1 A = SADASA , B = SBDB SB . -
Group Theory in Particle Physics
Group Theory in Particle Physics Joshua Albert Phy 205 http://en.wikipedia.org/wiki/Image:E8_graph.svg Where Did it Come From? Group Theory has it©s origins in: ● Algebraic Equations ● Number Theory ● Geometry Some major early contributers were Euler, Gauss, Lagrange, Abel, and Galois. What is a group? ● A group is a collection of objects with an associated operation. ● The group can be finite or infinite (based on the number of elements in the group. ● The following four conditions must be satisfied for the set of objects to be a group... 1: Closure ● The group operation must associate any pair of elements T and T© in group G with another element T©© in G. This operation is the group multiplication operation, and so we write: – T T© = T©© – T, T©, T©© all in G. ● Essentially, the product of any two group elements is another group element. 2: Associativity ● For any T, T©, T©© all in G, we must have: – (T T©) T©© = T (T© T©©) ● Note that this does not imply: – T T© = T© T – That is commutativity, which is not a fundamental group property 3: Existence of Identity ● There must exist an identity element I in a group G such that: – T I = I T = T ● For every T in G. 4: Existence of Inverse ● For every element T in G there must exist an inverse element T -1 such that: – T T -1 = T -1 T = I ● These four properties can be satisfied by many types of objects, so let©s go through some examples... Some Finite Group Examples: ● Parity – Representable by {1, -1}, {+,-}, {even, odd} – Clearly an important group in particle physics ● Rotations of an Equilateral Triangle – Representable as ordering of vertices: {ABC, ACB, BAC, BCA, CAB, CBA} – Can also be broken down into subgroups: proper rotations and improper rotations ● The Identity alone (smallest possible group). -
An Overview of Topological Groups: Yesterday, Today, Tomorrow
axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups. -
Lie Algebras and Representation Theory Andreasˇcap
Lie Algebras and Representation Theory Fall Term 2016/17 Andreas Capˇ Institut fur¨ Mathematik, Universitat¨ Wien, Nordbergstr. 15, 1090 Wien E-mail address: [email protected] Contents Preface v Chapter 1. Background 1 Group actions and group representations 1 Passing to the Lie algebra 5 A primer on the Lie group { Lie algebra correspondence 8 Chapter 2. General theory of Lie algebras 13 Basic classes of Lie algebras 13 Representations and the Killing Form 21 Some basic results on semisimple Lie algebras 29 Chapter 3. Structure theory of complex semisimple Lie algebras 35 Cartan subalgebras 35 The root system of a complex semisimple Lie algebra 40 The classification of root systems and complex simple Lie algebras 54 Chapter 4. Representation theory of complex semisimple Lie algebras 59 The theorem of the highest weight 59 Some multilinear algebra 63 Existence of irreducible representations 67 The universal enveloping algebra and Verma modules 72 Chapter 5. Tools for dealing with finite dimensional representations 79 Decomposing representations 79 Formulae for multiplicities, characters, and dimensions 83 Young symmetrizers and Weyl's construction 88 Bibliography 93 Index 95 iii Preface The aim of this course is to develop the basic general theory of Lie algebras to give a first insight into the basics of the structure theory and representation theory of semisimple Lie algebras. A problem one meets right in the beginning of such a course is to motivate the notion of a Lie algebra and to indicate the importance of representation theory. The simplest possible approach would be to require that students have the necessary background from differential geometry, present the correspondence between Lie groups and Lie algebras, and then move to the study of Lie algebras, which are easier to understand than the Lie groups themselves. -
Symmetries on the Lattice
Symmetries On The Lattice K.Demmouche January 8, 2006 Contents Background, character theory of finite groups The cubic group on the lattice Oh Representation of Oh on Wilson loops Double group 2O and spinor Construction of operator on the lattice MOTIVATION Spectrum of non-Abelian lattice gauge theories ? Create gauge invariant spin j states on the lattice Irreducible operators Monte Carlo calculations Extract masses from time slice correlations Character theory of point groups Groups, Axioms A set G = {a, b, c, . } A1 : Multiplication ◦ : G × G → G. A2 : Associativity a, b, c ∈ G ,(a ◦ b) ◦ c = a ◦ (b ◦ c). A3 : Identity e ∈ G , a ◦ e = e ◦ a = a for all a ∈ G. −1 −1 −1 A4 : Inverse, a ∈ G there exists a ∈ G , a ◦ a = a ◦ a = e. Groups with finite number of elements → the order of the group G : nG. The point group C3v The point group C3v (Symmetry group of molecule NH3) c ¡¡AA ¡ A ¡ A Z ¡ A Z¡ A Z O ¡ Z A ¡ Z A ¡ Z A Z ¡ Z A ¡ ZA a¡ ZA b G = {Ra(π),Rb(π),Rc(π),E(2π),R~n(2π/3),R~n(−2π/3)} noted G = {A, B, C, E, D, F } respectively. Structure of Groups Subgroups: Definition A subset H of a group G that is itself a group with the same multiplication operation as G is called a subgroup of G. Example: a subgroup of C3v is the subset E, D, F Classes: Definition An element g0 of a group G is said to be ”conjugate” to another element g of G if there exists an element h of G such that g0 = hgh−1 Example: on can check that B = DCD−1 Conjugacy Class Definition A class of a group G is a set of mutually conjugate elements of G. -
