Lie Algebras and Representation Theory Andreasˇcap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Note on the Decomposition of Semisimple Lie Algebras
Note on the Decomposition of Semisimple Lie Algebras Thomas B. Mieling (Dated: January 5, 2018) Presupposing two criteria by Cartan, it is shown that every semisimple Lie algebra of finite dimension over C is a direct sum of simple Lie algebras. Definition 1 (Simple Lie Algebra). A Lie algebra g is Proposition 2. Let g be a finite dimensional semisimple called simple if g is not abelian and if g itself and f0g are Lie algebra over C and a ⊆ g an ideal. Then g = a ⊕ a? the only ideals in g. where the orthogonal complement is defined with respect to the Killing form K. Furthermore, the restriction of Definition 2 (Semisimple Lie Algebra). A Lie algebra g the Killing form to either a or a? is non-degenerate. is called semisimple if the only abelian ideal in g is f0g. Proof. a? is an ideal since for x 2 a?; y 2 a and z 2 g Definition 3 (Derived Series). Let g be a Lie Algebra. it holds that K([x; z; ]; y) = K(x; [z; y]) = 0 since a is an The derived series is the sequence of subalgebras defined ideal. Thus [a; g] ⊆ a. recursively by D0g := g and Dn+1g := [Dng;Dng]. Since both a and a? are ideals, so is their intersection Definition 4 (Solvable Lie Algebra). A Lie algebra g i = a \ a?. We show that i = f0g. Let x; yi. Then is called solvable if its derived series terminates in the clearly K(x; y) = 0 for x 2 i and y = D1i, so i is solv- trivial subalgebra, i.e. -
Matrix Lie Groups
Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2). -
Lecture 5: Semisimple Lie Algebras Over C
LECTURE 5: SEMISIMPLE LIE ALGEBRAS OVER C IVAN LOSEV Introduction In this lecture I will explain the classification of finite dimensional semisimple Lie alge- bras over C. Semisimple Lie algebras are defined similarly to semisimple finite dimensional associative algebras but are far more interesting and rich. The classification reduces to that of simple Lie algebras (i.e., Lie algebras with non-zero bracket and no proper ideals). The classification (initially due to Cartan and Killing) is basically in three steps. 1) Using the structure theory of simple Lie algebras, produce a combinatorial datum, the root system. 2) Study root systems combinatorially arriving at equivalent data (Cartan matrix/ Dynkin diagram). 3) Given a Cartan matrix, produce a simple Lie algebra by generators and relations. In this lecture, we will cover the first two steps. The third step will be carried in Lecture 6. 1. Semisimple Lie algebras Our base field is C (we could use an arbitrary algebraically closed field of characteristic 0). 1.1. Criteria for semisimplicity. We are going to define the notion of a semisimple Lie algebra and give some criteria for semisimplicity. This turns out to be very similar to the case of semisimple associative algebras (although the proofs are much harder). Let g be a finite dimensional Lie algebra. Definition 1.1. We say that g is simple, if g has no proper ideals and dim g > 1 (so we exclude the one-dimensional abelian Lie algebra). We say that g is semisimple if it is the direct sum of simple algebras. Any semisimple algebra g is the Lie algebra of an algebraic group, we can take the au- tomorphism group Aut(g). -
Structure Theory of Finite Conformal Algebras Alessandro D'andrea JUN
Structure theory of finite conformal algebras by Alessandro D'Andrea Laurea in Matematica, Universith degli Studi di Pisa (1994) Diploma, Scuola Normale Superiore (1994) Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1998 @Alessandro D'Andrea, 1998. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. A uthor .. ................................ Department of Mathematics May 6, 1998 Certified by ............................ Victor G. Kac Professor of Mathematics rc7rc~ ~ Thesis Supervisor Accepted by. Richard B. Melrose ,V,ASSACHUSETT S: i i. Chairman, Department Committee OF TECHNOLCaY JUN 0198 LIBRARIES Structure theory of finite conformal algebras by Alessandro D'Andrea Submitted to the Department ,of Mathematics on May 6, 1998, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis I gave a classification of simple and semi-simple conformal algebras of finite rank, and studied their representation theory, trying to prove or disprove the analogue of the classical Lie algebra representation theory results. I re-expressed the operator product expansion (OPE) of two formal distributions by means of a generating series which I call "A-bracket" and studied the properties of the resulting algebraic structure. The above classification describes finite systems of pairwise local fields closed under the OPE. Thesis Supervisor: Victor G. Kac Title: Professor of Mathematics Acknowledgments The few people I would like to thank are those who delayed my thesis the most. -
Holomorphic Diffeomorphisms of Complex Semisimple Lie Groups
HOLOMORPHIC DIFFEOMORPHISMS OF COMPLEX SEMISIMPLE LIE GROUPS ARPAD TOTH AND DROR VAROLIN 1. Introduction In this paper we study the group of holomorphic diffeomorphisms of a complex semisimple Lie group. These holomorphic diffeomorphism groups are infinite di- mensional. To get additional information on these groups, we consider, for instance, the following basic problem: Given a complex semisimple Lie group G, a holomor- phic vector field X on G, and a compact subset K ⊂⊂ G, the flow of X, when restricted to K, is defined up to some nonzero time, and gives a biholomorphic map from K onto its image. When can one approximate this map uniformly on K by a global holomorphic diffeomorphism of G? One condition on a complex manifold which guarantees a positive solution of this problem, and which is possibly equiva- lent to it, is the so called density property, to be defined shortly. The main result of this paper is the following Theorem Every complex semisimple Lie group has the density property. Let M be a complex manifold and XO(M) the Lie algebra of holomorphic vector fields on M. Recall [V1] that a complex manifold is said to have the density property if the Lie subalgebra of XO(M) generated by its complete vector fields is a dense subalgebra. See section 2 for the definition of completeness. Since XO(M) is extremely large when M is Stein, the density property is particularly nontrivial in this case. One of the two main tools underlying the proof of our theorem is the general notion of shears and overshears, introduced in [V3]. -
Note to Users
NOTE TO USERS This reproduction is the best copy available. The Rigidity Method and Applications Ian Stewart, Department of hIathematics McGill University, Montréal h thesis çubrnitted to the Faculty of Graduate Studies and Research in partial fulfilrnent of the requirements of the degree of MSc. @[an Stewart. 1999 National Library Bibliothèque nationale 1*1 0fC-& du Canada Acquisitions and Acquisilions et Bibliographie Services services bibliographiques 385 Wellington &eet 395. nie Weüington ôuawa ON KlA ON4 mwaON KlAW Canada Canada The author has granted a non- L'auteur a accordé une Licence non exclusive licence aiiowing the exclusive pennettant à la National Lïbrary of Canada to Brbhothèque nationale du Canada de reproduce, Ioan, distri'bute or sell reproduire, prêter, distribuer ou copies of this thesis m microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/filnl de reproduction sur papier ou sur format éIectronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de ceiie-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract The Inverse Problem ol Gnlois Thcor? is (liscuss~~l.In a spticifiç forni. the problem asks tr-hether ewry finitr gruiip occurs aç a Galois groiip over Q. An iritrinsically group theoretic property caIIed rigidity is tlcscribed which confirnis chat many simple groups are Galois groups ovrr Q. -
A Gentle Introduction to a Beautiful Theorem of Molien