Representation Theory with a Perspective from Category Theory
Representation Theory with a Perspective from Category Theory Joshua Wong Mentor: Saad Slaoui 1 Contents 1 Introduction3 2 Representations of Finite Groups4 2.1 Basic Definitions.................................4 2.2 Character Theory.................................7 3 Frobenius Reciprocity8 4 A View from Category Theory 10 4.1 A Note on Tensor Products........................... 10 4.2 Adjunction.................................... 10 4.3 Restriction and extension of scalars....................... 12 5 Acknowledgements 14 2 1 Introduction Oftentimes, it is better to understand an algebraic structure by representing its elements as maps on another space. For example, Cayley's Theorem tells us that every finite group is isomorphic to a subgroup of some symmetric group. In particular, representing groups as linear maps on some vector space allows us to translate group theory problems to linear algebra problems. In this paper, we will go over some introductory representation theory, which will allow us to reach an interesting result known as Frobenius Reciprocity. Afterwards, we will examine Frobenius Reciprocity from the perspective of category theory. 3 2 Representations of Finite Groups 2.1 Basic Definitions Definition 2.1.1 (Representation). A representation of a group G on a finite-dimensional vector space is a homomorphism φ : G ! GL(V ) where GL(V ) is the group of invertible linear endomorphisms on V . The degree of the representation is defined to be the dimension of the underlying vector space. Note that some people refer to V as the representation of G if it is clear what the underlying homomorphism is. Furthermore, if it is clear what the representation is from context, we will use g instead of φ(g). -
The Algebra Generated by Three Commuting Matrices
THE ALGEBRA GENERATED BY THREE COMMUTING MATRICES B.A. SETHURAMAN Abstract. We present a survey of an open problem concerning the dimension of the algebra generated by three commuting matrices. This article concerns a problem in algebra that is completely elementary to state, yet, has proven tantalizingly difficult and is as yet unsolved. Consider C[A; B; C] , the C-subalgebra of the n × n matrices Mn(C) generated by three commuting matrices A, B, and C. Thus, C[A; B; C] consists of all C- linear combinations of \monomials" AiBjCk, where i, j, and k range from 0 to infinity. Note that C[A; B; C] and Mn(C) are naturally vector-spaces over C; moreover, C[A; B; C] is a subspace of Mn(C). The problem, quite simply, is this: Is the dimension of C[A; B; C] as a C vector space bounded above by n? 2 Note that the dimension of C[A; B; C] is at most n , because the dimen- 2 sion of Mn(C) is n . Asking for the dimension of C[A; B; C] to be bounded above by n when A, B, and C commute is to put considerable restrictions on C[A; B; C]: this is to require that C[A; B; C] occupy only a small portion of the ambient Mn(C) space in which it sits. Actually, the dimension of C[A; B; C] is already bounded above by some- thing slightly smaller than n2, thanks to a classical theorem of Schur ([16]), who showed that the maximum possible dimension of a commutative C- 2 subalgebra of Mn(C) is 1 + bn =4c. -
Coadjoint Orbits of Lie Algebras and Cartan Class
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 15 (2019), 002, 20 pages Coadjoint Orbits of Lie Algebras and Cartan Class Michel GOZE y and Elisabeth REMM z y Ramm Algebra Center, 4 rue de Cluny, F-68800 Rammersmatt, France E-mail: [email protected] z Universit´ede Haute-Alsace, IRIMAS EA 7499, D´epartement de Math´ematiques, F-68100 Mulhouse, France E-mail: [email protected] Received September 13, 2018, in final form December 31, 2018; Published online January 09, 2019 https://doi.org/10.3842/SIGMA.2019.002 Abstract. We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit O(α) at the point α corresponds to the characteristic space associated to the left invariant form α and its dimension is the even part of the Cartan class of α. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is 2 or 4. We determine also the Lie algebras of dimension 2n or 2n + 1 having an orbit of dimension 2n. Key words: Lie algebras; coadjoint representation; contact forms; Frobenius Lie algebras; Cartan class 2010 Mathematics Subject Classification: 17B20; 17B30; 53D10; 53D05 1 Introduction Let G be a connected Lie group, g its Lie algebra and g∗ the dual vector space of g. We identify g with the Lie algebra of left invariant vector fields on G and g∗ with the vector space of left invariant Pfaffian forms on G. -