A Gentle Introduction to a Beautiful Theorem of Molien Holger Schellwat [email protected], Orebro¨ universitet, Sweden Universidade Eduardo Mondlane, Mo¸cambique 12 January, 2017 Abstract The purpose of this note is to give an accessible proof of Moliens Theorem in Invariant Theory, in the language of today’s Linear Algebra and Group Theory, in order to prevent this beautiful theorem from being forgotten. Contents 1 Preliminaries 3 2 The Magic Square 6 3 Averaging over the Group 9 4 Eigenvectors and eigenvalues 11 5 Moliens Theorem 13 6 Symbol table 17 7 Lost and found 17 References 17 arXiv:1701.04692v1 [math.GM] 16 Jan 2017 Index 18 1 Introduction We present some memories of a visit to the ring zoo in 2004. This time we met an animal looking like a unicorn, known by the name of invariant theory. It is rare, old, and very beautiful. The purpose of this note is to give an almost self contained introduction to and clarify the proof of the amazing theorem of Molien, as presented in [Slo77]. An introduction into this area, and much more, is contained in [Stu93]. There are many very short proofs of this theorem, for instance in [Sta79], [Hu90], and [Tam91]. Informally, Moliens Theorem is a power series generating function formula for counting the dimensions of subrings of homogeneous polynomials of certain degree which are invariant under the action of a finite group acting on the variables. As an apetizer, we display this stunning formula: 1 1 ΦG(λ) := |G| det(id − λTg) g∈G X We can immediately see elements of linear algebra, representation theory, and enumerative combinatorics in it, all linked together. -
SCHUR-WEYL DUALITY Contents Introduction 1 1. Representation
SCHUR-WEYL DUALITY JAMES STEVENS Contents Introduction 1 1. Representation Theory of Finite Groups 2 1.1. Preliminaries 2 1.2. Group Algebra 4 1.3. Character Theory 5 2. Irreducible Representations of the Symmetric Group 8 2.1. Specht Modules 8 2.2. Dimension Formulas 11 2.3. The RSK-Correspondence 12 3. Schur-Weyl Duality 13 3.1. Representations of Lie Groups and Lie Algebras 13 3.2. Schur-Weyl Duality for GL(V ) 15 3.3. Schur Functors and Algebraic Representations 16 3.4. Other Cases of Schur-Weyl Duality 17 Appendix A. Semisimple Algebras and Double Centralizer Theorem 19 Acknowledgments 20 References 21 Introduction. In this paper, we build up to one of the remarkable results in representation theory called Schur-Weyl Duality. It connects the irreducible rep- resentations of the symmetric group to irreducible algebraic representations of the general linear group of a complex vector space. We do so in three sections: (1) In Section 1, we develop some of the general theory of representations of finite groups. In particular, we have a subsection on character theory. We will see that the simple notion of a character has tremendous consequences that would be very difficult to show otherwise. Also, we introduce the group algebra which will be vital in Section 2. (2) In Section 2, we narrow our focus down to irreducible representations of the symmetric group. We will show that the irreducible representations of Sn up to isomorphism are in bijection with partitions of n via a construc- tion through certain elements of the group algebra. -
Generalized Supercharacter Theories and Schur Rings for Hopf Algebras
Generalized Supercharacter Theories and Schur Rings for Hopf Algebras by Justin Keller B.S., St. Lawrence University, 2005 M.A., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics 2014 This thesis entitled: Generalized Supercharacter Theories and Schur Rings for Hopf Algebras written by Justin Keller has been approved for the Department of Mathematics Nathaniel Thiem Richard M. Green Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Keller, Justin (Ph.D., Mathematics) Generalized Supercharacter Theories and Schur Rings for Hopf Algebras Thesis directed by Associate Professor Nathaniel Thiem The character theory for semisimple Hopf algebras with a commutative representation ring has many similarities to the character theory of finite groups. We extend the notion of superchar- acter theory to this context, and define a corresponding algebraic object that generalizes the Schur rings of the group algebra of a finite group. We show the existence of Hopf-algebraic analogues for the most common supercharacter theory constructions, specificially the wedge product and super- character theories arising from the action of a finite group. In regards to the action of the Galois group of the field generated by the entries of the character table, we show the existence of a unique finest supercharacter theory with integer entries, and describe the superclasses for abelian groups and the family GL2(q). -
Arxiv:1106.4415V1 [Math.DG] 22 Jun 2011 R,Rno Udai Form
JORDAN STRUCTURES IN MATHEMATICS AND PHYSICS Radu IORDANESCU˘ 1 Institute of Mathematics of the Romanian Academy P.O.Box 1-764 014700 Bucharest, Romania E-mail: [email protected] FOREWORD The aim of this paper is to offer an overview of the most important applications of Jordan structures inside mathematics and also to physics, up- dated references being included. For a more detailed treatment of this topic see - especially - the recent book Iord˘anescu [364w], where sugestions for further developments are given through many open problems, comments and remarks pointed out throughout the text. Nowadays, mathematics becomes more and more nonassociative (see 1 § below), and my prediction is that in few years nonassociativity will govern mathematics and applied sciences. MSC 2010: 16T25, 17B60, 17C40, 17C50, 17C65, 17C90, 17D92, 35Q51, 35Q53, 44A12, 51A35, 51C05, 53C35, 81T05, 81T30, 92D10. Keywords: Jordan algebra, Jordan triple system, Jordan pair, JB-, ∗ ∗ ∗ arXiv:1106.4415v1 [math.DG] 22 Jun 2011 JB -, JBW-, JBW -, JH -algebra, Ricatti equation, Riemann space, symmet- ric space, R-space, octonion plane, projective plane, Barbilian space, Tzitzeica equation, quantum group, B¨acklund-Darboux transformation, Hopf algebra, Yang-Baxter equation, KP equation, Sato Grassmann manifold, genetic alge- bra, random quadratic form. 1The author was partially supported from the contract PN-II-ID-PCE 1188 517/2009. 2 CONTENTS 1. Jordan structures ................................. ....................2 § 2. Algebraic varieties (or manifolds) defined by Jordan pairs ............11 § 3. Jordan structures in analysis ....................... ..................19 § 4. Jordan structures in differential geometry . ...............39 § 5. Jordan algebras in ring geometries . ................59 § 6. Jordan algebras in mathematical biology and mathematical statistics .66 § 7. -
Representation Theory
M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23. -
Lie Algebras from Lie Groups
Preprint typeset in JHEP style - HYPER VERSION Lecture 8: Lie Algebras from Lie Groups Gregory W. Moore Abstract: Not updated since November 2009. March 27, 2018 -TOC- Contents 1. Introduction 2 2. Geometrical approach to the Lie algebra associated to a Lie group 2 2.1 Lie's approach 2 2.2 Left-invariant vector fields and the Lie algebra 4 2.2.1 Review of some definitions from differential geometry 4 2.2.2 The geometrical definition of a Lie algebra 5 3. The exponential map 8 4. Baker-Campbell-Hausdorff formula 11 4.1 Statement and derivation 11 4.2 Two Important Special Cases 17 4.2.1 The Heisenberg algebra 17 4.2.2 All orders in B, first order in A 18 4.3 Region of convergence 19 5. Abstract Lie Algebras 19 5.1 Basic Definitions 19 5.2 Examples: Lie algebras of dimensions 1; 2; 3 23 5.3 Structure constants 25 5.4 Representations of Lie algebras and Ado's Theorem 26 6. Lie's theorem 28 7. Lie Algebras for the Classical Groups 34 7.1 A useful identity 35 7.2 GL(n; k) and SL(n; k) 35 7.3 O(n; k) 38 7.4 More general orthogonal groups 38 7.4.1 Lie algebra of SO∗(2n) 39 7.5 U(n) 39 7.5.1 U(p; q) 42 7.5.2 Lie algebra of SU ∗(2n) 42 7.6 Sp(2n) 42 8. Central extensions of Lie algebras and Lie algebra cohomology 46 8.1 Example: The Heisenberg Lie algebra and the Lie group associated to a symplectic vector space 47 8.2 Lie algebra cohomology 48 { 1 { 9.