Structure Theory of Finite Conformal Algebras Alessandro D'andrea JUN
Structure theory of finite conformal algebras by Alessandro D'Andrea Laurea in Matematica, Universith degli Studi di Pisa (1994) Diploma, Scuola Normale Superiore (1994) Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1998 @Alessandro D'Andrea, 1998. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. A uthor .. ................................ Department of Mathematics May 6, 1998 Certified by ............................ Victor G. Kac Professor of Mathematics rc7rc~ ~ Thesis Supervisor Accepted by. Richard B. Melrose ,V,ASSACHUSETT S: i i. Chairman, Department Committee OF TECHNOLCaY JUN 0198 LIBRARIES Structure theory of finite conformal algebras by Alessandro D'Andrea Submitted to the Department ,of Mathematics on May 6, 1998, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis I gave a classification of simple and semi-simple conformal algebras of finite rank, and studied their representation theory, trying to prove or disprove the analogue of the classical Lie algebra representation theory results. I re-expressed the operator product expansion (OPE) of two formal distributions by means of a generating series which I call "A-bracket" and studied the properties of the resulting algebraic structure. The above classification describes finite systems of pairwise local fields closed under the OPE. Thesis Supervisor: Victor G. Kac Title: Professor of Mathematics Acknowledgments The few people I would like to thank are those who delayed my thesis the most. -
Lie Algebras of Generalized Quaternion Groups 1 Introduction 2
Lie Algebras of Generalized Quaternion Groups Samantha Clapp Advisor: Dr. Brandon Samples Abstract Every finite group has an associated Lie algebra. Its Lie algebra can be viewed as a subspace of the group algebra with certain bracket conditions imposed on the elements. If one calculates the character table for a finite group, the structure of its associated Lie algebra can be described. In this work, we consider the family of generalized quaternion groups and describe its associated Lie algebra structure completely. 1 Introduction The Lie algebra of a group is a useful tool because it is a vector space where linear algebra is available. It is interesting to consider the Lie algebra structure associated to a specific group or family of groups. A Lie algebra is simple if its dimension is at least two and it only has f0g and itself as ideals. Some examples of simple algebras are the classical Lie algebras: sl(n), sp(n) and o(n) as well as the five exceptional finite dimensional simple Lie algebras. A direct sum of simple lie algebras is called a semi-simple Lie algebra. Therefore, it is also interesting to consider if the Lie algebra structure associated with a particular group is simple or semi-simple. In fact, the Lie algebra structure of a finite group is well known and given by a theorem of Cohen and Taylor [1]. In this theorem, they specifically describe the Lie algebra structure using character theory. That is, the associated Lie algebra structure of a finite group can be described if one calculates the character table for the finite group. -
Representing Groups on Graphs
Representing groups on graphs Sagarmoy Dutta and Piyush P Kurur Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016 {sagarmoy,ppk}@cse.iitk.ac.in Abstract In this paper we formulate and study the problem of representing groups on graphs. We show that with respect to polynomial time turing reducibility, both abelian and solvable group representability are all equivalent to graph isomorphism, even when the group is presented as a permutation group via generators. On the other hand, the representability problem for general groups on trees is equivalent to checking, given a group G and n, whether a nontrivial homomorphism from G to Sn exists. There does not seem to be a polynomial time algorithm for this problem, in spite of the fact that tree isomorphism has polynomial time algorithm. 1 Introduction Representation theory of groups is a vast and successful branch of mathematics with applica- tions ranging from fundamental physics to computer graphics and coding theory [5]. Recently representation theory has seen quite a few applications in computer science as well. In this article, we study some of the questions related to representation of finite groups on graphs. A representation of a group G usually means a linear representation, i.e. a homomorphism from the group G to the group GL (V ) of invertible linear transformations on a vector space V . Notice that GL (V ) is the set of symmetries or automorphisms of the vector space V . In general, by a representation of G on an object X, we mean a homomorphism from G to the automorphism group of X.